
Summary last week

• correctness and complexity statements and proofs of Floyd’s algorithm
• proof method: proof by contradiction
• relations as digraphs; whether elements relate, not how
• properties of relations: reflexivity, symmetry, transitivity, . . .
• closing a relation with respect to a property
• Warshall’s transitive closure algorithm
• functions as relations; every element related to some unique element
• defining functions by specifications

Theorem

The following overwrites the adjacency matrix A of R, with that of R+

For r from 0 to n− 1 repeat:

Set N = A.

For i from 0 to n− 1 repeat:

For j from 0 to n− 1 repeat:

Set Nij = max(Aij,Air · Arj)

Set A = N.

Proof.

as for Floyd
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Functions as relations

Definition

A function on M is a relation R on M such that

1 for all x ∈ M, there exists y such that x R y (totality)

2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.
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2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.

Example

• The squaring function on natural numbers is the relation
{(0,0), (1,1), (2,4), (3,9), (4,16), . . .}.
• Taking the square root is not a function on natural numbers, since, e.g., the

square root of 2 is not a natural number (existence fails)

• Taking the square root is not a function on the real numbers either, since, e.g.,
both −2 and 2 are square roots of 4 (uniqueness (also) fails)

4

Functions as relations

Definition

A function on M is a relation R on M such that

1 for all x ∈ M, there exists y such that x R y (totality)

2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.

Specification of functions

A function is said to be defined by some specification this expresses that there exists a
unique relation satisfying the specification and the relation is a function.

Example

The function f on natural numbers defined by

• f(n) = n? Xor f(n) = −1? ×or f(n) = f(n)? ×
• f(0) = 10 and f(1) = 2? ×or f(0) = 0 and f(n + 1) = f(n)? X. . .
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How to represent functions?

Problem

Domains are typically infinite. Then representation by

• list of tuples? infinitely many tuples!

• adjacency matrix? infinitely many rows,columns!

• . . . ?

Solution

Represent functions by algorithms. Many ways of defining algorithms, e.g. as Turing
machines, Java programs, Haskell programs, . . . but all equivalent
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Limitations of algorithms

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course
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Functions as imperative programs

Definition

A deterministic 1-tape Turingmachine (TM) M is a 9-tuple

M = (Q,Σ, Γ,`,t, δ, s, t, r)

1 Q is a finite set of states

2 Σ is a set of input symbols

3 Γ is a finite set of tape symbols with Σ ⊆ Γ

4 ` ∈ Γ \ Σ is the left-end marker symbol

5 t ∈ Γ (t 6= `), is the blank symbol

6 δ : Q× Γ→ Q× Γ× {L,R} is the transition function

7 s ∈ Q, the initial or start state

8 t ∈ Q, the accepting state

9 r ∈ Q, the rejecting state (t 6= r) 7

Transition function

δ(p, a) = (q,b,d) means that if TM M is in state p and reads symbol a, then

1 M replaces a with b on the tape

2 the read/write-head moves one step in direction d

3 M goes into state q

Additional constraints

• The left-end marker cannot be overwritten

∀ p ∈ Q, ∃ q ∈ Q δ(p,`) = (q,`,R)

• If TM is in the accepting/rejecting state, it will stay in that state

∀b ∈ Γ π1(δ(t,b)) = t and π1(δ(r,b)) = r

Here π1 denotes projection on the first component
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http://morphett.info/turing/turing.html


Example

Let M = ({s,p, t, r}, {0,1}, {`,t,0,1},`,t, δ, s, t, r) be a TM. Then δ can be specified by
a transition table

` 0 1 t
s (s,`,R) (s,0,R) (s,1,R) (p,t, L)

p (t,`,R) (t,1, L) (p,0, L) ·

or by a transition graph

s p t

1/1/R

0/0/R

`/`/R

t/t/L

1/0/L
0/1/L

`/`/R
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Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10

Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10



Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10

Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10

Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10

Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10



Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ
Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols

10

Words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ
Σ∗ is the set of all words over Σ

Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols 10

Definition

A configuration of a TM M is a triple (p, x,n) comprising

1 p ∈ Q its state

2 x = yt∞ its tape content, y ∈ Γ∗

3 n ∈ N the position of the read/write-head

Definition

The initial or start configuration for input x ∈ Σ∗ is:

(s,`xt∞,0)

Example

For the TM M of the previous example

(s,`0010t∞,0)
∗−→
M

(t,`0011t∞,3)
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The step function of a TM

Definition

Let n ∈ N and y = y0 · · · ym−1 ∈ Γ∗ with m > n; the relation
1−→
M

is defined by:

(p, yt∞,n)
1−→
M

{
(q, y0 . . .b . . . ym−1t∞,n− 1) δ(p, yn) = (q,b, L)

(q, y0 . . .b . . . ym−1t∞,n + 1) δ(p, yn) = (q,b,R)

Definition
∗−→
M

is the reflexive–transitive closure of
1−→
M

. That is, it corresponds to a finite sequence
of consecutive steps.
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Definition

a TM M

• accepts x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(t, y,n)

• rejects x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(r, y,n)

• halt on input x, if x is accepted or rejected

• does not halt in input x, if x is neither accepted nor rejected

• is total, if M halts on all inputs

Definition

A function f : A→ B is defined by a TM M for every x ∈ A, M accepts input x with f(y)
on the tape (and does not halt or rejects on inputs x 6∈ A).

13
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Functions as functional programs

Example

Squaring sq : N → N

sq n = n · n

ok, but multiplication · ? infinite table?
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Example

Squaring sq : N → N and multiplication · : N × N → N

sq n = n · n
0 · k = 0

(1 + n) · k = k + (n · k)

ok, but addition +? infinite table?
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Functions as functional programs

Example

Squaring sq : N → N , multiplication · : N × N → N and addition + : N × N → N

sq n = n · n
0 · k = 0

(1 + n) · k = k + (n · k)

0 + k = k

(1 + n) + k = 1 + (n + k)

ok, but successor 1+? infinite table? (Sheet 3)

14



Algorithms, TMs, programs vs. functions

• finite representations of functions

• finiteness entails not all functions can be represented (later)

• a function that can be represented is called computable

• different programs may represent the same function; e.g. mergesort vs.
bubblesort

• programs can be distinguished by their usage of resources; time, space, steps,
energy, . . . ; functions cannot

15

Orders

Definition

A relation is a

• partial order if it is reflexive, anti-symmetric and transitive;

• total order if moreover every pair of elements is related either way; and

• strict order if it is irreflexive and transitive

Lemma

Strict orders are anti-symmetric

Proof.

We show anti-symmetry vacuously holds, by showing that its assumption is never
fulfilled. Suppose both x R y and y R x for some strict order R. By transitivity, then
x R x, contradicting irreflexivity.
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Example

The natural order ≤ on Z , defined by

x ≤ y if y− x ∈ N
is a partial order and a total order, but not a strict order (consider (5,5)).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that

n = m · p
Divisibility is a partial order, but neither total nor strict (consider (2,3) resp. (2,2))

Example

Let, for tuples x = (x1, x2, . . . , xk) und y = (y1, y2, . . . , yk) in Mk

x Rcomp y if xi R yi for all i = 1, . . . , k

The componentwise extension Rcomp of R is a partial resp. strict order, if R is on M.
Typically not total, even if R is; (2,1) 6< (1,2) on N 2.

17

Example

The natural order ≤ on Z , defined by

x ≤ y if y− x ∈ N
is a partial order and a total order, but not a strict order (consider (5,5)).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that

n = m · p
Divisibility is a partial order, but neither total nor strict (consider (2,3) resp. (2,2))

Example

Let, for tuples x = (x1, x2, . . . , xk) und y = (y1, y2, . . . , yk) in Mk

x Rcomp y if xi R yi for all i = 1, . . . , k

The componentwise extension Rcomp of R is a partial resp. strict order, if R is on M.
Typically not total, even if R is; (2,1) 6< (1,2) on N 2.

17

Example

The natural order ≤ on Z , defined by

x ≤ y if y− x ∈ N
is a partial order and a total order, but not a strict order (consider (5,5)).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that

n = m · p
Divisibility is a partial order, but neither total nor strict (consider (2,3) resp. (2,2))

Example

Let, for tuples x = (x1, x2, . . . , xk) und y = (y1, y2, . . . , yk) in Mk

x Rcomp y if xi R yi for all i = 1, . . . , k

The componentwise extension Rcomp of R is a partial resp. strict order, if R is on M.
Typically not total, even if R is; (2,1) 6< (1,2) on N 2.

17

Example

The natural order ≤ on Z , defined by

x ≤ y if y− x ∈ N
is a partial order and a total order, but not a strict order (consider (5,5)).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that

n = m · p
Divisibility is a partial order, but neither total nor strict (consider (2,3) resp. (2,2))

Example

Let, for tuples x = (x1, x2, . . . , xk) und y = (y1, y2, . . . , yk) in Mk

x Rcomp y if xi R yi for all i = 1, . . . , k

The componentwise extension Rcomp of R is a partial resp. strict order, if R is on M.
Typically not total, even if R is; (2,1) 6< (1,2) on N 2. 17



Example

The natural order ≤ on Z , defined by

x ≤ y if y− x ∈ N
is a partial order and a total order, but not a strict order (consider (5,5)).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that

n = m · p
Divisibility is a partial order, but neither total nor strict (consider (2,3) resp. (2,2))
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Let, for tuples x = (x1, x2, . . . , xk) und y = (y1, y2, . . . , yk) in Mk

x R

comp

y if xi R yi for all i = 1, . . . , k

The componentwise extension Rcomp of R is a partial resp. strict order, if R is on M.
Typically not total, even if R is; (2,1) 6< (1,2) on N 2. 17

Definition

P(M) := {T | T ⊆ M} the power set of M

Pk(M) := {T | T ⊆ M and #(T) = k} subsets of size k

Example

P({a,b}) = {∅, {a}, {b}, {a,b}}

P1({a,b}) = {{a}, {b}}

Theorem

The subset relation S ⊆ T is a partial order on P(M)

Definition (Refining and coarsening of partitions)

Let P, Q be partitions of M.
P ≤ Q :⇔ every block of P is a subset of a block of Q

If P ≤ Q, then P is finer then Q (Q coarser than P)

Example

The partition {{a}, {b}, {c}} is (strictly) finer than each of
{{a}, {b, c}} {{b}, {a, c}} {{c}, {a,b}} {{a,b, c}}
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Theorem

(1) If ≤ partial order, then its predecessor relation

x < y :⇔ x ≤ y and x 6= y

is a strict order

(2) If < is a strict order, then its reflexive closure

x ≤ y :⇔ x < y or x = y

defines a partial order

(3) The functions ≤ 7→ < in (1) and < 7→ ≤ in (2) are inverse to each other

Remark

Partial orders defined by strict orders, and vice versa

Example

< = {(0,1), (1,2), (0,2)} defines the partial order

≤ = {

(0,0),

(0,1),

(1,1),

(1,2), (0,2)

, (2,2)

}
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Proof.

(1) By definition, x < y holds iff x ≤ y and x 6= y. Therefore, < is irreflexive.

To show <
is transitive, assume x < y and y < z. First, x ≤ z by transitivity of ≤. Next, x 6= z since
otherwise x ≤ y and y ≤ x would yield x = y by anti-symmetry. Hence x < z.
(2) By definition, ≤ is reflexive. We show it also is transitive. Let x, y, z ∈ M with x ≤ y
and y ≤ z. If x = y and y = z, then x = z. In the other cases x < z, using in case x < y
and y < z that < is transitive. To show ≤ is anti-symmetric ≤, it suffices to observe
that x ≤ y and y ≤ x can only both hold if x = y (if y = x) ; the other cases contradict
irreflexivity of <
(3) Starting from a partial order ≤, the relation defined by (x ≤ y ∧ x 6= y) ∨ x = y is
≤ again, as the construction amount to first removing all loops, and then adding them,
noting ≤ has all loops. The other direction is similar, using that a strict order < has no
loops.
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Definition

Let ≤ be a partial order on M. Then x ∈ M is

• least in M, if for all y ∈ M, x ≤ y

• greatest in M, if for all y ∈ M, y ≤ x

• minimal in M, if for all y ∈ M, y 6< x

• maximal in M, if for all y ∈ M, x 6< y

Example

≤ generated by predecessor relation

< = {(1,2), (1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,5)}

• minimal elements:

1, 3

• maximal elements:

5

• least element:

• greatest element:

5

21
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