Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing

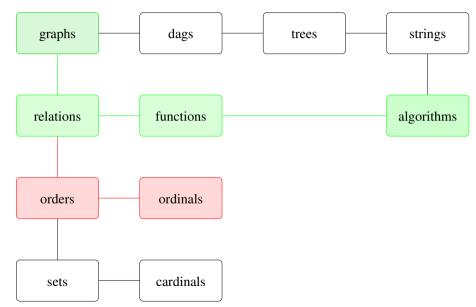
Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing
- orders as certain transitive relations; partial, total, strict
- correspondence between partial and strict orders
- strict part (predecessor): $\leq \mapsto <$; reflexive closure: $< \mapsto \leq$
- minimal/maximal elements: no element smaller/greater
- least/greatest elements: smaller/greater than all

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures



Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Example

 $m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n = m \cdot p$. Divisibility is a partial order (not total, strict). Strict divisibility is strict (not total, partial).

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

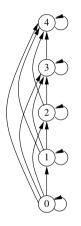
Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Example

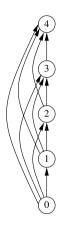
 $m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n = m \cdot p$. Divisibility is a partial order (not total, strict). Strict divisibility is strict (not total, partial).

Partial order \Rightarrow strict order \Rightarrow Hasse diagram



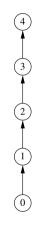
(initial part of) graph of partial order \leq on $\mathbb N$ why have reflexive, transitive edges if we can reconstruct them?

Partial order \Rightarrow strict order \Rightarrow Hasse diagram



graph of strict order < on \mathbb{N} \le reconstructed from strict order as reflexive closure < of <

Partial order \Rightarrow strict order \Rightarrow Hasse diagram



graph of successor relation $R = \{(n, n+1) \mid n \in \mathbb{N} \}$; Hasse diagram of $\leq \leq$ reconstructed from Hasse diagram as reflexive–transitive closure R^* of R

- \leq total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

- ≤ total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) $x \text{ greatest} \Rightarrow x \text{ unique maximal element}$

Proof.

(1) unique:

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) $x \text{ greatest} \Rightarrow x \text{ unique maximal element}$

Proof.

(1) unique: x, w least

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w$

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$ minimal:

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

- (1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$
- minimal: x least and $y \le x$

- ≤ total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

- (1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$
- minimal: x least and $y \le x \Rightarrow y \le x \le y$

- < total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- \leq partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$ minimal: x least and $y \le x \Rightarrow y \le x \le y \Rightarrow y = x$

- ≤ total order
 - $x least \Leftrightarrow x minimal$
 - $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

- ≤ partial order
- (1) $x least \Rightarrow x unique minimal element$
- (2) x greatest $\Rightarrow x$ unique maximal element

Proof.

- (1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$
- minimal: x least and $y \le x \Rightarrow y \le x \le y \Rightarrow y = x$
- (2) By (1) using that greatest, maximal wrt \leq iff least, minimal wrt its converse \geq

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element:

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done.

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$.

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc.

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc. Because

$$x > x_1 > x_2 > \dots$$

are all distinct elements of M, we reach in finitely many steps a minimal element x_n such that $x_n < x$.

- (3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc. Because

$$x > x_1 > x_2 > \dots$$

are all distinct elements of M, we reach in finitely many steps a minimal element x_n such that $x_n < x$.

(4) and (5) follow from (3)

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, \dots, z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, ..., z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- ullet $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, ..., z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, ..., z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Word)

 $w = (w_0, \dots, w_{n-1}) \in \Sigma^n$ is a word or string of length $\ell(w) = n$ over Σ

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0,1\}$ is the binary alphabet
- $\{a, b, ..., z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Word)

 $w = (w_0, \dots, w_{n-1}) \in \Sigma^n$ is a word or string of length $\ell(w) = n$ over Σ Σ^* is the set of all words over Σ

Let \leq be total order on Σ .

Let \leq be total order on Σ . For words $v,w\in\Sigma^*$

$$v<_{\mathsf{lex}} w$$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists
$$k \in \mathbb{N}$$
 with $k \le \ell(v)$, $k \le \ell(w)$ such that (1) $v_i = w_i$ for $i = 0, \dots, k-1$ and

Let
$$\leq$$
 be total order on Σ . For words $v, w \in \Sigma^*$
$$v <_{\mathsf{lex}} w$$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that

(1)
$$v_i = w_i$$
 for $i = 0, ..., k-1$ and

(2)
$$(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k, \ell(w) > k \text{ and } v_k < w_k)$$

Let
$$\leq$$
 be total order on Σ . For words $v, w \in \Sigma^*$
$$v <_{\mathsf{lex}} w$$

if there exists $k \in \mathbb{N}$ with $k \le \ell(v)$, $k \le \ell(w)$ such that

(1)
$$v_i = w_i$$
 for $i = 0, ..., k-1$ and

(2)
$$(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k \text{ , } \ell(w) > k \text{ and } v_k < w_k)$$

Example

Let
$$\Sigma = \{a,b\}$$
 and $a < b$. Then
$$\epsilon <_{\mathsf{lex}} a \qquad \epsilon <_{\mathsf{lex}} b \qquad a <_{\mathsf{lex}} b \qquad aa <_{\mathsf{lex}} ab \qquad aaaa <_{\mathsf{lex}} ab$$

Let
$$\leq$$
 be total order on Σ . For words $v, w \in \Sigma^*$
$$v <_{\mathsf{lev}} w$$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that

(1)
$$v_i = w_i$$
 for $i = 0, ..., k-1$ and

(2)
$$(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k \text{ , } \ell(w) > k \text{ and } v_k < w_k)$$

Example

Let
$$\Sigma = \{a,b\}$$
 and $a < b$. Then
$$\epsilon <_{\mathsf{lex}} a \qquad \epsilon <_{\mathsf{lex}} b \qquad a <_{\mathsf{lex}} b \qquad aa <_{\mathsf{lex}} ab \qquad aaaa <_{\mathsf{lex}} ab$$

Theorem

 \leq_{lex} is a partial, total order on Σ^*

Suffices to show that $<_{\text{lex}}$ is a strict order. $<_{\text{lex}}$ is clearly irreflexive.

Suffices to show that $<_{\text{lex}}$ is a strict order. $<_{\text{lex}}$ is clearly irreflexive. To show transitivity, let $u,v,w\in \Sigma^*$ with

$$u <_{\text{lex}} v$$
 and $v <_{\text{lex}} w$

Suffices to show that $<_{\text{lex}}$ is a strict order. $<_{\text{lex}}$ is clearly irreflexive. To show transitivity, let $u,v,w\in \Sigma^*$ with

$$u <_{lex} v$$
 and $v <_{lex} w$

Then there is a $k \in \mathbb{N}$ with $k \le \ell(u)$ and $k \le \ell(v)$ and

- **(1)** $u_i = v_i$ for i = 0, ..., k-1 and
- (2) $(\ell(u) = k \text{ and } \ell(v) > k) \text{ or } (\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$

Suffices to show that $<_{\text{lex}}$ is a strict order. $<_{\text{lex}}$ is clearly irreflexive. To show transitivity, let $u,v,w\in\Sigma^*$ with

$$u <_{\mathsf{lex}} v$$
 and $v <_{\mathsf{lex}} w$

Then there is a $k \in \mathbb{N}$ with $k \le \ell(u)$ and $k \le \ell(v)$ and

- **(1)** $u_i = v_i$ for i = 0, ..., k-1 and
- (2) $(\ell(u) = k \text{ and } \ell(v) > k) \text{ or } (\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$

and moreover an $I \in \mathbb{N}$ with $I \leq \ell(v)$ and $I \leq \ell(w)$ and

- **(1)** $v_i = w_i$ for i = 0, ..., l-1 and
- (2) $(\ell(v) = I \text{ and } \ell(w) > I) \text{ or } (\ell(v) > I \text{ and } \ell(w) > I \text{ and } v_I < w_I)$

Suffices to show that $<_{\text{lex}}$ is a strict order. $<_{\text{lex}}$ is clearly irreflexive. To show transitivity, let $u,v,w\in \Sigma^*$ with

$$u <_{\text{lex}} v$$
 and $v <_{\text{lex}} w$

Then there is a $k \in \mathbb{N}$ with $k \le \ell(u)$ and $k \le \ell(v)$ and

- **(1)** $u_i = v_i$ for i = 0, ..., k-1 and
- (2) $(\ell(u) = k \text{ and } \ell(v) > k) \text{ or } (\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$

and moreover an $I \in \mathbb{N}$ with $I \leq \ell(v)$ and $I \leq \ell(w)$ and

- **(1)** $v_i = w_i$ for i = 0, ..., l-1 and
- (2) $(\ell(v) = I \text{ and } \ell(w) > I) \text{ or } (\ell(v) > I \text{ and } \ell(w) > I \text{ and } v_I < w_I)$

Then we have for $m:=\min(k,l)$, $m\leq \ell(u)$ and $m\leq \ell(w)$ and

- (a) $u_i = w_i$ for i = 0, ..., m-1 and
- **(b)** $(\ell(u) = m \text{ and } \ell(w) > m)$ or $(\ell(u) > m \text{ and } \ell(w) > m \text{ and } u_m < w_m)$

from which $u <_{lex} w$ follows

Proof that \leq_{lex} is total

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$

Proof that \leq_{lex} is total

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$

- Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that
- (a) $v_i = w_i$ for i = 0, ..., k-1 and
- **(b)** $(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k \text{ and } \ell(w) = k) \text{ or } (\ell(v) > k \text{ and } \ell(w) > k \text{ and } v_k \neq w_k)$

Proof that \leq_{lex} **is total**

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$

Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that

- (a) $v_i = w_i$ for i = 0, ..., k-1 and
- **(b)** $(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k \text{ and } \ell(w) = k) \text{ or } (\ell(v) > k \text{ and } \ell(w) > k \text{ and } v_k \neq w_k)$

Since \leq is total on Σ , we have either $v <_{lex} w$ or $w <_{lex} v$

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $(x_0, x_1, x_2, ...)$ of elements of M is an infinite descending R-chain, if ... $R x_2 R x_1 R x_0$
- *R* is well-founded, if *M* has no infinite descending *R*-chains.
- ullet When we say that partial order \leq is well-founded we mean that its strict part < is

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $(x_0, x_1, x_2, ...)$ of elements of M is an infinite descending R-chain, if ... $R \times_2 R \times_1 R \times_0$
- *R* is well-founded, if *M* has no infinite descending *R*-chains.
- ullet When we say that partial order \leq is well-founded we mean that its strict part < is

- The natural order \leq on $\mathbb N$ is well-founded
- The natural order \leq on $\mathbb Z$ is not well-founded
- The lexicographic order is not well-founded, if alphabet has at least two symbols

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

Example

• M = months of year; P(m) = month m has at least 25 days

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, $P(n) = \text{if } n \text{ is even, then so is } n^2$

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, $P(n) = \text{if } n \text{ is even, then so is } n^2$
- M = natural numbers, $P(n) = (\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, P(n) = if n is even, then so is n^2
- M = natural numbers, $P(n) = (\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$
- M = pairs of positive natural numbers, P(n, m) = Euclid's algorithm yields $\gcd(m, n)$

Proof by cases

Program

Lemma

for every Month m, days $m \ge 25$

Proof by cases

Program

Lemma

for every Month m, days $m \ge 25$

Proof by cases.

days Jan = $31 \ge 25 \checkmark$, ..., days Dec = $31 \ge 25 \checkmark$ we conclude since we checked all cases

Lemma

for every natural number n that is even, n^2 is even.

Lemma

for every natural number n that is even, n^2 is even.

Proof.

Lemma

for every natural number n that is even, n^2 is even.

Proof.

1 take an arbitrary natural number *n*

Lemma

for every natural number n that is even, n^2 is even.

Proof.

- 1 take an arbitrary natural number n
- 2 suppose n is even: n = 2m for some natural number m

Lemma

for every natural number n that is even, n^2 is even.

Proof.

- 1 take an arbitrary natural number n
- **2** suppose n is even: n = 2m for some natural number m
- 3 then $n^2 = (2m)^2 = 2(2m^2) \checkmark$

Lemma

for every natural number n that is even, n^2 is even.

Proof.

- 1 take an arbitrary natural number n
- **2** suppose *n* is even: n = 2m for some natural number *m*
- 3 then $n^2 = (2m)^2 = 2(2m^2) \checkmark$

we conclude since n was taken to be arbitrary

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: R a well-founded relation on set N

Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)

Conclude: for all $n \in N$, P(n)

the P(m) for m R n are the induction hypotheses

Proof.

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: R a well-founded relation on set N

Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)

Conclude: for all $n \in N$, P(n)

Proof.

• Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N} \}$.

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: R a well-founded relation on set N

Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)

Conclude: for all $n \in N$, P(n)

Proof.

- Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N} \}$.
- if n = 0, then no induction hypotheses; directly show P(0)

$$\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2}$$

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: R a well-founded relation on set N Induction: for arbitrary $n \in N$, show that if P(m) for all $m \in N$, then P(n) Conclude: for all $n \in N$, P(n)

Proof.

- Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}.$
- if n > 0, then one induction hypothesis P(n-1): $\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$

$$\sum_{i=1}^{n} i = (\sum_{i=1}^{n-1} i) + n =_{IH} \frac{(n-1)n}{2} + n = \frac{n(n+1)}{2}$$

mathematical induction

- **I** Suppose we want to show P(n) for all natural numbers n
- To that end, we may proceed as follows:
 - Induction basis: We show that P holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- \blacksquare Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n + 1) \mid n \in \mathbb{N} \}.$

mathematical induction

- 1 Suppose we want to show P(n) for all natural numbers n
- To that end, we may proceed as follows:
 - Induction basis: We show that P holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- \blacksquare Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n+1) \mid n \in \mathbb{N} \}.$

mathematical induction formally

$$(P(0) \land \forall n > 0.(P(n-1) \rightarrow P(n))) \rightarrow (\forall n.P(n))$$

Proof by mathematical induction

mathematical induction

- 1 Suppose we want to show P(n) for all natural numbers n
- To that end, we may proceed as follows:
 - Induction basis: We show that P holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- \blacksquare Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n+1) \mid n \in \mathbb{N} \}.$

well-founded induction formally

$$\forall n.((\forall m \text{ such that } m \text{ R } n.P(m)) \rightarrow P(n)) \rightarrow (\forall n.P(n))$$

Foundations of well-founded induction

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done.

Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

$$x_0 > x_1 > x_2 > \dots$$

we reach a minimal element x_n after finitely many steps.

$$x_0>x_1>x_2>\dots$$

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done.

Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

$$x_0 > x_1 > x_2 > \dots$$

we reach a minimal element x_n after finitely many steps.

$$x_0 > x_1 > x_2 > \dots$$

To prove the other direction, we suppose that \leq were not well-founded. Then there would be an infinitely descending chain

$$x_0>x_1>x_2>\ldots\,,$$

and the non-empty subset $N = \{x_0, x_1, x_2, ...\}$ has no minimal element.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done.

Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

$$x_0 > x_1 > x_2 > \dots$$

we reach a minimal element x_n after finitely many steps.

$$x_0 > x_1 > x_2 > \dots$$

To prove the other direction, we suppose that \leq were not well-founded. Then there would be an infinitely descending chain

$$x_0>x_1>x_2>\ldots\,,$$

and the non-empty subset $N = \{x_0, x_1, x_2, ...\}$ has no minimal element.

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

```
euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n-m)
```

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

```
euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n-m)
```

Principle of well-founded induction

Assumption: R a well-founded relation on set N

Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)

Conclude: for all $n \in N$, P(n)

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

```
euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n-m)
```

Proof.

• Take the well-founded relation $\{((m, n), (m', n')) \mid m + n < m' + n'\}$.

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

```
euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n-m)
```

Proof.

- Take the well-founded relation $\{((m, n), (m', n')) \mid m + n < m' + n'\}.$
- if m = n, then no induction hypotheses needed; euclid m m = $m = \gcd(m, m)$

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

```
euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n-m)
```

Proof.

- Take the well-founded relation $\{((m,n),(m',n')) \mid m+n < m'+n'\}$.
- if m=n, then no induction hypotheses needed; euclid m $m=m=\gcd(m,m)$
- if m > n, then induction hypotheses: euclid m' $n' = \gcd(m', n')$ if m' + n' < m + n euclid m n = euclid (m-n) $n =_{lH} \gcd(m n, m) = \gcd(m, n)$

Example

Let M be the set of all palindromes over the alphabet $\{a,b\}$. We show ?If $x \in M$ and $\ell(x)$ even, then x has an even number of as.?

Example

Let M be the set of all palindromes over the alphabet $\{a,b\}$. We show ?If $x \in M$ and $\ell(x)$ even, then x has an even number of as.?

Proof.

By well-founded induction. Take $R = \{(w, w') \mid \ell(w) < \ell(w')\}$; order by length

- if x the empty string, then property holds; 0 is even
- if x non-empty induction hypotheses: property holds for words shorter than x
 - if first letter of x is a, then x = ax'a for some palindrome $x' \in M$. then conclude since 2 + even is even
 - if first letter of x is b, then x = bx'b for some palindrome $x' \in M$. then conclude since 0 + even is even