Summary last week Summary last week

e functions as algorithms; finite specifications e functions as algorithms; finite specifications

e functions defined by imperative programs e functions defined by imperative programs

® Turing machines; input and output on tape, transitions, halting ® Turing machines; input and output on tape, transitions, halting

e functions defined by functional programs e functions defined by functional programs

e functional specifications; input as argument(s), output as value, replacing e functional specifications; input as argument(s), output as value, replacing

® orders as certain transitive relations; partial, total, strict

® correspondence between partial and strict orders

e strict part (predecessor): < +— <; reflexive closure: < +— <
® minimal/maximal elements: no element smaller/greater

® |east/greatest elements: smaller/greater than all

Course themes Discrete structures

graphs dags 4{ trees }7 strings

e directed and undirected graphs

® relations and functions

® orders and induction

relations functions algorithms
® trees and dags -
¢ finite and infinite counting
® elementary number theory |
® Turing machines, algorithms, and complexity orders ordinals

e decidable and undecidable problem

sets cardinals
2
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Arelation is a
e partial order if it is reflexive, anti-symmetric and transitive;
® total order if moreover every pair of elements is related either way; and
e strict order if it is irreflexive and transitive (so it is anti-symmetric)
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e strict order if it is irreflexive and transitive (so it is anti-symmetric)

The natural order < on Z, defined by x <y if y —x € N is partial, total order (not
strict). < is strict (not total, partial).

m € N divides n € N, if there is some p € N such that n = m - p. Divisibility is a
partial order (not total, strict). Strict divisibility is strict (not total, partial).
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A relation is a
e partial order if it is reflexive, anti-symmetric and transitive;
® total order if moreover every pair of elements is related either way; and
e strict order if it is irreflexive and transitive (so it is anti-symmetric)

The natural order < on Z, defined by x <y if y —x € N is partial, total order (not
strict). < is strict (not total, partial).

m € N divides n € N, if there is some p € N such that n = m - p. Divisibility is a
partial order (not total, strict). Strict divisibility is strict (not total, partial).



Partial order = strict order = Hasse diagram

D)

(initial part of) graph of partial order < on N
why have reflexive, transitive edges if we can reconstruct them?

Partial order = strict order = Hasse diagram

graph of successor relation R = {(n,n + 1) | n € N }; Hasse diagram of <
< reconstructed from Hasse diagram as reflexive-transitive closure R* of R

Partial order = strict order = Hasse diagram

graph of strict order < on N
< reconstructed from strict order as reflexive closure <= of <

< total order
® x least < x minimal
® x greatest < x maximal


https://en.wikipedia.org/wiki/Hasse_diagram

< total order
® x least < x minimal

® x greatest < x maximal

Theorem

< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element
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® X greatest < x maximal

Theorem

< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast = w < x < w
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® x greatest < x maximal
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< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=Xx
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< total order
® x least < x minimal

® X greatest < x maximal

Theorem

< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=x
minimal: x least and y < x

< total order
® x least < x minimal

® x greatest < x maximal

Theorem

< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=Xx
minimal:

< total order
® x least < x minimal

® X greatest < x maximal

Theorem

< partial order

(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=x
minimal: x leastandy < x=y <x<y



< total order
® x least < x minimal

® x greatest < x maximal

Theorem

< partial order
(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=Xx
minimal: x leastandy < x =y <x<y=y=x
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(3) M finite = for every x € M there exist a minimal w such that w < x and a maximal
zsuchthatx <z

(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

< total order
® x least < x minimal

® x greatest < x maximal

Theorem

< partial order
(1) x least = x unique minimal element

(2) x greatest = x unique maximal element

(1) unique: x, wleast=w < x<w = w=Xx
minimal: x leastandy < x =y <x<y=y=x

(2) By (1) using that greatest, maximal wrt < iff least, minimal wrt its converse > [ |

Theorem

(3) M finite = for every x € M there exist a minimal w such that w < x and a maximal
zsuchthatx <z

(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

(3) We only show existence of a minimal element:
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z such that x < z
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Otherwise there exists x; € M with x; < x. If x; is not minimal, then there exists
X2 € M with x; < x3, etc.
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zsuch thatx < z
(4) If M is finite and has only one minimal element, then that is least.

(5) If M is finite and has only one maximal element, then that is greatest

(3) We only show existence of a minimal element: If x is minimal, we are done.
Otherwise there exists x; € M with x; < x.
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(3) M finite = for every x € M there exist a minimal w such that w < x and a maximal
zsuchthatx <z

(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

(3) We only show existence of a minimal element: If x is minimal, we are done.
Otherwise there exists x; € M with x; < x. If x; is not minimal, then there exists
X2 € M with x, < x3, etc. Because

X> X1 > X2 > ...

are all distinct elements of M, we reach in finitely many steps a minimal element x,
such that x, < x.



Theorem

(3) M finite = for every x € M there exist a minimal w such that w < x and a maximal
zsuch thatx < z

(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

(3) We only show existence of a minimal element: If x is minimal, we are done.
Otherwise there exists x; € M with x; < x. If x; is not minimal, then there exists
X2 € M with x; < x3, etc. Because

X>X1>X2> ...

are all distinct elements of M, we reach in finitely many steps a minimal element x,
such that x, < x.
(4) and (5) follow from (3) |
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Orders on words

Definition (Alphabet)

Set ¥ is an alphabet a € ¥ is a symbol

e B ={0,1} is the binary alphabet
e {a,b,...,z} isthe alphabet of letters
© {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (Wo,...,Wp_1) € X" is a word or string of length ¢(w) = n over
>* is the set of all words over &



Definition (lexicographic order on words) Definition (lexicographic order on words)

Let < be total order on X. Let < be total order on X. For words v, w € ¥*
V <jex W

if there exists k € N with k < ¢(v), k < ¢/(w) such that
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Let < be total order on X. For words v, w € ¥* Let < be total order on X. For words v, w € ¥*
V <|ex W V <jex W
if there exists k € N with k < ¢(v), k < £(w) such that if there exists k € N with k < ¢(v), k < £(w) such that
() vi=w; fori=0,....k—1 and (1) vi=w; fori=0,....k—1 and

(2) (¢(v) =kand ¢(w) > k) or (£(v) >k, £(w) > k and vi < wg)



Definition (lexicographic order on words)

Let < be total order on X. For words v, w € ¥*
V <jex W

if there exists k € N with k < ¢(v), k < £(w) such that
(1) vi=w; fori=0,....,k—1 and
(2) (¢(v) =kand ¢(w) > k) or ({(v) >k, £(w) > k and vi < wg)

Let ¥ = {a,b} and a < b. Then
€ <lex @ € <jex b a<iex b aa <jex ab aaaa <jex ab
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Proof that <.« is a partial order

Suffices to show that <jex is a strict order. <jex is clearly irreflexive.
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Definition (lexicographic order on words)
Let < be total order on ~. For words v, w € **
V <jex W
if there exists k € N with k < ¢(v), k < £(w) such that
(1) vi=w; fori=0,....,k—1 and
(2) (¢(v) =kand ¢(w) > k) or ({(v) >k, £(w) > k and vi < wg)

Let ¥ = {a,b} and a < b. Then
€ <lex @ € <jex b a<iexb aa <jex @b aaaa <jex ab

Theorem

<lex iS a@ partial, total order on ¥*

Proof that <.« is a partial order

Suffices to show that <jex is a strict order. <iex is clearly irreflexive. To show
transitivity, let u, v, w € ¥* with
U <jex V and V <jex W



Proof that <.« is a partial order
Suffices to show that <oy is a strict order. < is clearly irreflexive. To show
transitivity, let u,v,w € ¥* with
U <jex V and V <jex W
Then thereis a k € N with k < ¢(u) and k < ¢(v) and
(1) ui=v; fori=0,...,k—1 and

(2) (¢(u) =kand £(v) > k) or (£(u) > kand £(v) > kand ux < v)
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Proof that <.« is a partial order
Suffices to show that <jex is a strict order. <jex is clearly irreflexive. To show
transitivity, let u, v, w € ¥* with
U <|ex V and V <jex W
Then thereis a k € N with k < /(u) and k < /(v) and
(1) ui=v; fori=0,...,k—1 and
(2) (¢(u) =kand £(v) > k) or (£(u) > kand £(v) > kand ux < v)
and moreover an/ € N with / < ¢(v) and | < ¢(w) and
(1) vi=w; fori=0,....,/—1 and
(2) (¢(v) =land £(w) > 1) or (¢(v) > land ¢(w) > landv; < w))
Then we have for m := min(k, /), m < £(u) and m < 4(w) and
(a) uyi=w; fori=0,....m—1 and
(b) (¢(u) =mand ¢(w) > m) or ({(u) > mand {(w) > mandup, < W)
from which u <jex w follows
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Proof that <.« is a partial order
Suffices to show that <oy is a strict order. < is clearly irreflexive. To show
transitivity, let u,v,w € ¥* with
U <jex V and V <jex W
Then thereis a k € N with k < ¢(u) and k < ¢(v) and
(1) uj=v; fori=0,....k—1 and
(2) (¢(u) =kand £(v) > k) or (£(u) > kand £(v) > kand ux < v)
and moreover an/ € N with / < ¢(v) and | < ¢(w) and
(1) vi=w; fori=0,...,/—1 and
(2) (¢(v) =land £(w) > 1) or (£(v) > land ¢(w) > landv; < w))

Proof that <o is total

To prove that < is total, let v,w € X* with v # w



Proof that <. is total

To prove that < is total, let v,w € X* with v # w
Then there exists a k € N with k < ¢(v) and k < ¢(w) such that

(a) vi=w; fori=0,...,k—1 and
(b) (¢(v) =kand ¢(w) > k) or (¢(v) > kand £(w) = k) or
(6(v) > kand ¢(w) > k and vy # wy)
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Well-founded relations

Definition (well-founded relation)

® |etR be a relation on a set M
® A sequence (xo, X1, X2, ...) of elements of M is an infinite descending R-chain, if

...RX2RX1RXO

® R is well-founded, if M has no infinite descending R-chains.
® When we say that partial order < is well-founded we mean that its strict part < is

12

Proof that <. is total

To prove that < is total, let v,w € X* with v # w
Then there exists a k € N with k < ¢(v) and k < ¢(w) such that
(a) vi=w; fori=0,...,k—1 and
(b) (¢(v) =kand ¢(w) > k) or (¢(v) > kand £(w) = k) or
(6(v) > kand ¢(w) > k and vy # wy)
Since < is total on ¥, we have either v <jex W or w <jex v
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Well-founded relations

Definition (well-founded relation)

® |etR be a relation on a set M
® A sequence (xo, X1, X2, ...) of elements of M is an infinite descending R-chain, if
...RXZRX1RXO

® R is well-founded, if M has no infinite descending R-chains.
® When we say that partial order < is well-founded we mean that its strict part < is

® The natural order < on N is well-founded
® The natural order < on Z is not well-founded
® The lexicographic order is not well-founded, if alphabet has at least two symbols

12
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Universal properties
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Goal: establish that all elements of M have property P
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Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

® M = months of year; P(m) = month m has at least 25 days
* M = natural numbers, P(n) = if n is even, then so is n?

* M = natural numbers, P(n) = (30, i = 2(2)



Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

M = months of year; P(m) = month m has at least 25 days
* M = natural numbers, P(n) = if n is even, then so is n?
; n(n+1
® M = natural numbers, P(n) = (37 i = %)
® M = pairs of positive natural numbers, P(n, m) = Euclid’s algorithm yields
ged(m, n)

Proof by cases

Program

data Month = Jan | Feb | Mar | Apr | May | Jun
| Jul | Aug | Sep | Oct | Nov | Dec

days :: Month -> Int

days Jan = 31

days Dec = 31

for every Month m, days m> 25

Proof by cases.

days Jan = 31>25V,...,days Dec = 31> 25V
we conclude since we checked all cases [ |

Proof by cases

data Month = Jan | Feb | Mar | Apr | May | Jun
| Jul | Aug | Sep | Oct | Nov | Dec

days :: Month -> Int

days Jan = 31

days Dec = 31

for every Month m, days m> 25
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Proof by universal generalisation

for every natural number n that is even, n? is even.

15
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Proof by universal generalisation

for every natural number n that is even, n? is even.

1 take an arbitrary natural number n
Fl suppose n is even: n = 2m for some natural number m
H then n? = (2m)? = 2(2m?) v



Proof by universal generalisation

for every natural number n that is even, n? is even.

1 take an arbitrary natural number n
E suppose n is even: n = 2m for some natural number m
H then n? = (2m)? = 2(2m?) v
we conclude since n was taken to be arbitrary |

15

Proof by mathematical induction

Lemma

for every natural number Y1 ;i = w

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n € N, show that if P(m) for all m R n, then P(n)
Conclude: for all n € N, P(n)

the P(m) for m R n are the induction hypotheses

16

Proof by mathematical induction

; 1
for every natural number >, i = %

Proof by mathematical induction

for every natural number >, i =

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n € N, show that if P(m) for all m R n, then P(n)
Conclude: forall n € N, P(n)

® Take the well-founded relation {(n,n+1) | n € N}.



Proof by mathematical induction

for every natural numper Y7, i = 21

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n € N, show that if P(m) for all m R n, then P(n)
Conclude: forall n € N, P(n)

® Take the well-founded relation {(n,n+ 1) | n € N}.
e if n =0, then no induction hypotheses; directly show P(0)

0

Z o(o+ 1)

16

Proof by mathematical induction

mathematical induction

El Suppose we want to show P(n) for all natural numbers n

E To that end, we may proceed as follows:
® Induction basis: We show that P holds for the base value 0;
® Induction step: We show that for all n > 0, P(n — 1) entails P(n).

El Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. R = {(n,n+1) | n € N}.

Proof by mathematical induction

for every natural number Y7, i = 21

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n € N, show that if P(m) for all m R n, then P(n)
Conclude: for all n € N, P(n)

® Take the well-founded relation {(n,n+ 1) | n € N}.

* if n > 0, then one induction hypothesis P(n — 1): >0 'i = (”_21)”

ZI— ZI)%’HZ/H@+H:@ .

i=1

Proof by mathematical induction

mathematical induction

El Suppose we want to show P(n) for all natural numbers n
E To that end, we may proceed as follows:
® Induction basis: We show that P holds for the base value 0;
® Induction step: We show that for all n > 0, P(n — 1) entails P(n).

El Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. R = {(n,n+1) | n € N }.

induction formally

(P(0) A¥n > 0.(P(n — 1) — P(n))) — (¥n.P(n))



Proof by mathematical induction

mathematical induction

1 Suppose we want to show P(n) for all natural numbers n
E To that end, we may proceed as follows:

® Induction basis: We show that P holds for the base value 0;
® Induction step: We show that for all n > 0, P(n — 1) entails P(n).

El Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. R = {(n,n+1) | n € N}.

induction formally

Vn.((Ym such that m R n.P(m)) — P(n)) — (Vn.P(n))
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Let < be a well-founded order on M and N a non-empty subset of N. Then there exists
some element xq in N. If xg is minimal in N, then we are done.

19

Foundations of well-founded induction

Let < be a partial order on the set M. Then < is well-founded iff every non-empty
subset of M has a minimal element.

Let < be a well-founded order on M and N a non-empty subset of N. Then there exists
some element xq in N. If xg is minimal in N, then we are done.

Otherwise, there exists some element x; € N with x1 < Xg. If X1 is minimal, then we
are done again. Otherwise, there is some x> € N with x> < x1, etc.. Since

Xo > X1 > X2 > ...
we reach a minimal element x,, after finitely many steps.

Xo > X1 > X2 > ...



Let < be a well-founded order on M and N a non-empty subset of N. Then there exists
some element xq in N. If xg is minimal in N, then we are done.

Otherwise, there exists some element x; € N with x1 < Xg. If X1 is minimal, then we
are done again. Otherwise, there is some x> € N with x> < x1, etc.. Since

Xo > X1 > X2 > ...
we reach a minimal element x,, after finitely many steps.

Xo > X1 > X2 > ...

To prove the other direction, we suppose that < were not well-founded. Then there
would be an infinitely descending chain

Xo>X1>X2> ...,

and the non-empty subset N = {xo, X1, X2, ...} has no minimal element.

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid’s algorithm yields ged(m, n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n
then euclid (m-n) n else euclid m (n - m)

20

Let < be a well-founded order on M and N a non-empty subset of N. Then there exists
some element xq in N. If xg is minimal in N, then we are done.

Otherwise, there exists some element x; € N with x; < Xg. If X1 is minimal, then we
are done again. Otherwise, there is some x> € N with x> < x1, etc.. Since

Xo > X1 > X2 > ...
we reach a minimal element x,, after finitely many steps.

Xo > X1 > X2 > ...

To prove the other direction, we suppose that < were not well-founded. Then there
would be an infinitely descending chain

Xo>X1>X2> ...,

and the non-empty subset N = {xo, X1, X2, ...} has no minimal element. |
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Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid’s algorithm yields ged(m, n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n
then euclid (m-n) n else euclid m (n - m)

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n € N, show that if P(m) for all m R n, then P(n)
Conclude: for all n € N, P(n)



Proof by well-founded induction

for all pairs of positive natural numbers, Euclid’s algorithm yields gcd(m, n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n
then euclid (m-n) n else euclid m (n - m)

e Take the well-founded relation {((m,n),(m’,n’)) | m+n <m’ + n’}.

20,
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Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid’s algorithm yields ged(m, n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n
then euclid (m-n) n else euclid m (n - m)

e Take the well-founded relation {((m,n),(m’,n’)) | m+n < m’' +n’}.
e if m = n, then no induction hypotheses needed; euclid m m = m = gcd(m, m)
e if m > n, then induction hypotheses: euclid m' n'= gcd(m’,n’) ifm +n’ <m+n
euclid m n=euclid (m-n) n=y gcd(m —n,m) = gcd(m, n)
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Proof by well-founded induction

for all pairs of positive natural numbers, Euclid’s algorithm yields gcd(m, n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n
then euclid (m-n) n else euclid m (n - m)

e Take the well-founded relation {((m,n),(m’,n’)) | m+n <m’ + n’}.

e if m = n, then no induction hypotheses needed; euclid m m = m = gcd(m, m)
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Let M be the set of all palindromes over the alphabet {a, b;. We show
?If x € M and {(x) even, then x has an even number of as.?



Let M be the set of all palindromes over the alphabet {a, b;. We show
?If x € M and ((x) even, then x has an even number of as.?

By well-founded induction. Take R = {(w,w’) | £(w) < £(w')}; order by length
e if x the empty string, then property holds; 0 is even
® if x non-empty induction hypotheses: property holds for words shorter than x

e if first letter of x is a, then x = ax’a for some palindrome x’ € M. then conclude since

2 + even is even
e if first letter of x is b, then x = bx’b for some palindrome x’ € M. then conclude since

0 + even is even
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