
Summary last week

• functions as algorithms; finite specifications

• functions defined by imperative programs

• Turing machines; input and output on tape, transitions, halting

• functions defined by functional programs

• functional specifications; input as argument(s), output as value, replacing

• orders as certain transitive relations; partial, total, strict

• correspondence between partial and strict orders

• strict part (predecessor): ≤ 7→ <; reflexive closure: < 7→ ≤
• minimal/maximal elements: no element smaller/greater

• least/greatest elements: smaller/greater than all
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Orders

Definition

A relation is a

• partial order if it is reflexive, anti-symmetric and transitive;

• total order if moreover every pair of elements is related either way; and

• strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order ≤ on Z , defined by x ≤ y if y− x ∈ N is partial, total order (not
strict). < is strict (not total, partial).

Example

m ∈ N divides n ∈ N , if there is some p ∈ N such that n = m · p. Divisibility is a
partial order (not total, strict). Strict divisibility is strict (not total, partial).
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Partial order⇒ strict order⇒ Hasse diagram
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3

(initial part of) graph of partial order ≤ on N
why have reflexive, transitive edges if we can reconstruct them?
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Partial order⇒ strict order⇒ Hasse diagram
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3

graph of strict order < on N
≤ reconstructed from strict order as reflexive closure <= of <
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Partial order⇒ strict order⇒ Hasse diagram

4
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3

graph of successor relation R = {(n,n + 1) | n ∈ N }; Hasse diagram of ≤
≤ reconstructed from Hasse diagram as reflexive–transitive closure R∗ of R
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Lemma

≤ total order

• x least⇔ x minimal

• x greatest⇔ x maximal

Theorem

≤ partial order

(1) x least⇒ x unique minimal element

(2) x greatest⇒ x unique maximal element

Proof.

(1) unique:

x, w least⇒ w ≤ x ≤ w ⇒ w = x
minimal: x least and y ≤ x⇒ y ≤ x ≤ y⇒ y = x

(2) By (1) using that greatest, maximal wrt ≤ iff least, minimal wrt its converse ≥
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https://en.wikipedia.org/wiki/Hasse_diagram
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Theorem

(3) M finite⇒ for every x ∈ M there exist a minimal w such that w ≤ x and a maximal
z such that x ≤ z

(4) If M is finite and has only one minimal element, then that is least.

(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element:

If x is minimal, we are done.
Otherwise there exists x1 ∈ M with x1 < x. If x1 is not minimal, then there exists
x2 ∈ M with x2 < x1, etc. Because

x > x1 > x2 > . . .

are all distinct elements of M, we reach in finitely many steps a minimal element xn

such that xn < x.
(4) and (5) follow from (3)
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Orders on words

Definition (Alphabet)

Set Σ is an alphabet a ∈ Σ is a symbol

Example

• B = {0,1} is the binary alphabet

• {a,b, . . . , z} is the alphabet of letters

• {0,1,2,3,4,5,6,7,8,9} is the alphabet of digits

Definition (Word)

w = (w0, . . . ,wn−1) ∈ Σn is a word or string of length `(w) = n over Σ

Σ∗ is the set of all words over Σ
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Definition (lexicographic order on words)

Let ≤ be total order on Σ.

For words v,w ∈ Σ∗

v <lex w

if there exists k ∈ N with k ≤ `(v), k ≤ `(w) such that

(1) vi = wi for i = 0, . . . , k − 1 and

(2) (`(v) = k and `(w) > k) or (`(v) > k , `(w) > k and vk < wk)

Example

Let Σ = {a,b} and a < b. Then

ε <lex a ε <lex b a <lex b aa <lex ab aaaa <lex ab

Theorem

≤lex is a partial, total order on Σ∗
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Proof that ≤lex is a partial order

Suffices to show that <lex is a strict order. <lex is clearly irreflexive.

To show
transitivity, let u, v,w ∈ Σ∗ with

u <lex v and v <lex w

Then there is a k ∈ N with k ≤ `(u) and k ≤ `(v) and

(1) ui = vi for i = 0, . . . , k − 1 and

(2) (`(u) = k and `(v) > k) or (`(u) > k and `(v) > k and uk < vk)

and moreover an l ∈ N with l ≤ `(v) and l ≤ `(w) and

(1) vi = wi for i = 0, . . . , l− 1 and

(2) (`(v) = l and `(w) > l) or (`(v) > l and `(w) > l and vl < wl)

Then we have for m := min(k, l), m ≤ `(u) and m ≤ `(w) and

(a) ui = wi for i = 0, . . . ,m− 1 and

(b) (`(u) = m and `(w) > m) or (`(u) > m and `(w) > m and um < wm)

from which u <lex w follows
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Proof that ≤lex is total
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Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is

Example

• The natural order ≤ on N is well-founded

• The natural order ≤ on Z is not well-founded

• The lexicographic order is not well-founded, if alphabet has at least two symbols
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Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

Example

• M = months of year; P(m) = month m has at least 25 days

• M = natural numbers, P(n) = if n is even, then so is n2

• M = natural numbers, P(n) = (
∑n

i=1 i = n(n+1)
2 )

• M = pairs of positive natural numbers, P(n,m) = Euclid’s algorithm yields
gcd(m,n)
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Proof by cases

Program

data Month = Jan | Feb | Mar | Apr | May | Jun

| Jul | Aug | Sep | Oct | Nov | Dec

days :: Month -> Int

days Jan = 31

...

days Dec = 31

Lemma

for every Month m, days m≥ 25

Proof by cases.

days Jan = 31≥ 25 X, . . . , days Dec = 31≥ 25 X
we conclude since we checked all cases
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Proof by universal generalisation

Lemma

for every natural number n that is even, n2 is even.

Proof.

1 take an arbitrary natural number n

2 suppose n is even: n = 2m for some natural number m

3 then n2 = (2m)2 = 2(2m2) X

we conclude since n was taken to be arbitrary

15
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Proof by mathematical induction

Lemma

for every natural number
∑n

i=1 i = n(n+1)
2

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n ∈ N, show that if P(m) for all m R n, then P(n)
Conclude: for all n ∈ N, P(n)

Proof.

• Take the well-founded relation {(n,n + 1) | n ∈ N }.
•
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Assumption: R a well-founded relation on set N
Induction: for arbitrary n ∈ N, show that if P(m) for all m R n, then P(n)
Conclude: for all n ∈ N, P(n)

the P(m) for m R n are the induction hypotheses

Proof.

• Take the well-founded relation {(n,n + 1) | n ∈ N }.
•
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Proof by mathematical induction

Lemma

for every natural number
∑n

i=1 i = n(n+1)
2

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n ∈ N, show that if P(m) for all m R n, then P(n)
Conclude: for all n ∈ N, P(n)

Proof.

• Take the well-founded relation {(n,n + 1) | n ∈ N }.
• if n = 0, then no induction hypotheses; directly show P(0)

0∑
i=1

i = 0 =
0(0 + 1)
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Proof by mathematical induction

Lemma

for every natural number
∑n

i=1 i = n(n+1)
2

Principle of well-founded induction

Assumption: R a well-founded relation on set N
Induction: for arbitrary n ∈ N, show that if P(m) for all m R n, then P(n)
Conclude: for all n ∈ N, P(n)

Proof.

• Take the well-founded relation {(n,n + 1) | n ∈ N }.
• if n > 0, then one induction hypothesis P(n− 1):

∑n−1
i=1 i = (n−1)n

2

n∑
i=1

i = (
n−1∑
i=1

i) + n =IH
(n− 1)n

2
+ n =

n(n + 1)

2 16

Proof by mathematical induction

mathematical induction

1 Suppose we want to show P(n) for all natural numbers n

2 To that end, we may proceed as follows:
• Induction basis: We show that P holds for the base value 0;
• Induction step: We show that for all n > 0, P(n− 1) entails P(n).

3 Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. R = {(n,n + 1) | n ∈ N }.

induction formally

→ (∀n.P(n))
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Proof by mathematical induction

mathematical induction

1 Suppose we want to show P(n) for all natural numbers n

2 To that end, we may proceed as follows:
• Induction basis: We show that P holds for the base value 0;
• Induction step: We show that for all n > 0, P(n− 1) entails P(n).

3 Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. R = {(n,n + 1) | n ∈ N }.

well-founded induction formally

∀n.((∀m such that m R n.P(m))→ P(n))→ (∀n.P(n))
17

Foundations of well-founded induction

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

18

Proof.

Let ≤ be a well-founded order on M and N a non-empty subset of N. Then there exists
some element x0 in N. If x0 is minimal in N, then we are done.

Otherwise, there exists some element x1 ∈ N with x1 < x0. If x1 is minimal, then we
are done again. Otherwise, there is some x2 ∈ N with x2 < x1, etc.. Since

x0 > x1 > x2 > . . .

we reach a minimal element xn after finitely many steps.

x0 > x1 > x2 > . . .

To prove the other direction, we suppose that ≤ were not well-founded. Then there
would be an infinitely descending chain

x0 > x1 > x2 > . . . ,

and the non-empty subset N = {x0, x1, x2, . . .} has no minimal element.
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Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid’s algorithm yields gcd(m,n)

Euclid’s greatest common divisor algorithm

euclid m n = if m == n then m else if m > n

then euclid (m-n) n else euclid m (n - m)

Proof.

• Take the well-founded relation {((m,n), (m′,n′)) | m + n < m′ + n′}.
• if m = n, then no induction hypotheses needed; euclid m m = m = gcd(m,m)

• if m > n, then induction hypotheses: euclid m' n' = gcd(m′,n′) if m′ + n′ < m + n

euclid m n= euclid (m-n) n=IH gcd(m− n,m) = gcd(m,n)
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Example

Let M be the set of all palindromes over the alphabet {a,b}. We show
?If x ∈ M and `(x) even, then x has an even number of as.?

Proof.

By well-founded induction. Take R = {(w,w′) | `(w) < `(w′)}; order by length

• if x the empty string, then property holds; 0 is even
• if x non-empty induction hypotheses: property holds for words shorter than x

• if first letter of x is a, then x = ax′a for some palindrome x′ ∈ M. then conclude since
2 + even is even

• if first letter of x is b, then x = bx′b for some palindrome x′ ∈ M. then conclude since
0 + even is even

21



Example

Let M be the set of all palindromes over the alphabet {a,b}. We show
?If x ∈ M and `(x) even, then x has an even number of as.?

Proof.

By well-founded induction. Take R = {(w,w′) | `(w) < `(w′)}; order by length

• if x the empty string, then property holds; 0 is even
• if x non-empty induction hypotheses: property holds for words shorter than x

• if first letter of x is a, then x = ax′a for some palindrome x′ ∈ M. then conclude since
2 + even is even

• if first letter of x is b, then x = bx′b for some palindrome x′ ∈ M. then conclude since
0 + even is even

21


	Well-founded induction

