Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing

Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing

1

3

- orders as certain transitive relations; partial, total, strict
- correspondence between partial and strict orders
- strict part (predecessor): $\leq \mapsto <$; reflexive closure: $< \mapsto \leq$
- minimal/maximal elements: no element smaller/greater
- least/greatest elements: smaller/greater than all

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

1

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). \langle is strict (not total, partial).

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Example

 $m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n = m \cdot p$. Divisibility is a partial order (not total, strict). Strict divisibility is strict (not total, partial).

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z} , defined by $x \leq y$ if $y - x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Example

 $m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n = m \cdot p$. Divisibility is a partial order (not total, strict). Strict divisibility is strict (not total, partial).

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

(initial part of) graph of partial order \leq on $\,\mathbb{N}\,$ why have reflexive, transitive edges if we can reconstruct them?

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

graph of strict order < on $~\mathbb{N}~$ \leq reconstructed from strict order as reflexive closure $<^=$ of <

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

Lemma

5

 \leq total order

• $x \text{ least} \Leftrightarrow x \text{ minimal}$

• x greatest $\Leftrightarrow x$ maximal

graph of successor relation $R = \{(n, n + 1) \mid n \in \mathbb{N}\}$; Hasse diagram of $\leq \leq$ reconstructed from Hasse diagram as reflexive-transitive closure R^* of R

Lemma

- \leq total order
- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

\leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Lemma

\leq total order

- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- x greatest $\Leftrightarrow x$ maximal

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique:

Lemma

- \leq total order
- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- x greatest $\Leftrightarrow x$ maximal

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least

Lemma

\leq total order

- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: *x*, *w* least \Rightarrow *w* \leq *x* \leq *w*

Lemma

- \leq total order
- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

\leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$

Lemma

\leq total order

- x least \Leftrightarrow x minimal
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$ minimal:

Lemma

- \leq total order
- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$ minimal: x least and $y \le x$

Lemma

\leq total order

- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- x greatest $\Leftrightarrow x$ maximal

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least \Rightarrow w \leq x \leq w \Rightarrow w = x minimal: x least and y \leq x \Rightarrow y \leq x \leq y

Lemma

- \leq total order
- $x \text{ least} \Leftrightarrow x \text{ minimal}$
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

\leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least \Rightarrow w \leq x \leq w \Rightarrow w = x minimal: x least and y \leq x \Rightarrow y \leq x \leq y \Rightarrow y = x

Lemma

\leq total order

- x least \Leftrightarrow x minimal
- $x \text{ greatest} \Leftrightarrow x \text{ maximal}$

Theorem

 \leq partial order

- (1) $x \text{ least} \Rightarrow x \text{ unique minimal element}$
- (2) x greatest \Rightarrow x unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \le x \le w \Rightarrow w = x$ minimal: x least and $y \le x \Rightarrow y \le x \le y \Rightarrow y = x$ (2) By (1) using that greatest, maximal wrt \le iff least, minimal wrt its converse \ge

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x \leq z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

7

(3) We only show existence of a minimal element:

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done.

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

7

7

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$.

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc.

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc. Because

 $x > x_1 > x_2 > \dots$

are all distinct elements of *M*, we reach in finitely many steps a minimal element x_n such that $x_n < x$.

Theorem

- (3) *M* finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \le x$ and a maximal z such that $x \le z$
- (4) If M is finite and has only one minimal element, then that is least.
- (5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_1 \in M$ with $x_1 < x$. If x_1 is not minimal, then there exists $x_2 \in M$ with $x_2 < x_1$, etc. Because

$x > x_1 > x_2 > \ldots$

are all distinct elements of *M*, we reach in finitely many steps a minimal element x_n such that $x_n < x$. (4) and (5) follow from (3)

Orders on words

Definition	(Alphabet)
------------	------------

Set Σ is an **alphabet** $a \in \Sigma$ is a symbol

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Orders on words

efinition	(Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

7

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0,1\}$ is the binary alphabet
- $\{a, b, \dots, z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, \dots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits

Definition (Word)

 $w = (w_0, \dots, w_{n-1}) \in \Sigma^n$ is a word or string of length $\ell(w) = n$ over Σ

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

8

- $\mathbb{B} = \{0, 1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ is the alphabet of digits

Definition (Word)

 $w = (w_0, \ldots, w_{n-1}) \in \Sigma^n$ is a word or string of length $\ell(w) = n$ over Σ Σ^* is the set of all words over Σ

Definition (lexicographic order on words)

Let \leq be total order on Σ .

Definition (lexicographic order on words)

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that

Definition (lexicographic order on words)

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that (1) $v_i = w_i$ for i = 0, ..., k - 1 and

Definition (lexicographic order on words)

9

9

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists $k \in \mathbb{N}$ with $k \le \ell(v)$, $k \le \ell(w)$ such that (1) $v_i = w_i$ for i = 0, ..., k - 1 and (2) $(\ell(v) = k \text{ and } \ell(w) > k)$ or $(\ell(v) > k, \ell(w) > k \text{ and } v_k < w_k)$

Definition (lexicographic order on words)

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists $k \in \mathbb{N}$ with $k \leq \ell(v)$, $k \leq \ell(w)$ such that (1) $v_i = w_i$ for i = 0, ..., k - 1 and

(2) $(\ell(v) = k \text{ and } \ell(w) > k)$ or $(\ell(v) > k$, $\ell(w) > k \text{ and } v_k < w_k)$

Example

Let $\Sigma = \{a, b\}$ and a < b. Then

 $\epsilon <_{\mathsf{lex}} a \qquad \epsilon <_{\mathsf{lex}} b \qquad a <_{\mathsf{lex}} b \qquad aa <_{\mathsf{lex}} ab \qquad aaaa <_{\mathsf{lex}} ab$

Definition (lexicographic order on words)

Let \leq be total order on Σ . For words $v, w \in \Sigma^*$ $v <_{\mathsf{lex}} w$

if there exists $k \in \mathbb{N}$ with $k \le \ell(v)$, $k \le \ell(w)$ such that (1) $v_i = w_i$ for i = 0, ..., k - 1 and (2) $(\ell(v) = k \text{ and } \ell(w) > k)$ or $(\ell(v) > k, \ell(w) > k \text{ and } v_k < w_k)$

Example

Let $\Sigma = \{a, b\}$ and a < b. Then

 $\epsilon <_{\mathsf{lex}} a$ $\epsilon <_{\mathsf{lex}} b$ $a <_{\mathsf{lex}} b$ $aa <_{\mathsf{lex}} ab$ $aaaa <_{\mathsf{lex}} ab$

Theorem

 \leq_{lex} is a partial, total order on Σ^*

Proof that \leq_{lex} is a partial order

Suffices to show that $<_{lex}$ is a strict order. $<_{lex}$ is clearly irreflexive.

Proof that \leq_{lex} is a partial order

Suffices to show that $<_{lex}$ is a strict order. $<_{lex}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^*$ with

 $u <_{\text{lex}} v$ and $v <_{\text{lex}} w$

Proof that \leq_{lex} is a partial order

Suffices to show that $<_{lex}$ is a strict order. $<_{lex}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^*$ with

 $u <_{\text{lex}} v$ and $v <_{\text{lex}} w$ Then there is a $k \in \mathbb{N}$ with $k < \ell(u)$ and $k < \ell(v)$ and

(1) $u_i = v_i$ for i = 0, ..., k - 1 and

(2) $(\ell(u) = k \text{ and } \ell(v) > k) \text{ or } (\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$

Proof that \leq_{lex} is a partial order

Suffices to show that $<_{lex}$ is a strict order. $<_{lex}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^*$ with

 $u <_{lex} v \quad and \quad v <_{lex} w$ Then there is a $k \in \mathbb{N}$ with $k \le \ell(u)$ and $k \le \ell(v)$ and (1) $u_i = v_i$ for i = 0, ..., k - 1 and (2) $(\ell(u) = k \text{ and } \ell(v) > k)$ or $(\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$ and moreover an $l \in \mathbb{N}$ with $l \le \ell(v)$ and $l \le \ell(w)$ and (1) $v_i = w_i$ for i = 0, ..., l - 1 and (2) $(\ell(v) = l \text{ and } \ell(w) > l)$ or $(\ell(v) > l \text{ and } \ell(w) > l \text{ and } v_l < w_l)$

Proof that \leq_{lex} is a partial order

Suffices to show that $<_{lex}$ is a strict order. $<_{lex}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^*$ with

```
u <_{\text{lex}} v and v <_{\text{lex}} w
```

Then there is a $k \in \mathbb{N}$ with $k \leq \ell(u)$ and $k \leq \ell(v)$ and (1) $u_i = v_i$ for i = 0, ..., k - 1 and (2) $(\ell(u) = k \text{ and } \ell(v) > k)$ or $(\ell(u) > k \text{ and } \ell(v) > k \text{ and } u_k < v_k)$ and moreover an $l \in \mathbb{N}$ with $l \leq \ell(v)$ and $l \leq \ell(w)$ and (1) $v_i = w_i$ for i = 0, ..., l - 1 and (2) $(\ell(v) = l \text{ and } \ell(w) > l)$ or $(\ell(v) > l \text{ and } \ell(w) > l \text{ and } v_l < w_l)$ Then we have for $m := \min(k, l), m \leq \ell(u)$ and $m \leq \ell(w)$ and (a) $u_i = w_i$ for i = 0, ..., m - 1 and (b) $(\ell(u) = m \text{ and } \ell(w) > m)$ or $(\ell(u) > m \text{ and } \ell(w) > m \text{ and } u_m < w_m)$ from which $u <_{lex} w$ follows

Proof that \leq_{lex} is total

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$

Proof that ≤_{lex} is total

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$ Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that

(a) $v_i = w_i$ for i = 0, ..., k - 1 and

(b) $(\ell(v) = k \text{ and } \ell(w) > k) \text{ or } (\ell(v) > k \text{ and } \ell(w) = k) \text{ or } (\ell(v) > k \text{ and } \ell(w) > k \text{ and } v_k \neq w_k)$

Proof that \leq_{ex} is total

To prove that \leq_{lex} is total, let $v, w \in \Sigma^*$ with $v \neq w$ Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that (a) $v_i = w_i$ for i = 0, ..., k - 1 and (b) $(\ell(v) = k \text{ and } \ell(w) > k)$ or $(\ell(v) > k \text{ and } \ell(w) = k)$ or $(\ell(v) > k \text{ and } \ell(w) > k \text{ and } v_k \neq w_k)$ Since \leq is total on Σ , we have either $v <_{\text{lex}} w$ or $w <_{\text{lex}} v$

Well-founded relations

Definition (well-founded relation)

- Let *R* be a relation on a set *M*
- A sequence $(x_0, x_1, x_2, ...)$ of elements of *M* is an infinite descending *R*-chain, if ... *R* x_2 *R* x_1 *R* x_0
- *R* is well-founded, if *M* has no infinite descending *R*-chains.
- When we say that partial order \leq is well-founded we mean that its strict part < is

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence (x₀, x₁, x₂,...) of elements of M is an infinite descending R-chain, if
 ... R x₂ R x₁ R x₀
- *R* is well-founded, if *M* has no infinite descending *R*-chains.
- When we say that partial order \leq is well-founded we mean that its strict part < is

Example

- The natural order \leq on \mathbb{N} is well-founded
- The natural order \leq on $\,\mathbb Z\,$ is not well-founded
- The lexicographic order is not well-founded, if alphabet has at least two symbols

11

Proving that all elements of set have some property

Universal properties

Given: *M* a set and *P* a property of elements of the set Goal: establish that all elements of *M* have property *P*

Proving that all elements of set have some property

Universal properties

Given: *M* a set and *P* a property of elements of the set Goal: establish that all elements of *M* have property *P*

Example

• M = months of year; P(m) = month m has at least 25 days

Proving that all elements of set have some property

Universal properties

Given: *M* a set and *P* a property of elements of the set Goal: establish that all elements of *M* have property *P*

Example

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, P(n) = if n is even, then so is n^2

Proving that all elements of set have some property

Universal properties

Given: *M* a set and *P* a property of elements of the set Goal: establish that all elements of *M* have property *P*

Example

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, P(n) = if n is even, then so is n^2
- M = natural numbers, $P(n) = (\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$

13

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set Goal: establish that all elements of M have property P

Example

- M = months of year; P(m) = month m has at least 25 days
- M = natural numbers, P(n) = if n is even, then so is n^2
- M = natural numbers, $P(n) = (\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$
- *M* = pairs of positive natural numbers, *P*(*n*, *m*) = Euclid's algorithm yields gcd(*m*, *n*)

Proof by cases

Program

Lemma

13

for every Month m, days $m \ge 25$

Proof by cases

Program

Lemma

for every Month m, days m ≥ 25

Proof by cases.

days Jan = 31 \geq 25 \checkmark , \ldots , days Dec = 31 \geq 25 \checkmark we conclude since we checked all cases

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof.			

15

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof.

- **1** take an **arbitrary** natural number *n*
- **2** suppose *n* is even: n = 2m for some natural number *m*

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof.

1 take an **arbitrary** natural number *n*

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof.

1 take an arbitrary natural number *n*2 suppose *n* is even: *n* = 2*m* for some natural number *m*3 then *n*² = (2*m*)² = 2(2*m*²) √

Proof by universal generalisation

Lemma

for every natural number n that is even, n^2 is even.

Proof.

1 take an **arbitrary** natural number *n*

2 suppose *n* is even: n = 2m for some natural number *m*

3 then $n^2 = (2m)^2 = 2(2m^2) \checkmark$

we conclude since *n* was taken to be **arbitrary**

Proof by mathematical induction

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Proof by mathematical induction

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: *R* a well-founded relation on set *N* Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)Conclude: for all $n \in N$, P(n)

the P(m) for m R n are the induction hypotheses

Proof.

Proof by mathematical induction

Lemma

15

16

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: *R* a well-founded relation on set *N* Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)Conclude: for all $n \in N$, P(n)

Proof.

• Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}$.

Proof by mathematical induction

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: *R* a well-founded relation on set *N* Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)Conclude: for all $n \in N$, P(n)

Proof.

- Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}$.
- if n = 0, then **no** induction hypotheses; directly show P(0)

$$\sum_{i=1}^{0} i = 0 = \frac{0(0+1)}{2}$$

Proof by mathematical induction

Lemma

for every natural number $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Principle of well-founded induction

Assumption: *R* a well-founded relation on set *N* Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)Conclude: for all $n \in N$, P(n)

Proof.

- Take the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}$.
- if n > 0, then one induction hypothesis P(n-1): $\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$

$$\sum_{i=1}^{n} i = \left(\sum_{i=1}^{n-1} i\right) + n =_{IH} \frac{(n-1)n}{2} + n = \frac{n(n+1)}{2}$$

16

17

Proof by mathematical induction

mathematical induction

- **1** Suppose we want to show P(n) for all natural numbers *n*
- **2** To that end, we may proceed as follows:
 - Induction basis: We show that P holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- **3** Then P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n+1) \mid n \in \mathbb{N}\}.$

Proof by mathematical induction

mathematical induction

- **1** Suppose we want to show P(n) for all natural numbers n
- **2** To that end, we may proceed as follows:
 - Induction basis: We show that *P* holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- **Then** P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n + 1) \mid n \in \mathbb{N}\}.$

thematical induction formally

 $(P(0) \land \forall n > 0.(P(n-1) \rightarrow P(n))) \rightarrow (\forall n.P(n))$

Proof by mathematical induction

mathematical induction

- **1** Suppose we want to show P(n) for all natural numbers n
- **2** To that end, we may proceed as follows:
 - Induction basis: We show that *P* holds for the base value 0;
 - Induction step: We show that for all n > 0, P(n 1) entails P(n).
- **Then** P(n) holds for all n

Mathematical induction = well-founded induction wrt. $R = \{(n, n+1) \mid n \in \mathbb{N}\}.$

well-founded induction formally

 $\forall n.((\forall m \text{ such that } m \text{ R } n.P(m)) \rightarrow P(n)) \rightarrow (\forall n.P(n))$

Foundations of well-founded induction

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof.

Let \leq be a well-founded order on *M* and *N* a non-empty subset of *N*. Then there exists some element x_0 in *N*. If x_0 is minimal in *N*, then we are done.

Proof.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done. Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

$$x_0 > x_1 > x_2 > \ldots$$

we reach a minimal element x_n after finitely many steps.

 $x_0 > x_1 > x_2 > \ldots$

Proof.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done. Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

 $x_0 > x_1 > x_2 > \ldots$

we reach a minimal element x_n after finitely many steps.

$$x_0 > x_1 > x_2 > \ldots$$

To prove the other direction, we suppose that \leq were not well-founded. Then there would be an infinitely descending chain

$$x_0 > x_1 > x_2 > \ldots$$

and the non-empty subset $N = \{x_0, x_1, x_2, ...\}$ has no minimal element.

Proof.

Let \leq be a well-founded order on M and N a non-empty subset of N. Then there exists some element x_0 in N. If x_0 is minimal in N, then we are done. Otherwise, there exists some element $x_1 \in N$ with $x_1 < x_0$. If x_1 is minimal, then we are done again. Otherwise, there is some $x_2 \in N$ with $x_2 < x_1$, etc.. Since

$$x_0 > x_1 > x_2 > \ldots$$

we reach a minimal element x_n after finitely many steps.

$$x_0 > x_1 > x_2 > \ldots$$

To prove the other direction, we suppose that \leq were not well-founded. Then there would be an infinitely descending chain

$$x_0>x_1>x_2>\ldots,$$

and the non-empty subset $N = \{x_0, x_1, x_2, ...\}$ has no minimal element.

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n - m)

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n - m)

Principle of well-founded induction

Assumption: *R* a well-founded relation on set *N* Induction: for arbitrary $n \in N$, show that if P(m) for all m R n, then P(n)Conclude: for all $n \in N$, P(n)

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m,n)

Euclid's greatest common divisor algorithm

euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n - m)

Proof.

• Take the well-founded relation $\{((m, n), (m', n')) | m + n < m' + n'\}$.

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n - m)

Proof.

- Take the well-founded relation $\{((m, n), (m', n')) \mid m + n < m' + n'\}$.
- if m = n, then no induction hypotheses needed; euclid m m = m = gcd(m, m)

Proof by well-founded induction

Lemma

for all pairs of positive natural numbers, Euclid's algorithm yields gcd(m, n)

Euclid's greatest common divisor algorithm

euclid m n = if m == n then m else if m > n then euclid (m-n) n else euclid m (n - m)

Proof.

- Take the well-founded relation $\{((m, n), (m', n')) | m + n < m' + n'\}$.
- if m = n, then no induction hypotheses needed; euclid m m = m = gcd(m, m)
- if m > n, then induction hypotheses: euclid m' n' = gcd(m', n') if m' + n' < m + neuclid m n = euclid (m-n) n =_H gcd(m - n, m) = gcd(m, n)

Example

Let *M* be the set of all palindromes over the alphabet $\{a, b\}$. We show **?** If $x \in M$ and $\ell(x)$ even, then x has an even number of as.**?**

Example

Let *M* be the set of all palindromes over the alphabet $\{a, b\}$. We show **?** If $x \in M$ and $\ell(x)$ even, then x has an even number of as.**?**

Proof.

- By well-founded induction. Take $R = \{(w, w') \mid \ell(w) < \ell(w')\}$; order by length
 - if *x* the empty string, then property holds; 0 is even
 - if x non-empty induction hypotheses: property holds for words shorter than x
 - if first letter of x is a, then x = ax'a for some palindrome x' ∈ M. then conclude since
 2 + even is even
 - if first letter of x is b, then x = bx'b for some palindrome $x' \in M$. then conclude since 0 + even is even