Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Summary last week

- functions as algorithms; finite specifications
- functions defined by imperative programs
- Turing machines; input and output on tape, transitions, halting
- functions defined by functional programs
- functional specifications; input as argument(s), output as value, replacing
- orders as certain transitive relations; partial, total, strict
- correspondence between partial and strict orders
- strict part (predecessor): $\leq \mapsto<$; reflexive closure: $<\mapsto \leq$
- minimal/maximal elements: no element smaller/greater
- least/greatest elements: smaller/greater than all

Discrete structures

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z}, defined by $x \leq y$ if $y-x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Orders

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z}, defined by $x \leq y$ if $y-x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Example

$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n=m \cdot p$. Divisibility is a partial order (not total, strict). Strict divisibility is strict (not total, partial).

```
Example
m}\in\mathbb{N}\mathrm{ divides }n\in\mathbb{N}\mathrm{ , if there is some }p\in\mathbb{N}\mathrm{ such that }n=m\cdotp\mathrm{ . Divisibility is a
partial order (not total, strict). Strict divisibility is strict (not total, partial).
```


$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that $n=m \cdot p$. Divisibility is partial order (not total, strict). Strict divisibility is strict (not total, partial).

Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive (so it is anti-symmetric)

Example

The natural order \leq on \mathbb{Z}, defined by $x \leq y$ if $y-x \in \mathbb{N}$ is partial, total order (not strict). < is strict (not total, partial).

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

(initial part of) graph of partial order \leq on \mathbb{N} why have reflexive, transitive edges if we can reconstruct them?

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

graph of strict order $<$ on \mathbb{N}
\leq reconstructed from strict order as reflexive closure $<=$ of $<$

Partial order \Rightarrow strict order \Rightarrow Hasse diagram

graph of successor relation $R=\{(n, n+1) \mid n \in \mathbb{N}\}$; Hasse diagram of \leq \leq reconstructed from Hasse diagram as reflexive-transitive closure R^{*} of R

Lemma

\leq total order

- x least $\Leftrightarrow x$ minimal
- x greatest $\Leftrightarrow x$ maximal
Lemma
\leq total order
$\bullet \times$ least $\Leftrightarrow x$ minimal
$\bullet \times$ greatest $\Leftrightarrow x$ maximal

Theorem
\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Lemma

\leq total order

- x least $\Leftrightarrow x$ minimal
- x greatest $\Leftrightarrow x$ maximal

Theorem
\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique:

Lemma

\leq total order

- x least $\Leftrightarrow x$ minimal
- x greatest $\Leftrightarrow x$ maximal
Theorem
\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Lemma

\leq total order

- x least $\Leftrightarrow x$ minimal
- x greatest $\Leftrightarrow x$ maximal

Theorem

\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \leq x \leq w$

Lemma

\leq total order

- x least \Leftrightarrow x minimal
- x greatest $\Leftrightarrow x$ maximal

Theorem

\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \leq x \leq w \Rightarrow w=x$ minimal:

Lemma
 \leq total order
 - x least $\Leftrightarrow x$ minimal
 - x greatest $\Leftrightarrow x$ maximal

Theorem

\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \leq x \leq w \Rightarrow w=x$ minimal: x least and $y \leq x \Rightarrow y \leq x \leq y$

Lemma

\leq total order

- x least \Leftrightarrow x minimal
- x greatest $\Leftrightarrow x$ maximal

Theorem

\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \leq x \leq w \Rightarrow w=x$
minimal: x least and $y \leq x \Rightarrow y \leq x \leq y \Rightarrow y=x$

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x \leq z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Lemma

<total order

- x least \Leftrightarrow x minimal
- x greatest $\Leftrightarrow x$ maximal

Theorem
\leq partial order
(1) x least $\Rightarrow x$ unique minimal element
(2) x greatest $\Rightarrow x$ unique maximal element

Proof.

(1) unique: x, w least $\Rightarrow w \leq x \leq w \Rightarrow w=x$
minimal: x least and $y \leq x \Rightarrow y \leq x \leq y \Rightarrow y=x$
(2) By (1) using that greatest, maximal wrt \leq iff least, minimal wrt its converse \geq

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x \leq z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element:

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x<z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x \leq z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_{1} \in M$ with $x_{1}<x$. If x_{1} is not minimal, then there exists $x_{2} \in M$ with $x_{2}<x_{1}$, etc

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x<z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done Otherwise there exists $x_{1} \in M$ with $x_{1}<x$.

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maximal z such that $x \leq z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done.

Otherwise there exists $x_{1} \in M$ with $x_{1}<x$. If x_{1} is not minimal, then there exists $x_{2} \in M$ with $x_{2}<x_{1}$, etc. Because

$$
x>x_{1}>x_{2}>\ldots
$$

are all distinct elements of M, we reach in finitely many steps a minimal element x_{n} such that $x_{n}<x$.

Theorem

(3) M finite \Rightarrow for every $x \in M$ there exist a minimal w such that $w \leq x$ and a maxima z such that $x \leq z$
(4) If M is finite and has only one minimal element, then that is least.
(5) If M is finite and has only one maximal element, then that is greatest

Proof.

(3) We only show existence of a minimal element: If x is minimal, we are done. Otherwise there exists $x_{1} \in M$ with $x_{1}<x$. If x_{1} is not minimal, then there exists $x_{2} \in M$ with $x_{2}<x_{1}$, etc. Because

```
x> x > > x < > > ..
```

are all distinct elements of M, we reach in finitely many steps a minimal element x_{n} such that $x_{n}<x$.
(4) and (5) follow from (3)

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $\quad a \in \Sigma$ is a symbol

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits

Orders on words

```
Definition (Alphabet)
Set }\Sigma\mathrm{ is an alphabet a E 谅 a symbol
```


Example

```
- \(\mathbb{B}=\{0,1\}\) is the binary alphabet
- \(\{a, b, \ldots, z\}\) is the alphabet of letters
- \(\{0,1,2,3,4,5,6,7,8,9\}\) is the alphabet of digits
```


Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits

Definition (Word)

$w=\left(w_{0}, \ldots, w_{n-1}\right) \in \Sigma^{n}$ is a word or string of length $\ell(w)=n$ over Σ

Orders on words

Definition (Alphabet)

Set Σ is an alphabet $a \in \Sigma$ is a symbol

Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits

Definition (Word)

$w=\left(w_{0}, \ldots, w_{n-1}\right) \in \Sigma^{n}$ is a word or string of length $\ell(w)=n$ over Σ
Σ^{*} is the set of all words over Σ

Definition (lexicographic order on words)

Let \leq be total order on Σ.

Definition (lexicographic order on words)

Let \leq be total order on Σ. For words $v, w \in \Sigma^{*}$
$v<$ lex w
if there exists $k \in \mathbb{N}$ with $k \leq \ell(v), k \leq \ell(w)$ such that
(1) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and

Definition (lexicographic order on words)

Let \leq be total order on Σ. For words $v, w \in \Sigma^{*}$
$v<$ lex w
if there exists $k \in \mathbb{N}$ with $k \leq \ell(v), k \leq \ell(w)$ such that
\square

Definition (lexicographic order on words)

Let \leq be total order on Σ. For words $v, w \in \Sigma^{*}$

$v<_{\text {lex }} w$
if there exists $k \in \mathbb{N}$ with $k \leq \ell(v), k \leq \ell(w)$ such that
(1) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(v)=k$ and $\ell(w)>k)$ or $\left(\ell(v)>k, \ell(w)>k\right.$ and $\left.v_{k}<w_{k}\right)$

Definition (lexicographic order on words)

Let \leq be total order on Σ. For words $v, w \in \Sigma^{*}$
$v<$ lex w
if there exists $k \in \mathbb{N}$ with $k \leq \ell(v), k \leq \ell(w)$ such that
(1) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(v)=k$ and $\ell(w)>k)$ or $\left(\ell(v)>k, \ell(w)>k\right.$ and $\left.v_{k}<w_{k}\right)$

Example

Let $\Sigma=\{a, b\}$ and $a<b$. Then
$\epsilon \ll_{\operatorname{lex}} a \quad \epsilon<_{\operatorname{lex}} b \quad a \ll_{\operatorname{lex}} b \quad a a<_{\operatorname{lex}} a b \quad$ aaaa $<_{\operatorname{lex}} a b$

Definition (lexicographic order on words)

Let \leq be total order on Σ. For words $v, w \in \Sigma^{*}$
$v<$ lex w
if there exists $k \in \mathbb{N}$ with $k \leq \ell(v), k \leq \ell(w)$ such that
(1) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(v)=k$ and $\ell(w)>k)$ or $\left(\ell(v)>k, \ell(w)>k\right.$ and $\left.v_{k}<w_{k}\right)$

Example

Let $\Sigma=\{a, b\}$ and $a<b$. Then

$$
\epsilon<_{\operatorname{lex}} a \quad \epsilon<_{\operatorname{lex}} b \quad a<_{\operatorname{lex}} b \quad a a<_{\operatorname{lex}} a b \quad \text { aaaa }<_{\operatorname{lex}} a b
$$

Theorem

$\leq_{\text {lex }}$ is a partial, total order on \sum^{*}

Proof that $<$ lex is a partial order

Suffices to show that $<_{\text {lex }}$ is a strict order. $<_{\text {lex }}$ is clearly irreflexive.

Proof that $\leq_{\text {lex }}$ is a partial order
Suffices to show that $<_{\text {lex }}$ is a strict order. $<_{\text {lex }}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^{*}$ with

$$
u<_{\operatorname{lex}} v \quad \text { and } \quad v<_{\operatorname{lex}} w
$$

Proof that $\leq_{\text {lex }}$ is a partial order

Suffices to show that $<_{\text {lex }}$ is a strict order. $<_{\text {lex }}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^{*}$ with

$$
u<_{\operatorname{lex}} v \quad \text { and } \quad v<_{\operatorname{lex}} w
$$

Then there is a $k \in \mathbb{N}$ with $k \leq \ell(u)$ and $k \leq \ell(v)$ and
(1) $u_{i}=v_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(u)=k$ and $\ell(v)>k)$ or $\left(\ell(u)>k\right.$ and $\ell(v)>k$ and $\left.u_{k}<v_{k}\right)$

Proof that $\leq_{\text {lex }}$ is a partial order

Suffices to show that <lex is a strict order. <lex is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^{*}$ with

$$
u<_{\operatorname{lex}} v \quad \text { and } \quad v<_{\text {lex }} w
$$

Then there is a $k \in \mathbb{N}$ with $k \leq \ell(u)$ and $k \leq \ell(v)$ and
(1) $u_{i}=v_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(u)=k$ and $\ell(v)>k)$ or $\left(\ell(u)>k\right.$ and $\ell(v)>k$ and $\left.u_{k}<v_{k}\right)$
and moreover an $I \in \mathbb{N}$ with $I \leq \ell(v)$ and $I \leq \ell(w)$ and
(1) $v_{i}=w_{i}$ for $i=0, \ldots, l-1$ and
(2) $(\ell(v)=I$ and $\ell(w)>l)$ or $\left(\ell(v)>l\right.$ and $\ell(w)>/$ and $\left.v_{l}<w_{l}\right)$

Proof that $\leq_{\text {lex }}$ is a partial order

Suffices to show that $<_{\text {lex }}$ is a strict order. $<_{\text {lex }}$ is clearly irreflexive. To show transitivity, let $u, v, w \in \Sigma^{*}$ with

$$
u<\operatorname{lex} v \quad \text { and } \quad v<_{\operatorname{lex}} w
$$

Then there is a $k \in \mathbb{N}$ with $k \leq \ell(u)$ and $k \leq \ell(v)$ and
(1) $u_{i}=v_{i}$ for $i=0, \ldots, k-1$ and
(2) $(\ell(u)=k$ and $\ell(v)>k)$ or $\left(\ell(u)>k\right.$ and $\ell(v)>k$ and $\left.u_{k}<v_{k}\right)$
and moreover an $I \in \mathbb{N}$ with $I \leq \ell(v)$ and $I \leq \ell(w)$ and
(1) $v_{i}=w_{i}$ for $i=0, \ldots, l-1$ and
(2) $(\ell(v)=l$ and $\ell(w)>l)$ or $\left(\ell(v)>l\right.$ and $\ell(w)>l$ and $\left.v_{l}<w_{l}\right)$

Then we have for $m:=\min (k, l), m \leq \ell(u)$ and $m \leq \ell(w)$ and
(a) $u_{i}=w_{i}$ for $i=0, \ldots, m-1$ and
(b) $(\ell(u)=m$ and $\ell(w)>m)$ or $\left(\ell(u)>m\right.$ and $\ell(w)>m$ and $\left.u_{m}<w_{m}\right)$
from which $u<_{\text {lex }} w$ follows

Proof that $\leq_{\text {lex }}$ is total

To prove that $\leq_{\text {lex }}$ is total, let $v, w \in \Sigma^{*}$ with $v \neq w$

Proof that $\leq_{\text {lex }}$ is total

To prove that $\leq_{\text {lex }}$ is total, let $v, w \in \Sigma^{*}$ with $v \neq w$
Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that
(a) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and
(b) $(\ell(v)=k$ and $\ell(w)>k)$ or $(\ell(v)>k$ and $\ell(w)=k)$ or $\left(\ell(v)>k\right.$ and $\ell(w)>k$ and $\left.v_{k} \neq w_{k}\right)$

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Proof that $\leq_{\text {lex }}$ is total

To prove that $\leq_{\text {lex }}$ is total, let $v, w \in \Sigma^{*}$ with $v \neq w$
Then there exists a $k \in \mathbb{N}$ with $k \leq \ell(v)$ and $k \leq \ell(w)$ such that
(a) $v_{i}=w_{i}$ for $i=0, \ldots, k-1$ and
(b) $(\ell(v)=k$ and $\ell(w)>k)$ or $(\ell(v)>k$ and $\ell(w)=k)$ or
$\left(\ell(v)>k\right.$ and $\ell(w)>k$ and $\left.v_{k} \neq w_{k}\right)$
Since \leq is total on Σ, we have either $v<_{\text {lex }} w$ or $w<_{\text {lex }} v$

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Example

- The natural order \leq on \mathbb{N} is well-founded
- The natural order \leq on \mathbb{Z} is not well-founded
- The lexicographic order is not well-founded, if alphabet has at least two symbols

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

Example

- $M=$ months of year; $P(m)=$ month m has at least 25 days

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

Example

- $M=$ months of year; $P(m)=$ month m has at least 25 days
- $M=$ natural numbers, $P(n)=$ if n is even, then so is n^{2}

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set
Goal: establish that all elements of M have property P

Example

- $M=$ months of year; $P(m)=$ month m has at least 25 days
- $M=$ natural numbers, $P(n)=$ if n is even, then so is n^{2}
- $M=$ natural numbers, $P(n)=\left(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right)$

Proving that all elements of set have some property

Universal properties

Given: M a set and P a property of elements of the set

Goal: establish that all elements of M have property P

Example

- $M=$ months of year; $P(m)=$ month m has at least 25 days
- $M=$ natural numbers, $P(n)=$ if n is even, then so is n^{2}
- $M=$ natural numbers, $P(n)=\left(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\right)$
- $M=$ pairs of positive natural numbers, $P(n, m)=$ Euclid's algorithm yields $\operatorname{gcd}(m, n)$

Proof by cases

```
Program

\section*{Program}
```

data Month = Jan | Feb | Mar | Apr | May | Jun

```
data Month = Jan | Feb | Mar | Apr | May | Jun
    | Jul | Aug | Sep | Oct | Nov | Dec
    | Jul | Aug | Sep | Oct | Nov | Dec
days :: Month -> Int
days :: Month -> Int
days Jan = 31
days Jan = 31
...
...
days Dec = 31
```

```
days Dec = 31
```

```

\section*{Lemma}
for every Month \(m\), days \(m \geq 25\)

\section*{Proof by cases.}
days \(\operatorname{Jan}=31 \geq 25 \checkmark, \ldots\), days Dec \(=31 \geq 25 \checkmark\)
we conclude since we checked all cases

\section*{Program}
```

data Month = Jan | Feb | Mar | Apr | May | Jun
| Jul | Aug | Sep | Oct | Nov | Dec
days :: Month -> Int
days Jan = 31
days Dec = 31

```

\section*{Lemma}
\[
\text { for every Month } m \text {, days } m \geq 25
\]

\section*{Proof by universal generalisation}

\section*{Lemma}
for every natural number \(n\) that is even, \(n^{2}\) is even.


\section*{Proof by universal generalisation}


Proof by universal generalisation

\section*{Lemma}
for every natural number \(n\) that is even, \(n^{2}\) is even.

\section*{Proof.}

1 take an arbitrary natural number \(n\)

\section*{Proof by universal generalisation}

\section*{Lemma}
for every natural number \(n\) that is even, \(n^{2}\) is even.

\section*{Proof.}

1 take an arbitrary natural number \(n\)
2 suppose \(n\) is even: \(n=2 m\) for some natural number \(m\)
3 then \(n^{2}=(2 m)^{2}=2\left(2 m^{2}\right) \checkmark\)

\section*{Lemma}
for every natural number \(n\) that is even, \(n^{2}\) is even.

\section*{Proof.}

1 take an arbitrary natural number \(n\)
2 suppose \(n\) is even: \(n=2 m\) for some natural number \(m\)
3 then \(n^{2}=(2 m)^{2}=2\left(2 m^{2}\right) \checkmark\)
we conclude since \(n\) was taken to be arbitrary

\section*{Proof by mathematical induction}

\section*{Lemma \\ for every natural number \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)}

\section*{Principle of well-founded induction}

Assumption: \(R\) a well-founded relation on set \(N\)
Induction: for arbitrary \(n \in N\), show that if \(P(m)\) for all \(m R n\), then \(P(n)\) Conclude: for all \(n \in N, P(n)\)
the \(P(m)\) for \(m R n\) are the induction hypotheses

\section*{Proof.}

\section*{Lemma}
for every natural number \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)

\section*{Proof by mathematical induction}

\section*{Lemma}
for every natural number \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)

\section*{Principle of well-founded induction}

Assumption: \(R\) a well-founded relation on set \(N\)
Induction: for arbitrary \(n \in N\), show that if \(P(m)\) for all \(m R n\), then \(P(n)\)
Conclude: for all \(n \in N, P(n)\)

\section*{Proof.}
- Take the well-founded relation \(\{(n, n+1) \mid n \in \mathbb{N}\}\).

\section*{Proof by mathematical induction}

\section*{Lemma}
for every natural number \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)

\section*{Principle of well-founded induction}

Assumption: \(R\) a well-founded relation on set \(N\)
Induction: for arbitrary \(n \in N\), show that if \(P(m)\) for all \(m R n\), then \(P(n)\)
Conclude: for all \(n \in N, P(n)\)

\section*{Proof.}
- Take the well-founded relation \(\{(n, n+1) \mid n \in \mathbb{N}\}\).
- if \(n=0\), then no induction hypotheses; directly show \(P(0)\)
\[
\sum_{i=1}^{0} i=0=\frac{0(0+1)}{2}
\]

\section*{Proof by mathematical induction}

\section*{mathematical induction}

1 Suppose we want to show \(P(n)\) for all natural numbers \(n\)
2 To that end, we may proceed as follows:
- Induction basis: We show that \(P\) holds for the base value 0 ;
- Induction step: We show that for all \(n>0, P(n-1)\) entails \(P(n)\).

3 Then \(P(n)\) holds for all \(n\)

\section*{Proof by mathematical induction}

\section*{Lemma}
for every natural number \(\sum_{i=1}^{n} i=\frac{n(n+1)}{2}\)

\section*{Principle of well-founded induction}

Assumption: \(R\) a well-founded relation on set \(N\)
Induction: for arbitrary \(n \in N\), show that if \(P(m)\) for all \(m R n\), then \(P(n)\)
Conclude: for all \(n \in N, P(n)\)

\section*{Proof.}
- Take the well-founded relation \(\{(n, n+1) \mid n \in \mathbb{N}\}\).
- if \(n>0\), then one induction hypothesis \(P(n-1): \sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}\)
\[
\sum_{i=1}^{n} i=\left(\sum_{i=1}^{n-1} i\right)+n==_{I H} \frac{(n-1) n}{2}+n=\frac{n(n+1)}{2}
\]

\section*{Proof by mathematical induction}

\section*{mathematical induction}

1 Suppose we want to show \(P(n)\) for all natural numbers \(n\)
2 To that end, we may proceed as follows:
- Induction basis: We show that \(P\) holds for the base value 0
- Induction step: We show that for all \(n>0, P(n-1)\) entails \(P(n)\).

3 Then \(P(n)\) holds for all \(n\)

Mathematical induction \(=\) well-founded induction wrt. \(R=\{(n, n+1) \mid n \in \mathbb{N}\}\).

\section*{athematical induction formally}
\[
(P(0) \wedge \forall n>0 .(P(n-1) \rightarrow P(n))) \rightarrow(\forall n \cdot P(n))
\]

\section*{Proof by mathematical induction}

\section*{mathematical induction}
1 Suppose we want to show \(P(n)\) for all natural numbers \(n\)
2 To that end, we may proceed as follows:
- Induction basis: We show that \(P\) holds for the base value 0 ;
- Induction step: We show that for all \(n>0, P(n-1)\) entails \(P(n)\).
3 Then \(P(n)\) holds for all \(n\)
Mathematical induction = well-founded induction wrt. \(R=\{(n, n+1) \mid n \in \mathbb{N}\}\).
well-founded induction formally
\(\forall n .((\forall m\) such that \(m R n \cdot P(m)) \rightarrow P(n)) \rightarrow(\forall n \cdot P(n))\)

\section*{Proof. \\ Let \(\leq\) be a well-founded order on \(M\) and \(N\) a non-empty subset of \(N\). Then there exists some element \(x_{0}\) in \(N\). If \(x_{0}\) is minimal in \(N\), then we are done.}

\section*{Theorem}

Let \(\leq\) be a partial order on the set \(M\). Then \(\leq\) is well-founded iff every non-empty subset of \(M\) has a minimal element.

\section*{Proof.}

Let \(\leq\) be a well-founded order on \(M\) and \(N\) a non-empty subset of \(N\). Then there exists some element \(x_{0}\) in \(N\). If \(x_{0}\) is minimal in \(N\), then we are done.
Otherwise, there exists some element \(x_{1} \in N\) with \(x_{1}<x_{0}\). If \(x_{1}\) is minimal, then we are done again. Otherwise, there is some \(x_{2} \in N\) with \(x_{2}<x_{1}\), etc.. Since
\[
x_{0}>x_{1}>x_{2}>\ldots
\]
we reach a minimal element \(x_{n}\) after finitely many steps.
\[
x_{0}>x_{1}>x_{2}>\ldots
\]

\section*{Proof.}

Let \(\leq\) be a well-founded order on \(M\) and \(N\) a non-empty subset of \(N\). Then there exists some element \(x_{0}\) in \(N\). If \(x_{0}\) is minimal in \(N\), then we are done.
Otherwise, there exists some element \(x_{1} \in N\) with \(x_{1}<x_{0}\). If \(x_{1}\) is minimal, then we are done again. Otherwise, there is some \(x_{2} \in N\) with \(x_{2}<x_{1}\), etc.. Since
\[
x_{0}>x_{1}>x_{2}>\ldots
\]
we reach a minimal element \(x_{n}\) after finitely many steps
\[
x_{0}>x_{1}>x_{2}>\ldots
\]

To prove the other direction, we suppose that \(\leq\) were not well-founded. Then there would be an infinitely descending chain
\[
x_{0}>x_{1}>x_{2}>\ldots,
\]
and the non-empty subset \(N=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}\) has no minimal element.

\section*{Proof by well-founded induction}

\section*{Lemma}
for all pairs of positive natural numbers, Euclid's algorithm yields \(\operatorname{gcd}(m, n)\)

\section*{Euclid's greatest common divisor algorithm}
euclid \(m \mathrm{n}=\) if \(\mathrm{m}==\mathrm{n}\) then m else if \(\mathrm{m}>\mathrm{n}\)
then euclid ( \(m-n\) ) \(n\) else euclid \(m(n-m)\)

\section*{Proof.}

Let \(\leq\) be a well-founded order on \(M\) and \(N\) a non-empty subset of \(N\). Then there exists some element \(x_{0}\) in \(N\). If \(x_{0}\) is minimal in \(N\), then we are done.
Otherwise, there exists some element \(x_{1} \in N\) with \(x_{1}<x_{0}\). If \(x_{1}\) is minimal, then we are done again. Otherwise, there is some \(x_{2} \in N\) with \(x_{2}<x_{1}\), etc.. Since
\[
x_{0}>x_{1}>x_{2}>\ldots
\]
we reach a minimal element \(x_{n}\) after finitely many steps
\[
x_{0}>x_{1}>x_{2}>\ldots
\]

To prove the other direction, we suppose that \(\leq\) were not well-founded. Then there would be an infinitely descending chain
\[
x_{0}>x_{1}>x_{2}>\ldots,
\]
and the non-empty subset \(N=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}\) has no minimal element.

\section*{Proof by well-founded induction}

\section*{Lemma}
for all pairs of positive natural numbers, Euclid's algorithm yields \(\operatorname{gcd}(m, n)\)

\section*{Euclid's greatest common divisor algorithm}
euclid \(m \mathrm{n}=\) if \(\mathrm{m}==\mathrm{n}\) then m else if \(\mathrm{m}>\mathrm{n}\)
then euclid ( \(m-n\) ) \(n\) else euclid m ( \(n-m\) )

\section*{Principle of well-founded induction}

Assumption: \(R\) a well-founded relation on set \(N\)
Induction: for arbitrary \(n \in N\), show that if \(P(m)\) for all \(m R n\), then \(P(n)\)
Conclude: for all \(n \in N, P(n)\)

\section*{Proof by well-founded induction}

\section*{Lemma \\ for all pairs of positive natural numbers, Euclid's algorithm yields \(\operatorname{gcd}(m, n)\) \\ Euclid's greatest common divisor algorithm \\ euclid \(m \mathrm{n}=\) if \(\mathrm{m}==\mathrm{n}\) then m else if \(\mathrm{m}>\mathrm{n}\) \\ then euclid (m-n) n else euclid m (n - m)}

\section*{Proof.}
- Take the well-founded relation \(\left\{\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right) \mid m+n<m^{\prime}+n^{\prime}\right\}\).

\section*{Proof by well-founded induction}

\section*{Lemma}
for all pairs of positive natural numbers, Euclid's algorithm yields \(\operatorname{gcd}(m, n)\)

\section*{Euclid's greatest common divisor algorithm}
euclid \(m \mathrm{n}=\) if \(\mathrm{m}==\mathrm{n}\) then m else if \(\mathrm{m}>\mathrm{n}\) then euclid ( \(m-n\) ) \(n\) else euclid \(m(n-m)\)

\section*{Proof.}
- Take the well-founded relation \(\left\{\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right) \mid m+n<m^{\prime}+n^{\prime}\right\}\).
- if \(m=n\), then no induction hypotheses needed; euclid \(m \mathrm{~m}=m=\operatorname{gcd}(m, m)\)
- if \(m>n\), then induction hypotheses: euclid \(m^{\prime} n^{\prime}=\operatorname{gcd}\left(m^{\prime}, n^{\prime}\right)\) if \(m^{\prime}+n^{\prime}<m+n\) euclid \(m \mathrm{n}=\operatorname{euclid}(\mathrm{m}-\mathrm{n}) \mathrm{n}={ }_{I H} \operatorname{gcd}(m-n, m)=\operatorname{gcd}(m, n)\)

Proof by well-founded induction

\section*{Lemma}
for all pairs of positive natural numbers, Euclid's algorithm yields \(\operatorname{gcd}(m, n)\)

\section*{Euclid's greatest common divisor algorithm}
euclid \(m \mathrm{n}=\) if \(\mathrm{m}==\mathrm{n}\) then m else if \(\mathrm{m}>\mathrm{n}\)
then euclid (m-n) n else euclid m (n - m)

\section*{Proof.}
- Take the well-founded relation \(\left\{\left((m, n),\left(m^{\prime}, n^{\prime}\right)\right) \mid m+n<m^{\prime}+n^{\prime}\right\}\).
- if \(m=n\), then no induction hypotheses needed; euclid \(m \mathrm{~m}=m=\operatorname{gcd}(m, m)\)

\section*{Example}

Let \(M\) be the set of all palindromes over the alphabet \(\{a, b\}\). We show ?If \(x \in M\) and \(\ell(x)\) even, then \(x\) has an even number of as.?

\section*{Example}

Let \(M\) be the set of all palindromes over the alphabet \(\{a, b\}\). We show ?If \(x \in M\) and \(\ell(x)\) even, then \(x\) has an even number of as.?

\section*{Proof.}

By well-founded induction. Take \(R=\left\{\left(w, w^{\prime}\right) \mid \ell(w)<\ell\left(w^{\prime}\right)\right\}\); order by length
- if \(x\) the empty string, then property holds; 0 is even
- if \(x\) non-empty induction hypotheses: property holds for words shorter than \(x\)
- if first letter of \(x\) is \(a\), then \(x=a x^{\prime} a\) for some palindrome \(x^{\prime} \in M\). then conclude since \(2+\) even is even
- if first letter of \(x\) is \(b\), then \(x=b x^{\prime} b\) for some palindrome \(x^{\prime} \in M\). then conclude since \(0+\) even is even```

