Summary last week

- Hasse diagram of a partial order \leq or strict order $<$
- least irreflexive, atransitive subrelation R of \leq such that $\leq=R^{*}$ or $<=R^{+}$ (atransitive: $x R y$ and $y R z$ then not $x R z$)
- for total orders, minimal $=$ least and maximal $=$ greatest
- finite partial orders have minimal and maximal elements
- the lexicographic order $<_{\text {lex }}$ on words; partial/total if \leq is.

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Summary last week

- Hasse diagram of a partial order \leq or strict order $<$
- least irreflexive, atransitive subrelation R of \leq such that $\leq=R^{*}$ or $<=R^{+}$ (atransitive: $x R y$ and $y R z$ then not $x R z$)
- for total orders, minimal $=$ least and maximal $=$ greatest
- finite partial orders have minimal and maximal elements
- the lexicographic order $<_{\text {lex }}$ on words; partial/total if \leq is.
- well-founded relations as not having infinite descending chains
- Three methods to prove that all elements of set have some property:

1) by cases; for finite sets, enumerating all elts
2) by universal generalisation; for infinite sets, proving for some arbitrary elt
3) by well-founded induction; for infinite sets, using property (IH) for smaller elts

- well-founded induction principle for well-founded relation R, property P : $\forall n .((\forall m$ such that $m R n . P(m)) \rightarrow P(n)) \rightarrow(\forall n . P(n))$

Discrete structures

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Principle of mathematical induction

Assumption: R the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}$. P a property of $n \in \mathbb{N}$. Induction: for arbitrary $n \in \mathbb{N}$, show that if $P(m)$ for all m such that $m R n$, then $P(n)$ Conclude: for all $n \in \mathbb{N}, P(n)$

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Principle of well-founded induction

Assumption: R a well-founded relation on set N. P a property of $n \in N$.
Induction: for arbitrary $n \in N$, show that if $P(m)$ for all m such that $m R n$, then $P(n)$ Conclude: for all $n \in N, P(n)$

Well-founded relations

Definition (well-founded relation)

- Let R be a relation on a set M
- A sequence $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of M is an infinite descending R-chain, if

$$
\ldots R x_{2} R x_{1} R x_{0}
$$

- R is well-founded, if M has no infinite descending R-chains.
- When we say that partial order \leq is well-founded we mean that its strict part $<$ is

Principle of mathematical induction

Assumption: R the well-founded relation $\{(n, n+1) \mid n \in \mathbb{N}\}$. P a property of $n \in \mathbb{N}$. Induction: for arbitrary $n \in \mathbb{N}$, show that $P(0)$ and if $n>0$ and $P(n-1)$ then $P(n)$ Conclude: for all $n \in \mathbb{N}, P(n)$

Mathematical induction

Mathematical induction

Mathematical induction

Mathematical induction

Mathematical induction

Induction basis: $\mathrm{P}(0)$ Induction step: if $\mathrm{n}>0$ and $\mathrm{P}(\mathrm{n}-1)$ then $\mathrm{P}(\mathrm{n})$

Mathematical induction

Induction basis: $P(0)$
Induction step: if $\mathrm{n}>0$ and $\mathrm{P}(\mathrm{n}-1)$ then $\mathrm{P}(\mathrm{n})$
$\mathrm{P}(3)$?
$\mathrm{P}(0)$ induction basis
duction basis: $\mathrm{P}(0)$

Mathematical induction

Induction basis: $\mathrm{P}(0)$
Induction step: if $\mathrm{n}>0$ and $\mathrm{P}(\mathrm{n}-1)$ then $\mathrm{P}(\mathrm{n})$
(2)

Mathematical induction

Induction basis: $\mathrm{P}(0)$
Induction step: if $\mathrm{n}>0$ and $\mathrm{P}(\mathrm{n}-1)$ then $\mathrm{P}(\mathrm{n})$
(1)
$\mathrm{P}(3)$
$\mathrm{P}(0)$ induction basis

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving $P(n)$ for an arbitrary element $n \in N$, it may be helpful to know that $P(m)$ holds already for m smaller than n, for an appropriate notion of smaller. For instance:

- on natural numbers: less-than, successor ('sub-number')
- on positive natural numbers: divisibility
- on strings: prefix, suffix, subsequence, sub-string

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving $P(n)$ for an arbitrary element $n \in N$, it may be helpful to know that $P(m)$ holds already for m smaller than n, for an appropriate notion of smaller. For instance:

- on natural numbers: less-than, successor ('sub-number')
- on positive natural numbers: divisibility

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving $P(n)$ for an arbitrary element $n \in N$, it may be helpful to know that $P(m)$ holds already for m smaller than n, for an appropriate notion of smaller. For instance:

- on natural numbers: less-than, successor ('sub-number')
- on positive natural numbers: divisibility
- on strings: prefix, suffix, subsequence, sub-string
- on (finite) graphs: sub-graph

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving $P(n)$ for an arbitrary element $n \in N$, it may be helpful to know that $P(m)$ holds already for m smaller than n, for an appropriate notion of smaller. For instance:

- on natural numbers: less-than, successor ('sub-number')
- on positive natural numbers: divisibility
- on strings: prefix, suffix, subsequence, sub-string
- on (finite) graphs: sub-graph
- on (finite) sets: sub-set

Experimenting to find what may be helpful

Example
 Let M be the set of all palindromes over the alphabet $\{a, b\}$. To show $\forall x \in M . P(x)$ where $P(x)=$ if $\ell(x)$ even, then x has an even number of as.

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving $P(n)$ for an arbitrary element $n \in N$, it may be
helpful to know that $P(m)$ holds already for m smaller than n, for an appropriate notion of smaller. For instance:

- on natural numbers: less-than, successor ('sub-number')
- on positive natural numbers: divisibility
- on strings: prefix, suffix, subsequence, sub-string
- on (finite) graphs: sub-graph
- on (finite) sets: sub-set
- on inductively defined structures: sub-structure

Experimenting to find what may be helpful

Example
 Let M be the set of all palindromes over the alphabet $\{a, b\}$. To show $\forall x \in M . P(x)$ where $P(x)=$ if $\ell(x)$ even, then x has an even number of as.

Observation

if $x \in M$ then either x empty, or $x=a x^{\prime} a$ or $x=b x^{\prime} b$ with $x^{\prime} \in M$ again

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet $\{a, b\}$. To show $\forall x \in M . P(x)$ where $P(x)=$ if $\ell(x)$ even, then x has an even number of as.

Observation
 if $x \in M$ then either x empty, or $x=a x^{\prime} a$ or $x=b x^{\prime} b$ with $x^{\prime} \in M$ again

Proof.

By well-founded induction, taking $R=\left\{\left(w, w^{\prime}\right) \mid \ell(w)<\ell\left(w^{\prime}\right)\right\}$; ordered by length

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet $\{a, b\}$. To show $\forall x \in M \cdot P(x)$ where $P(x)=$ if $\ell(x)$ even, then x has an even number of as.

Observation

if $x \in M$ then either x empty, or $x=a x^{\prime} a$ or $x=b x^{\prime} b$ with $x^{\prime} \in M$ again

Proof.

By well-founded induction, taking $R=\left\{\left(w, w^{\prime}\right) \mid \ell(w)<\ell\left(w^{\prime}\right)\right\}$; ordered by length - $x=\epsilon$ is a palindrome, has even length, and an even number of as.

- Suppose x non-empty palindrome, and of even length. Induction hypotheses: $P\left(x^{\prime}\right)$ holds for palindromes x^{\prime} shorter than x
- if first letter of x is a, then $x=a x^{\prime}$ a for some $x^{\prime} \in M$ of even length. By the IH $P\left(x^{\prime}\right)$ holds, i.e. x^{\prime} has an even number of as. $2+$ even is even.
- if first letter of x is b, then $x=b x^{\prime} b$ for some $x^{\prime} \in M$ of even length. $0+$ even is even.

Experimenting to find what may be helpful

Example
 Let M be the set of all palindromes over the alphabet $\{a, b\}$. To show $\forall x \in M . P(x)$ where $P(x)=$ if $\ell(x)$ even, then x has an even number of as.

Observation

if $x \in M$ then either x empty, or $x=a x^{\prime} a$ or $x=b x^{\prime} b$ with $x^{\prime} \in M$ again

Proof.

By well-founded induction, taking $R=\left\{\left(w, w^{\prime}\right) \mid \ell(w)<\ell\left(w^{\prime}\right)\right\}$; ordered by length - $x=\epsilon$ is a palindrome, has even length, and an even number of as.

Experimenting with the Ackermann function

Ackermann function

Function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
ack $0 \mathrm{n}=\mathrm{n}+1$
ack $m 0=$ ack (m-1) 1
ack $m \mathrm{n}=$ ack (m-1) (ack m (n-1))

Experimenting with the Ackermann function

```
Ackermann function
Function from }\mathbb{N}\times\mathbb{N}\mathrm{ to }\mathbb{N}\mathrm{ ?
ack 0 n = n+1
ack m O = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))
ack 4 4 does not produce an answer? or does it?
```


Experimenting with the Ackermann function

Ackermann function

```
Function from }\mathbb{N}\times\mathbb{N}\mathrm{ to }\mathbb{N}\mathrm{ ?
ack 0 n = n+1
ack m O = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))
```

ack 44 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

Experimenting with the Ackermann function

Ackermann function

Function from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
ack $0 \mathrm{n}=\mathrm{n}+1$
ack $\mathrm{m} 0=\mathrm{ack}(\mathrm{m}-1) 1$
ack $m \mathrm{n}=\mathrm{ack}(\mathrm{m}-1)$ (ack m (n-1))
ack 44 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

- $m-1$ and 1
- m and $n-1$

Experimenting with the Ackermann function

```
Ackermann function
Function from }\mathbb{N}\times\mathbb{N}\mathrm{ to }\mathbb{N}\mathrm{ ?
ack 0 n = n+1
ack m O = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))
ack 44 does not produce an answer? or does it?
```


Observation

The value of ack for m and n depends on its value for

- $m-1$ and 1
- m and $n-1$
- $m-1$ and the value of previous item

Lexicographic product

```
Definition
Let }\mp@subsup{\leq}{1}{},\mp@subsup{\leq}{2}{}\mathrm{ be partial orders. Their lexicographic product is defined by
\[
\left(x_{1}, x_{2}\right) \quad \leq_{1} \times_{\operatorname{lex}} \leq_{2} \quad\left(y_{1}, y_{2}\right)
\]
if \(x_{1}<_{1} y_{1}\) or \(\left(x_{1}=y_{1}\right.\) and \(\left.x_{2} \leq_{2} y_{2}\right)\).
```


Experimenting with the Ackermann function

Ackermann function

```
Function from }\mathbb{N}\times\mathbb{N}\mathrm{ to }\mathbb{N}\mathrm{ ?
ack 0 n = n+1
ack m O = ack (m-1) 1
ack m n = ack (m-1) (ack m (n-1))
```


ack 44 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

- $m-1$ and 1
- m and $n-1$
- $m-1$ and the value of previous item
well-founded relation such that all of these are smaller?

Lexicographic product

Definition

Let \leq_{1}, \leq_{2} be partial orders. Their lexicographic product is defined by

$$
\left(x_{1}, x_{2}\right) \quad \leq_{1} \times_{\operatorname{lex}} \leq_{2} \quad\left(y_{1}, y_{2}\right)
$$

if $x_{1}<1 y_{1}$ or $\left(x_{1}=y_{1}\right.$ and $\left.x_{2} \leq_{2} y_{2}\right)$.

Remarks

First compare the first elements; if that does not decide compare the second elements. Case $\leq_{1}=\leq_{2}$ corresponds to lexicographic order restricted to strings of length 2.

Lexicographic product

Definition

Let \leq_{1}, \leq_{2} be partial orders. Their lexicographic product is defined by

$$
\left(x_{1}, x_{2}\right) \quad \leq_{1} \times_{\operatorname{lex}} \leq_{2} \quad\left(y_{1}, y_{2}\right)
$$

if $x_{1}<1 y_{1}$ or $\left(x_{1}=y_{1}\right.$ and $\left.x_{2} \leq_{2} y_{2}\right)$.

Lemma

Lexicographic product preserves well-foundedness: $\leq_{1} \times_{l e x} \leq_{2}$ well-founded if \leq_{1}, \leq_{2}.

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

$$
\text { if } n_{1}, \ldots, n_{k} \in N \text {, then } s\left(n_{1}, \ldots, n_{k}\right) \in N
$$

with s structures depending on n_{1}, \ldots, n_{k}. if it is the least set satisfying the clauses.

Lexicographic product

Definition

Let \leq_{1}, \leq_{2} be partial orders. Their lexicographic product is defined by

$$
\left(x_{1}, x_{2}\right) \quad \leq_{1} \times_{\text {lex }} \leq_{2} \quad\left(y_{1}, y_{2}\right)
$$

if $x_{1}<1 y_{1}$ or ($x_{1}=y_{1}$ and $x_{2} \leq_{2} y_{2}$).

Lemma

Lexicographic product preserves well-foundedness: $\leq_{1} \times_{l e x} \leq_{2}$ well-founded if \leq_{1}, \leq_{2}.

Example

Computing ack m n always yields a (unique) value, because recursive calls have arguments that are strictly smaller w.r.t. $\leq x_{\text {lex }} \leq$. That is, we may speak of the Ackermann function.

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

$$
\text { if } n_{1}, \ldots, n_{k} \in N \text {, then } s\left(n_{1}, \ldots, n_{k}\right) \in N
$$

with s structures depending on n_{1}, \ldots, n_{k}. if it is the least set satisfying the clauses. The sub-structure relation relates each $n_{i} \in S$ to $s\left(n_{1}, \ldots, n_{k}\right)$.

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

$$
\text { if } n_{1}, \ldots, n_{k} \in N \text {, then } s\left(n_{1}, \ldots, n_{k}\right) \in N
$$

with s structures depending on n_{1}, \ldots, n_{k}. if it is the least set satisfying the clauses.
The sub-structure relation relates each $n_{i} \in S$ to $s\left(n_{1}, \ldots, n_{k}\right)$.

Lemma

If $s\left(n_{1}, \ldots, n_{k}\right) \in S$, then $n_{1}, \ldots, n_{k} \in S$, assuming the former uniquely depends on the latter, and then the sub-structure relation is well-founded.

Inductively defined structures

```
Example
The natural numbers }\mathbb{N}\mathrm{ can be inductively defined by:
    - 0}0\in
    - if }n\inN\mathrm{ , then }n+1\inN\mathrm{ .
Sub-structure relation: successor.
```


Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

$$
\text { if } n_{1}, \ldots, n_{k} \in N \text {, then } s\left(n_{1}, \ldots, n_{k}\right) \in N
$$

with s structures depending on n_{1}, \ldots, n_{k}. if it is the least set satisfying the clauses. The sub-structure relation relates each $n_{i} \in S$ to $s\left(n_{1}, \ldots, n_{k}\right)$.

Lemma

If $s\left(n_{1}, \ldots, n_{k}\right) \in S$, then $n_{1}, \ldots, n_{k} \in S$, assuming the former uniquely depends on the latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes in S, and only constructed from clauses (with leaves constructed by the base-clauses $(k=0)$). R relates children to parents in the tree.

Inductively defined structures

```
Example
The natural numbers }\mathbb{N}\mathrm{ can be inductively defined by:
    - 0}0\in
    - if }n\inN\mathrm{ , then }n+1\in
Sub-structure relation: successor.
```


Example

The palindromes P over $\{0,1\}$ can be inductively defined by:

- $\epsilon, 0,1 \in N$
- if $n \in N$, then $0 n 0 \in N, 1 N 1 \in N$.

Sub-structure relation: 'middle'-sub-palindromes

Definition (inductive with explicit base cases)

A set M can be defined inductively by:

- Induction basis: We introduce one or more elements of M.
- Induction step: We specify how, on the basis of already constructed elements of M, new elements of M can be constructed

The set M then comprises exactly those elements that can be obtained by the repeated application of the induction step on elements constructed by the induction basis (finitely many only; corresponding to least)

Definition (inductive with explicit base cases)

A set M can be defined inductively by:

- Induction basis: We introduce one or more elements of M.
- Induction step: We specify how, on the basis of already constructed elements of M, new elements of M can be constructed

The set M then comprises exactly those elements that can be obtained by the repeated application of the induction step on elements constructed by the induction basis (finitely many only; corresponding to least)

> Example
> The formulas of propositional logic may be inductively defined by:
> 1 An atomic formula p is a formula
> 2 A truth symbol (True, False) is a formula
> 3 If A and B are formulas, then so are $\neg A,(A \wedge B),(A \vee B)$ and $(A \rightarrow B)$

Theorem (Structural induction with explicit base cases)

1 We want to show $A(x)$ holds for all structures $x \in M$, where M is defined by induction.

Theorem (Structural induction with explicit base cases)

1 We want to show $A(x)$ holds for all structures $x \in M$, where M is defined by induction.
2 We proceed as follows:

- Induction basis: We show that $A(x)$ holds for the base structure(s) x
- Induction step: We choose a structure y that is recursively constructed from the structures $y_{1}, y_{2}, \ldots, y_{k}$. The IH for the latter states that $A\left(y_{1}\right), A\left(y_{2}\right), \ldots, A\left(y_{k}\right)$ hold. Using those, we show $A(y)$

```
Theorem (Structural induction with explicit base cases)
1 We want to show \(A(x)\) holds for all structures \(x \in M\), where \(M\) is defined by induction.
2 We proceed as follows:
- Induction basis: We show that \(A(x)\) holds for the base structure(s) \(x\)
- Induction step: We choose a structure y that is recursively constructed from the structures \(y_{1}, y_{2}, \ldots, y_{k}\). The IH for the latter states that \(A\left(y_{1}\right), A\left(y_{2}\right), \ldots, A\left(y_{k}\right)\) hold. Using those, we show \(A(y)\)
```


Proof.

```
By ordering \(x \in M\) by, say, the minimal number of construction steps needed to show that \(x \in M\) (size of the construction tree).
```


Theorem (Structural induction with explicit base cases)

1 We want to show $A(x)$ holds for all structures $x \in M$, where M is defined by induction.
2 We proceed as follows:

- Induction basis: We show that $A(x)$ holds for the base structure(s) x
- Induction step: We choose a structure y that is recursively constructed from the structures $y_{1}, y_{2}, \ldots, y_{k}$. The IH for the latter states that $A\left(y_{1}\right), A\left(y_{2}\right), \ldots, A\left(y_{k}\right)$ hold. Using those, we show $A(y)$

Proof.

By ordering $x \in M$ by, say, the minimal number of construction steps needed to show that $x \in M$ (size of the construction tree).

Proof by minimal counterexample

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof by minimal counterexample

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set $N . R$ a well-founded relation on N
Minimal counterexample: show if n minimal such that not $P(n)$, then contradiction
Conclude: for all $n \in N, P(n)$

Proof by minimal counterexample

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set $N . R$ a well-founded relation on N
Minimal counterexample: show if n minimal such that not $P(n)$, then contradiction Conclude: for all $n \in N, P(n)$

Example

Assumption: $P(n)=n$ can be written as a product of primes if $n>2 .<$ on \mathbb{N}.

Proof by minimal counterexample

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set $N . R$ a well-founded relation on N
Minimal counterexample: show if n minimal such that not $P(n)$, then contradiction Conclude: for all $n \in N, P(n)$

Example

Assumption: $P(n)=n$ can be written as a product of primes if $n>2 .<$ on \mathbb{N}. Minimal counterexample: let n be minimal and not a product of primes. Then $n=m \cdot k$ with $m, k<n$. By minimality m and k are products of primes, but then so is n. Contradiction.

Proof by minimal counterexample

Theorem

Let \leq be a partial order on the set M. Then \leq is well-founded iff every non-empty subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set $N . R$ a well-founded relation on N
Minimal counterexample: show if n minimal such that not $P(n)$, then contradiction Conclude: for all $n \in N, P(n)$

Example

Assumption: $P(n)=n$ can be written as a product of primes if $n>2 .<$ on \mathbb{N}. Minimal counterexample: let n be minimal and not a product of primes.

Questions and methodology for structures

- When are two structures the same?
- When is one structure a sub-structure of another?
- How can we represent structures?
- What operations can we do on the structures?

Questions and methodology for structures

- What operations can we do on the structures?

For relations, functions, partial orders, well-founded relations.

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it holds for the result.

Example

Positiveness is preserved by addition and multiplication. Negativeness is preserved by addition but not by multiplication.

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it holds for the result.

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it holds for the result.

Lemma

The componentwise extension preserves well-foundedness, i.e. if \leq is a well-founded
partial order, then so is $\leq_{\text {comp }}$

Proof.

For a proof by contradiction, suppose $x_{1}>_{\text {comp }} x_{2}>_{\text {comp }} x_{3}>_{\text {comp }} \ldots$ were an infinite descending $\leq_{\text {comp-chain, }}$ where $x_{i}=\left(x_{i 1}, \ldots, x_{i k}\right)$, for some minimal k. Then for their first elements $x_{11} \geq x_{21} \geq x_{31} \geq \ldots$. Either this contains an infinite descending \leq-chain, or there exists an N such that for all $n \geq N, x_{N 1}=x_{n 1}$ and then
$\left(x_{N 2}, \ldots, x_{N k}\right)>_{\text {comp }}\left(x_{N+12}, \ldots, x_{N+1 k}\right)>_{\text {comp }}\left(x_{N+22}, \ldots, x_{N+2 k}\right)>_{\text {comp }} \ldots$ would be an infinite descending chain for a smaller k. Contradiction.

Operations on relations

Let R, S be relations on A.

- identity a I b if $a=b$;

Operations on relations

Operations on relations

Let R, S be relations on A.

- identity $a l b$ if $a=b$;
- converse $a R^{-1} b$ if $b R$ a
many names, notations: opposite, dual, inverse ...

Operations on relations

Operations on relations

Let R, S be relations on A.

- identity $a l b$ if $a=b$;
converse $a R^{-1} b$ if $b R a$;
many names, notations: opposite, dual, inverse ...
intersection $a(R \cap S) b$ if a R band $a S b$;

Operations on relations

Operations on relations

Operations on relations

Let R, S be relations on A.

- identity $a l b$ if $a=b$;
- converse $a R^{-1} b$ if $b R a$;
many names, notations: opposite, dual, inverse ...
- intersection a $(R \cap S) b$ if a R b and a S;
- union $a(R \cup S) b$ if $a R b$ or $a S b ;$

Operations on relations

Operations on relations

Let R, S be relations on A.

- identity $a l b$ if $a=b$;
- converse $a R^{-1} b$ if $b R a$;
many names, notations: opposite, dual, inverse ...
- intersection $a(R \cap S) b$ if a R and $a S b$;
- union $a(R \cup S) b$ if $a R$ or $a S$;
- composition $a(R ; S) b$ if $\exists c \in A, a R c$ and $c S b$;
- product $\left(a, a^{\prime}\right) R \times S\left(b, b^{\prime}\right)$ if $a R b$ and $a^{\prime} S b^{\prime}$
relation on $A \times A$

Operations on relations

Let R, S be relations on A.

- identity $a l b$ if $a=b$;
- converse a $R^{-1} b$ if $b R$; many names, notations: opposite, dual, inverse ...
- intersection $a(R \cap S) b$ if $a R b$ and $a S b$;
- union $a(R \cup S) b$ if $a R$ or $a S b ;$
- composition $a(R ; S) b$ if $\exists c \in A, a R c$ and $c S b$;

Operation on functions?
 Let f, g be functions on A.
 - identity I a function?

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function?

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$;

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark

Haskell notation id

- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$
- intersection $f \cap g$ a function?

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark

Haskell notation id

- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;
- union $f \cup g$ a function?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=I\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;
- union $f \cup g$ a function? $\times(\checkmark$ iff $f=g)$;

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark

Haskell notation id

- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=I\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;
- union $f \cup g$ a function? $\times(\checkmark$ iff $f=g)$
- composition $f ; g$ a function?

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=I\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;
- union $f \cup g$ a function? $\times(\checkmark$ iff $f=g)$
- composition $f ; g$ a function? \checkmark

Mathematical notation $g \circ f ; g$ after f. Haskell notation $f . g$

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark

Haskell notation id

- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$
- union $f \cup g$ a function? $\times(\checkmark$ iff $f=g)$;
- composition $f ; g$ a function? \checkmark

Mathematical notation $g \circ f ; g$ after f. Haskell notation $f . g$

- product $f \times g$ a function?

Operations on functions?

Operation on functions?

Let f, g be functions on A.

- identity I a function? \checkmark Haskell notation id
- converse f^{-1} a function? $\times\left(\checkmark\right.$ iff f a bijection: $f ; f^{-1}=I$ and $\left.f^{-1} ; f=l\right)$;
- intersection $f \cap g$ a function? $\times(\checkmark$ iff $f=g)$;
- union $f \cup g$ a function? $\times(\checkmark$ iff $f=g)$;
- composition $f ; g$ a function? \checkmark

Mathematical notation $g \circ f ; g$ after f. Haskell notation $f . g$

- product $f \times g$ a function? \checkmark

```
Operations on partial orders?
Let }\leq,\sqsubseteq\mathrm{ be partial orders on A.
    - identity / a partial order?
```


Operations on partial orders?

Operations on partial orders?

Let $\leq, ~ \sqsubseteq$ be partial orders on A.

- identity I a partial order? \checkmark

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order?

Operations on partial orders?

Operations on partial orders?
 Let $\leq, ~ \sqsubseteq$ be partial orders on A.
 - identity I a partial order? \checkmark
 - converse $\geq=\leq^{-1}$ a partial order? \checkmark

Operations on partial orders?

Operations on partial orders?

Let $\leq, ~ \sqsubseteq$ be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order?

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition \leq; \sqsubseteq a partial order?

Operations on partial orders?

Operations on partial orders?

Let $\leq, ~ \sqsubseteq$ be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition $\leq ; \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition \leq; a partial order? \times (anti-symmetry, transitivity may fail)
- product $\leq x \sqsubseteq$ a partial order?

Operations on partial orders?

Operations on partial orders?

Let \leq, \sqsubseteq be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition \leq; \sqsubseteq a partial order? \times (anti-symmetry, transitivity may fail)
- product $\leq \times \sqsubseteq$ a partial order? \checkmark
if $\leq=\sqsubseteq$, then special case of componentwise extension $\leq_{\text {comp }}$

Operations on partial orders?

Operations on partial orders?

Let $\leq, ~ \sqsubseteq$ be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition \leq; \sqsubseteq a partial order? \times (anti-symmetry, transitivity may fail)
- product $\leq \times \sqsubseteq$ a partial order? \checkmark
if $\leq=\sqsubseteq$, then special case of componentwise extension $\leq_{\text {comp }}$
- lexicographic order $\leq_{\text {lex }}$ a partial order? \checkmark (done before)

Operations on partial orders?

Operations on partial orders?

Let $\leq, ~ \sqsubseteq$ be partial orders on A.

- identity I a partial order? \checkmark
- converse $\geq=\leq^{-1}$ a partial order? \checkmark
- intersection $\leq \cap \sqsubseteq$ a partial order? \checkmark
- union $\leq \cup \sqsubseteq$ a partial order? \times (anti-symmetry, transitivity may fail)
- composition \leq; \sqsubseteq a partial order? \times (anti-symmetry, transitivity may fail)
- product $\leq \times \sqsubseteq$ a partial order? \checkmark
if $\leq=\sqsubseteq$, then special case of componentwise extension $\leq_{\text {comp }}$
- lexicographic order $\leq_{\text {lex }}$ a partial order?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity I well-founded?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded? \checkmark
- union $R \cup S$ well-founded?

Operations on well-founded relations?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity I well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
intersection $R \cap S$ well-founded? \checkmark

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded? \checkmark
- union $R \cup S$ well-founded? \times
- composition R; S well-founded?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity I well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded? \checkmark
- union $R \cup S$ well-founded? \times
- composition R; S well-founded? \times

Operations on well-founded relations?

Operations on well-founded relations?

Let R, S be well-founded relations on A.

- identity I well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded? \checkmark
- union $R \cup S$ well-founded? \times
- composition R; S well-founded? \times
- product $R \times S$ well-founded?

Operations on well-founded relations?

Operations on well-founded relations?

Let R, S be well-founded relations on A

- identity $/$ well-founded? \times (strict part is)
- converse R^{-1} well-founded? \times
- intersection $R \cap S$ well-founded? \checkmark
- union $R \cup S$ well-founded? \times
- composition R; S well-founded? \times
product $R \times S$ well-founded? \checkmark

Well-(founded)orders

Definition

A relation R is

- a well-founded order if it is well-founded and transitive
- a well-order if moreover for all $a, b, a R b$ or $a=b$ or $b R$ a holds

This extends to partial orders \leq via their strict part $<$.

Examples of well-(founded)orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not well-founded), and neither is $\{(n, n+1) \mid n \in \mathbb{N}\}$ (not transitive).

Well-(founded)orders

Definition

A relation R is

- a well-founded order if it is well-founded and transitive
- a well-order if moreover for all $a, b, a R b$ or $a=b$ or $b R$ holds

This extends to partial orders \leq via their strict part $<$.

Theorem

A relation is a well-founded order iff it is a well-founded strict order.

Proof.

It suffices to show that a well-founded transitive relation R is irreflexive. This holds, since if a R a were to hold, then $\ldots R$ a R a R a would be an infinite descending chain, contradicting well-foundedness.

Examples of well-(founded)orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not well-founded), and neither is $\{(n, n+1) \mid n \in \mathbb{N}\}$ (not transitive).

Example

Divisibility is a well-founded order on the natural numbers: it's a partial order with its strict part well-founded. It is not a well-order.

Examples of well-(founded)orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not well-founded), and neither is $\{(n, n+1) \mid n \in \mathbb{N}\}$ (not transitive)

Example

Divisibility is a well-founded order on the natural numbers: it's a partial order with its strict part well-founded. It is not a well-order.

Example

The prefix order is a well-founded order on the strings over Σ, but not a well-order in case Σ as more than 1 symbol (neither of $a b, b a$ is a prefix of the other).

Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders $<$ on A and \sqsubset on B are isomorphic if there is a bijection f from A to B with
1 if $a<a^{\prime}$ then $f(a) \sqsubset f\left(a^{\prime}\right)$;
2 if $b \sqsubset b^{\prime}$ then $f^{-1}(b)<f^{-1}\left(b^{\prime}\right)$;
Ordinals represent isomorphic well-orders.

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders $<$ on A and \sqsubset on B are isomorphic if there is a bijection f from A to B with 1 if $a<a^{\prime}$ then $f(a) \sqsubset f\left(a^{\prime}\right)$;
2 if $b \sqsubset b^{\prime}$ then $f^{-1}(b)<f^{-1}\left(b^{\prime}\right)$;
Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over $\{a\}$.

Ordinals

Motivation/intuition
Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.
Definition
Well-orders $<$ on A and \sqsubset on B are isomorphic if there is a bijection f from A to B with
$\mathbf{1}$ if $a<a^{\prime}$ then $f(a) \sqsubset f\left(a^{\prime}\right)$;
$\mathbf{2}$ if $b \sqsubset b^{\prime}$ then $f^{-1}(b)<f^{-1}\left(b^{\prime}\right)$;
Ordinals represent isomorphic well-orders.
Example
< on natural numbers isomorphic to <lex on words over $\{a\}$.
Example
Each finite well-order isomorphic to $<o n\{m \mid m<n\}$ for some $n \in N . \quad{ }^{23}$

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Infinite ordinals

Example

Extending the ordinal ω of the natural numbers either with an element \perp smaller than all natural numbers to $1+\omega$, or with an element T greater than all natural numbers to $\omega+1$, can be depicted (omitting many transitive arrows) as:

we see that ω and $1+\omega$ are isomorphic, but non-isomorphic to $\omega+1$.

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection $f: M \rightarrow N$, then the sets M and N are equinumerous or equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set $\{m \mid m<n\}$ for some $n \in \mathbb{N}$.

Example

Adjoining $*$ to the natural numbers is equinumerous to the natural numbers; $\omega, 1+\omega$, and $\omega+1$ are equinumerous as sets of nodes (forgetting about the edges/order).

