
Summary last week

• Hasse diagram of a partial order ≤ or strict order <
• least irreflexive, atransitive subrelation R of ≤ such that ≤ = R∗ or < = R+

(atransitive: x R y and y R z then not x R z)
• for total orders, minimal = least and maximal = greatest
• finite partial orders have minimal and maximal elements
• the lexicographic order <lex on words; partial/total if ≤ is.

• well-founded relations as not having infinite descending chains
• Three methods to prove that all elements of set have some property:

1) by cases; for finite sets, enumerating all elts

2) by universal generalisation; for infinite sets, proving for some arbitrary elt

3) by well-founded induction; for infinite sets, using property (IH) for smaller elts
• well-founded induction principle for well-founded relation R, property P:
∀n.((∀m such that m R n.P(m))→ P(n))→ (∀n.P(n))
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is
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Principle of well-founded induction
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Conclude: for all n ∈ N, P(n)
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Mathematical induction

P(3)?
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Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)
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When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure
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Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.
• Suppose x non-empty palindrome, and of even length. Induction hypotheses:

P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.
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Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?
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Lexicographic product

Definition

Let ≤1,≤2 be partial orders. Their lexicographic product is defined by

(x1, x2) ≤1 ×lex ≤2 (y1, y2)

if x1 <1 y1 or (x1 = y1 and x2 ≤2 y2).

Lemma

Lexicographic product preserves well-foundedness: ≤1 ×lex ≤2 well-founded if ≤1,≤2.

Example

Computing ack m n always yields a (unique) value, because recursive calls have
arguments that are strictly smaller w.r.t. ≤×lex ≤. That is, we may speak of the
Ackermann function.
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First compare the first elements; if that does not decide compare the second elements.
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Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

if n1,. . . ,nk ∈ N, then s(n1, . . . ,nk) ∈ N

with s structures depending on n1, . . . ,nk. if it is the least set satisfying the clauses.

The sub-structure relation relates each ni ∈ S to s(n1, . . . ,nk).

Lemma

If s(n1, . . . ,nk) ∈ S, then n1, . . . ,nk ∈ S, assuming the former uniquely depends on the
latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes
in S, and only constructed from clauses (with leaves constructed by the base-clauses
(k = 0)). R relates children to parents in the tree.
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Inductively defined structures

Example

The natural numbers N can be inductively defined by:

• 0 ∈ N

• if n ∈ N, then n + 1 ∈ N.

Sub-structure relation: successor.

Example

The palindromes P over {0,1} can be inductively defined by:

• ε,0,1 ∈ N

• if n ∈ N, then 0n0 ∈ N, 1N1 ∈ N.

Sub-structure relation: ‘middle’-sub-palindromes
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Definition (inductive with explicit base cases )

A set M can be defined inductively by:

• Induction basis: We introduce one or more elements of M.

• Induction step: We specify how, on the basis of already constructed elements of
M, new elements of M can be constructed

The set M then comprises exactly those elements that can be obtained by the
repeated application of the induction step on elements constructed by the induction
basis (finitely many only; corresponding to least)

Example

The formulas of propositional logic may be inductively defined by:

1 An atomic formula p is a formula

2 A truth symbol (True, False) is a formula

3 If A and B are formulas, then so are ¬A, (A ∧ B), (A ∨ B) and (A→ B)
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Theorem (Structural induction with explicit base cases)

1 We want to show A(x) holds for all structures x ∈ M, where M is defined by
induction.

2 We proceed as follows:
• Induction basis: We show that A(x) holds for the base structure(s) x
• Induction step: We choose a structure y that is recursively constructed from the

structures y1, y2, . . . , yk. The IH for the latter states that A(y1), A(y2), . . . , A(yk) hold.
Using those, we show A(y)

Proof.

By ordering x ∈ M by, say, the minimal number of construction steps needed to show
that x ∈ M (size of the construction tree).
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Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .
Minimal counterexample: let n be minimal and not a product of primes.
Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.
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Questions and methodology for structures

• When are two structures the same?

• When is one structure a sub-structure of another?

• How can we represent structures?

• What operations can we do on the structures?

For relations, functions, partial orders, well-founded relations.
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Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it
holds for the result.

Lemma

The componentwise extension preserves well-foundedness, i.e. if ≤ is a well-founded
partial order, then so is ≤comp.

Proof.

For a proof by contradiction, suppose x1 >comp x2 >comp x3 >comp . . . were an infinite
descending ≤comp-chain, where xi = (xi1, . . . , xik), for some minimal k. Then for their
first elements x11 ≥ x21 ≥ x31 ≥ . . .. Either this contains an infinite descending
≤-chain, or there exists an N such that for all n ≥ N, xN1 = xn1 and then
(xN2, . . . , xNk) >comp (xN+1 2, . . . , xN+1 k) >comp (xN+2 2, . . . , xN+2 k) >comp . . . would be an
infinite descending chain for a smaller k. Contradiction.
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Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A
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Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18
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Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)
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Well-(founded )orders

Definition

A relation R is

• a well-founded order if it is well-founded and transitive

• a well-order if moreover for all a, b, a R b or a = b or b R a holds

This extends to partial orders ≤ via their strict part <.

Theorem

A relation is a well-founded order iff it is a well-founded strict order.

Proof.

It suffices to show that a well-founded transitive relation R is irreflexive. This holds,
since if a R a were to hold, then . . . R a R a R a would be an infinite descending chain,
contradicting well-foundedness.
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Examples of well-(founded )orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not
well-founded), and neither is {(n,n + 1) | n ∈ N } (not transitive).

Example

Divisibility is a well-founded order on the natural numbers: it’s a partial order with its
strict part well-founded. It is not a well-order.

Example

The prefix order is a well-founded order on the strings over Σ, but not a well-order in
case Σ as more than 1 symbol (neither of ab, ba is a prefix of the other).
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Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders < on A and < on B are isomorphic if there is a bijection f from A to B with

1 if a < a′ then f(a) < f(a′);

2 if b < b′ then f−1(b) < f−1(b′);

Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over {a}.

Example

Each finite well-order isomorphic to < on {m | m < n} for some n ∈ N.
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Infinite ordinals

Example

Extending the ordinal ω of the natural numbers either with an element ⊥ smaller than
all natural numbers to 1 + ω, or with an element > greater than all natural numbers to
ω + 1, can be depicted (omitting many transitive arrows) as:

omega+1

0 1 2 3 4

0 1 2 3 4

1 2 3 40

1+omega

omega

we see that ω and 1 + ω are isomorphic, but non-isomorphic to ω + 1. 24

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous or
equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

Adjoining ∗ to the natural numbers is equinumerous to the natural numbers; ω, 1 + ω,
and ω + 1 are equinumerous as sets of nodes (forgetting about the edges/order).
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