
Summary last week

• Hasse diagram of a partial order ≤ or strict order <
• least irreflexive, atransitive subrelation R of ≤ such that ≤ = R∗ or < = R+

(atransitive: x R y and y R z then not x R z)
• for total orders, minimal = least and maximal = greatest
• finite partial orders have minimal and maximal elements
• the lexicographic order <lex on words; partial/total if ≤ is.

• well-founded relations as not having infinite descending chains
• Three methods to prove that all elements of set have some property:

1) by cases; for finite sets, enumerating all elts

2) by universal generalisation; for infinite sets, proving for some arbitrary elt

3) by well-founded induction; for infinite sets, using property (IH) for smaller elts
• well-founded induction principle for well-founded relation R, property P:
∀n.((∀m such that m R n.P(m))→ P(n))→ (∀n.P(n))

1

Summary last week

• Hasse diagram of a partial order ≤ or strict order <
• least irreflexive, atransitive subrelation R of ≤ such that ≤ = R∗ or < = R+

(atransitive: x R y and y R z then not x R z)
• for total orders, minimal = least and maximal = greatest
• finite partial orders have minimal and maximal elements
• the lexicographic order <lex on words; partial/total if ≤ is.

• well-founded relations as not having infinite descending chains
• Three methods to prove that all elements of set have some property:

1) by cases; for finite sets, enumerating all elts

2) by universal generalisation; for infinite sets, proving for some arbitrary elt

3) by well-founded induction; for infinite sets, using property (IH) for smaller elts
• well-founded induction principle for well-founded relation R, property P:
∀n.((∀m such that m R n.P(m))→ P(n))→ (∀n.P(n))

1

Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2

Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders

3



Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is

4

Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is

Principle of well-founded induction

Assumption: R a well-founded relation on set N. P a property of n ∈ N.
Induction: for arbitrary n ∈ N, show that if P(m) for all m such that m R n, then P(n)
Conclude: for all n ∈ N, P(n)

4

Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is

Principle of mathematical induction

Assumption: R the well-founded relation {(n,n + 1) | n ∈ N }. P a property of n ∈ N .
Induction: for arbitrary n ∈ N , show that if P(m) for all m such that m R n, then P(n)
Conclude: for all n ∈ N , P(n)

4

Well-founded relations

Definition (well-founded relation)

• Let R be a relation on a set M

• A sequence (x0, x1, x2, . . .) of elements of M is an infinite descending R-chain, if

. . . R x2 R x1 R x0

• R is well-founded, if M has no infinite descending R-chains.

• When we say that partial order ≤ is well-founded we mean that its strict part < is

Principle of mathematical induction

Assumption: R the well-founded relation {(n,n + 1) | n ∈ N }. P a property of n ∈ N .
Induction: for arbitrary n ∈ N , show that P(0) and if n > 0 and P(n− 1) then P(n)
Conclude: for all n ∈ N , P(n)

4



Mathematical induction

P(3)?

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

5

Mathematical induction

P(2)?

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

P(3)?

5

Mathematical induction

P(1)?

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

P(3)?

P(2)?

5

Mathematical induction

P(0)?

induction step

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

P(3)?

P(2)?

P(1)?

5



Mathematical induction

P(1)?

induction step

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

induction basisP(0)

P(3)?

P(2)?

5

Mathematical induction

P(2)?

induction step

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

induction basis

P(1)

P(0)

P(3)?

5

Mathematical induction

P(3)?

induction step

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

induction basis

P(2)

P(1)

P(0)

5

Mathematical induction

P(0)

induction step

4

3

2

1

0

Induction basis: P(0)

Induction step: if n > 0 and P(n−1) then P(n)

induction step

induction step

induction basis

P(3)

P(2)

P(1)

5



When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure

6

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure

6

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure

6

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure

6



When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure

6

When and how to apply induction?

When

Prove a property P of elements of an infinite set N.

How

Try to see whether, when proving P(n) for an arbitrary element n ∈ N, it may be
helpful to know that P(m) holds already for m smaller than n, for an appropriate notion
of smaller. For instance:

• on natural numbers: less-than, successor (‘sub-number’)

• on positive natural numbers: divisibility

• on strings: prefix, suffix, subsequence, sub-string

• on (finite) graphs: sub-graph

• on (finite) sets: sub-set

• on inductively defined structures: sub-structure
6

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.
• Suppose x non-empty palindrome, and of even length. Induction hypotheses:

P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.

7

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.
• Suppose x non-empty palindrome, and of even length. Induction hypotheses:

P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.

7



Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.
• Suppose x non-empty palindrome, and of even length. Induction hypotheses:

P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.

7

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.

• Suppose x non-empty palindrome, and of even length. Induction hypotheses:
P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.

7

Experimenting to find what may be helpful

Example

Let M be the set of all palindromes over the alphabet {a,b}. To show ∀x ∈ M.P(x)
where P(x) = if `(x) even, then x has an even number of as.

Observation

if x ∈ M then either x empty, or x = ax′a or x = bx′b with x′ ∈ M again

Proof.

By well-founded induction, taking R = {(w,w′) | `(w) < `(w′)}; ordered by length

• x = ε is a palindrome, has even length, and an even number of as.
• Suppose x non-empty palindrome, and of even length. Induction hypotheses:

P(x′) holds for palindromes x′ shorter than x
• if first letter of x is a, then x = ax′a for some x′ ∈ M of even length. By the IH P(x′)

holds, i.e. x′ has an even number of as. 2 + even is even.
• if first letter of x is b, then x = bx′b for some x′ ∈ M of even length. 0+ even is even.7

Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8



Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8

Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8

Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8

Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8



Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller?

8

Experimenting with the Ackermann function

Ackermann function

Function from N × N to N ?

ack 0 n = n+1

ack m 0 = ack (m-1) 1

ack m n = ack (m-1) (ack m (n-1))

ack 4 4 does not produce an answer? or does it?

Observation

The value of ack for m and n depends on its value for

• m− 1 and 1

• m and n− 1

• m− 1 and the value of previous item

well-founded relation such that all of these are smaller? 8

Lexicographic product

Definition

Let ≤1,≤2 be partial orders. Their lexicographic product is defined by

(x1, x2) ≤1 ×lex ≤2 (y1, y2)

if x1 <1 y1 or (x1 = y1 and x2 ≤2 y2).

Lemma

Lexicographic product preserves well-foundedness: ≤1 ×lex ≤2 well-founded if ≤1,≤2.

Example

Computing ack m n always yields a (unique) value, because recursive calls have
arguments that are strictly smaller w.r.t. ≤×lex ≤. That is, we may speak of the
Ackermann function.

9

Lexicographic product

Definition

Let ≤1,≤2 be partial orders. Their lexicographic product is defined by

(x1, x2) ≤1 ×lex ≤2 (y1, y2)

if x1 <1 y1 or (x1 = y1 and x2 ≤2 y2).

Remarks

First compare the first elements; if that does not decide compare the second elements.
Case ≤1 = ≤2 corresponds to lexicographic order restricted to strings of length 2.

Lemma

Lexicographic product preserves well-foundedness: ≤1 ×lex ≤2 well-founded if ≤1,≤2.

Example

Computing ack m n always yields a (unique) value, because recursive calls have
arguments that are strictly smaller w.r.t. ≤×lex ≤. That is, we may speak of the
Ackermann function.

9



Lexicographic product

Definition

Let ≤1,≤2 be partial orders. Their lexicographic product is defined by

(x1, x2) ≤1 ×lex ≤2 (y1, y2)

if x1 <1 y1 or (x1 = y1 and x2 ≤2 y2).

Lemma

Lexicographic product preserves well-foundedness: ≤1 ×lex ≤2 well-founded if ≤1,≤2.

Example

Computing ack m n always yields a (unique) value, because recursive calls have
arguments that are strictly smaller w.r.t. ≤×lex ≤. That is, we may speak of the
Ackermann function.

9

Lexicographic product

Definition

Let ≤1,≤2 be partial orders. Their lexicographic product is defined by

(x1, x2) ≤1 ×lex ≤2 (y1, y2)

if x1 <1 y1 or (x1 = y1 and x2 ≤2 y2).

Lemma

Lexicographic product preserves well-foundedness: ≤1 ×lex ≤2 well-founded if ≤1,≤2.

Example

Computing ack m n always yields a (unique) value, because recursive calls have
arguments that are strictly smaller w.r.t. ≤×lex ≤. That is, we may speak of the
Ackermann function.

9

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

if n1,. . . ,nk ∈ N, then s(n1, . . . ,nk) ∈ N

with s structures depending on n1, . . . ,nk. if it is the least set satisfying the clauses.

The sub-structure relation relates each ni ∈ S to s(n1, . . . ,nk).

Lemma

If s(n1, . . . ,nk) ∈ S, then n1, . . . ,nk ∈ S, assuming the former uniquely depends on the
latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes
in S, and only constructed from clauses (with leaves constructed by the base-clauses
(k = 0)). R relates children to parents in the tree.

10

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

if n1,. . . ,nk ∈ N, then s(n1, . . . ,nk) ∈ N

with s structures depending on n1, . . . ,nk. if it is the least set satisfying the clauses.
The sub-structure relation relates each ni ∈ S to s(n1, . . . ,nk).

Lemma

If s(n1, . . . ,nk) ∈ S, then n1, . . . ,nk ∈ S, assuming the former uniquely depends on the
latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes
in S, and only constructed from clauses (with leaves constructed by the base-clauses
(k = 0)). R relates children to parents in the tree.

10



Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

if n1,. . . ,nk ∈ N, then s(n1, . . . ,nk) ∈ N

with s structures depending on n1, . . . ,nk. if it is the least set satisfying the clauses.
The sub-structure relation relates each ni ∈ S to s(n1, . . . ,nk).

Lemma

If s(n1, . . . ,nk) ∈ S, then n1, . . . ,nk ∈ S, assuming the former uniquely depends on the
latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes
in S, and only constructed from clauses (with leaves constructed by the base-clauses
(k = 0)). R relates children to parents in the tree.

10

Inductively defined structures

Inductive definitions

A set S of structures is inductively defined by clauses of shape

if n1,. . . ,nk ∈ N, then s(n1, . . . ,nk) ∈ N

with s structures depending on n1, . . . ,nk. if it is the least set satisfying the clauses.
The sub-structure relation relates each ni ∈ S to s(n1, . . . ,nk).

Lemma

If s(n1, . . . ,nk) ∈ S, then n1, . . . ,nk ∈ S, assuming the former uniquely depends on the
latter, and then the sub-structure relation is well-founded.

Proof.

By S being least, every element in S has a unique and finite derivation tree with nodes
in S, and only constructed from clauses (with leaves constructed by the base-clauses
(k = 0)). R relates children to parents in the tree. 10

Inductively defined structures

Example

The natural numbers N can be inductively defined by:

• 0 ∈ N

• if n ∈ N, then n + 1 ∈ N.

Sub-structure relation: successor.

Example

The palindromes P over {0,1} can be inductively defined by:

• ε,0,1 ∈ N

• if n ∈ N, then 0n0 ∈ N, 1N1 ∈ N.

Sub-structure relation: ‘middle’-sub-palindromes

11

Inductively defined structures

Example

The natural numbers N can be inductively defined by:

• 0 ∈ N

• if n ∈ N, then n + 1 ∈ N.

Sub-structure relation: successor.

Example

The palindromes P over {0,1} can be inductively defined by:

• ε,0,1 ∈ N

• if n ∈ N, then 0n0 ∈ N, 1N1 ∈ N.

Sub-structure relation: ‘middle’-sub-palindromes

11



Definition (inductive with explicit base cases )

A set M can be defined inductively by:

• Induction basis: We introduce one or more elements of M.

• Induction step: We specify how, on the basis of already constructed elements of
M, new elements of M can be constructed

The set M then comprises exactly those elements that can be obtained by the
repeated application of the induction step on elements constructed by the induction
basis (finitely many only; corresponding to least)

Example

The formulas of propositional logic may be inductively defined by:

1 An atomic formula p is a formula

2 A truth symbol (True, False) is a formula

3 If A and B are formulas, then so are ¬A, (A ∧ B), (A ∨ B) and (A→ B)

12

Definition (inductive with explicit base cases )

A set M can be defined inductively by:

• Induction basis: We introduce one or more elements of M.

• Induction step: We specify how, on the basis of already constructed elements of
M, new elements of M can be constructed

The set M then comprises exactly those elements that can be obtained by the
repeated application of the induction step on elements constructed by the induction
basis (finitely many only; corresponding to least)

Example

The formulas of propositional logic may be inductively defined by:

1 An atomic formula p is a formula

2 A truth symbol (True, False) is a formula

3 If A and B are formulas, then so are ¬A, (A ∧ B), (A ∨ B) and (A→ B)

12

Theorem (Structural induction with explicit base cases)

1 We want to show A(x) holds for all structures x ∈ M, where M is defined by
induction.

2 We proceed as follows:
• Induction basis: We show that A(x) holds for the base structure(s) x
• Induction step: We choose a structure y that is recursively constructed from the

structures y1, y2, . . . , yk. The IH for the latter states that A(y1), A(y2), . . . , A(yk) hold.
Using those, we show A(y)

Proof.

By ordering x ∈ M by, say, the minimal number of construction steps needed to show
that x ∈ M (size of the construction tree).

13

Theorem (Structural induction with explicit base cases)

1 We want to show A(x) holds for all structures x ∈ M, where M is defined by
induction.

2 We proceed as follows:
• Induction basis: We show that A(x) holds for the base structure(s) x
• Induction step: We choose a structure y that is recursively constructed from the

structures y1, y2, . . . , yk. The IH for the latter states that A(y1), A(y2), . . . , A(yk) hold.
Using those, we show A(y)

Proof.

By ordering x ∈ M by, say, the minimal number of construction steps needed to show
that x ∈ M (size of the construction tree).

13



Theorem (Structural induction with explicit base cases)

1 We want to show A(x) holds for all structures x ∈ M, where M is defined by
induction.

2 We proceed as follows:
• Induction basis: We show that A(x) holds for the base structure(s) x
• Induction step: We choose a structure y that is recursively constructed from the

structures y1, y2, . . . , yk. The IH for the latter states that A(y1), A(y2), . . . , A(yk) hold.
Using those, we show A(y)

Proof.

By ordering x ∈ M by, say, the minimal number of construction steps needed to show
that x ∈ M (size of the construction tree).

13

Theorem (Structural induction with explicit base cases)

1 We want to show A(x) holds for all structures x ∈ M, where M is defined by
induction.

2 We proceed as follows:
• Induction basis: We show that A(x) holds for the base structure(s) x
• Induction step: We choose a structure y that is recursively constructed from the

structures y1, y2, . . . , yk. The IH for the latter states that A(y1), A(y2), . . . , A(yk) hold.
Using those, we show A(y)

Proof.

By ordering x ∈ M by, say, the minimal number of construction steps needed to show
that x ∈ M (size of the construction tree).

13

Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .
Minimal counterexample: let n be minimal and not a product of primes.
Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.

14

Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .
Minimal counterexample: let n be minimal and not a product of primes.
Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.

14



Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .

Minimal counterexample: let n be minimal and not a product of primes.
Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.

14

Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .
Minimal counterexample: let n be minimal and not a product of primes.

Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.

14

Proof by minimal counterexample

Theorem

Let ≤ be a partial order on the set M. Then ≤ is well-founded iff every non-empty
subset of M has a minimal element.

Proof by minimal counterexample

Assumption: P a property on set N. R a well-founded relation on N
Minimal counterexample: show if n minimal such that not P(n), then contradiction
Conclude: for all n ∈ N, P(n)

Example

Assumption: P(n) = n can be written as a product of primes if n > 2. < on N .
Minimal counterexample: let n be minimal and not a product of primes.
Then n = m · k with m, k < n. By minimality m and k are products of primes, but then
so is n. Contradiction.

14

Questions and methodology for structures

• When are two structures the same?

• When is one structure a sub-structure of another?

• How can we represent structures?

• What operations can we do on the structures?

For relations, functions, partial orders, well-founded relations.

15



Questions and methodology for structures

• When are two structures the same?

• When is one structure a sub-structure of another?

• How can we represent structures?

• What operations can we do on the structures?

For relations, functions, partial orders, well-founded relations.

15

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it
holds for the result.

Lemma

The componentwise extension preserves well-foundedness, i.e. if ≤ is a well-founded
partial order, then so is ≤comp.

Proof.

For a proof by contradiction, suppose x1 >comp x2 >comp x3 >comp . . . were an infinite
descending ≤comp-chain, where xi = (xi1, . . . , xik), for some minimal k. Then for their
first elements x11 ≥ x21 ≥ x31 ≥ . . .. Either this contains an infinite descending
≤-chain, or there exists an N such that for all n ≥ N, xN1 = xn1 and then
(xN2, . . . , xNk) >comp (xN+1 2, . . . , xN+1 k) >comp (xN+2 2, . . . , xN+2 k) >comp . . . would be an
infinite descending chain for a smaller k. Contradiction.

16

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it
holds for the result.

Example

Positiveness is preserved by addition and multiplication. Negativeness is preserved by
addition but not by multiplication.

Lemma

The componentwise extension preserves well-foundedness, i.e. if ≤ is a well-founded
partial order, then so is ≤comp.

Proof.

For a proof by contradiction, suppose x1 >comp x2 >comp x3 >comp . . . were an infinite
descending ≤comp-chain, where xi = (xi1, . . . , xik), for some minimal k. Then for their
first elements x11 ≥ x21 ≥ x31 ≥ . . .. Either this contains an infinite descending
≤-chain, or there exists an N such that for all n ≥ N, xN1 = xn1 and then
(xN2, . . . , xNk) >comp (xN+1 2, . . . , xN+1 k) >comp (xN+2 2, . . . , xN+2 k) >comp . . . would be an
infinite descending chain for a smaller k. Contradiction.

16

Preservation

Definition

A property P is preserved by some operation, If P holds for the arguments, then it
holds for the result.

Lemma

The componentwise extension preserves well-foundedness, i.e. if ≤ is a well-founded
partial order, then so is ≤comp.

Proof.

For a proof by contradiction, suppose x1 >comp x2 >comp x3 >comp . . . were an infinite
descending ≤comp-chain, where xi = (xi1, . . . , xik), for some minimal k. Then for their
first elements x11 ≥ x21 ≥ x31 ≥ . . .. Either this contains an infinite descending
≤-chain, or there exists an N such that for all n ≥ N, xN1 = xn1 and then
(xN2, . . . , xNk) >comp (xN+1 2, . . . , xN+1 k) >comp (xN+2 2, . . . , xN+2 k) >comp . . . would be an
infinite descending chain for a smaller k. Contradiction. 16



Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17



Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on relations

Operations on relations

Let R,S be relations on A.

• identity a I b if a = b;

• converse a R−1 b if b R a;
many names, notations: opposite, dual, inverse . . .

• intersection a (R ∩ S) b if a R b and a S b;

• union a (R ∪ S) b if a R b or a S b;

• composition a (R ; S) b if ∃c ∈ A, a R c and c S b;

• product (a, a′) R× S (b,b′) if a R b and a′ S b′;
relation on A× A

17

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18



Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function?

X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function?

× (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function?

× (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function?

× (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18



Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function?

× (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function?

× (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function?

× (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function?

X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18



Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function?

X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function?

X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function?

X

18

Operations on functions?

Operation on functions?

Let f ,g be functions on A.

• identity I a function? X
Haskell notation id

• converse f−1 a function? × (X iff f a bijection: f ; f−1 = I and f−1 ; f = I);

• intersection f ∩ g a function? × (X iff f = g);

• union f ∪ g a function? × (X iff f = g);

• composition f ; g a function? X
Mathematical notation g ◦ f ; g after f . Haskell notation f . g

• product f × g a function? X

18



Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order?

X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order?

X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order?

X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19



Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order?

X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order?

X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order?

× (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order?

× (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19



Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order?

× (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order?

× (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order?

X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order?

X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19



Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order?

X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order?

X (done before)

19

Operations on partial orders?

Operations on partial orders?

Let ≤,v be partial orders on A.

• identity I a partial order? X

• converse ≥= ≤−1 a partial order? X

• intersection ≤ ∩v a partial order? X

• union ≤ ∪v a partial order? × (anti-symmetry, transitivity may fail)

• composition ≤ ;v a partial order? × (anti-symmetry, transitivity may fail)

• product ≤×v a partial order? X
if ≤ = v, then special case of componentwise extension ≤comp

• lexicographic order ≤lex a partial order? X (done before)

19

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20



Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded?

× (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded?

×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded?

×

• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×

• intersection R ∩ S well-founded?

X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20



Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded?

X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded?

×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded?

×

• composition R ; S well-founded? ×
• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×

• composition R ; S well-founded?

×
• product R× S well-founded? X

20



Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded?

×

• product R× S well-founded? X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×

• product R× S well-founded?

X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded?

X

20

Operations on well-founded relations?

Operations on well-founded relations?

Let R,S be well-founded relations on A.

• identity I well-founded? × (strict part is)

• converse R−1 well-founded? ×
• intersection R ∩ S well-founded? X

• union R ∪ S well-founded? ×
• composition R ; S well-founded? ×
• product R× S well-founded? X

20



Well-(founded )orders

Definition

A relation R is

• a well-founded order if it is well-founded and transitive

• a well-order if moreover for all a, b, a R b or a = b or b R a holds

This extends to partial orders ≤ via their strict part <.

Theorem

A relation is a well-founded order iff it is a well-founded strict order.

Proof.

It suffices to show that a well-founded transitive relation R is irreflexive. This holds,
since if a R a were to hold, then . . . R a R a R a would be an infinite descending chain,
contradicting well-foundedness.

21

Well-(founded )orders

Definition

A relation R is

• a well-founded order if it is well-founded and transitive

• a well-order if moreover for all a, b, a R b or a = b or b R a holds

This extends to partial orders ≤ via their strict part <.

Theorem

A relation is a well-founded order iff it is a well-founded strict order.

Proof.

It suffices to show that a well-founded transitive relation R is irreflexive. This holds,
since if a R a were to hold, then . . . R a R a R a would be an infinite descending chain,
contradicting well-foundedness.

21

Examples of well-(founded )orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not
well-founded), and neither is {(n,n + 1) | n ∈ N } (not transitive).

Example

Divisibility is a well-founded order on the natural numbers: it’s a partial order with its
strict part well-founded. It is not a well-order.

Example

The prefix order is a well-founded order on the strings over Σ, but not a well-order in
case Σ as more than 1 symbol (neither of ab, ba is a prefix of the other).

22

Examples of well-(founded )orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not
well-founded), and neither is {(n,n + 1) | n ∈ N } (not transitive).

Example

Divisibility is a well-founded order on the natural numbers: it’s a partial order with its
strict part well-founded. It is not a well-order.

Example

The prefix order is a well-founded order on the strings over Σ, but not a well-order in
case Σ as more than 1 symbol (neither of ab, ba is a prefix of the other).

22



Examples of well-(founded )orders

Example

Less-than is a well-order on the natural numbers, but greater-than is not (not
well-founded), and neither is {(n,n + 1) | n ∈ N } (not transitive).

Example

Divisibility is a well-founded order on the natural numbers: it’s a partial order with its
strict part well-founded. It is not a well-order.

Example

The prefix order is a well-founded order on the strings over Σ, but not a well-order in
case Σ as more than 1 symbol (neither of ab, ba is a prefix of the other).

22

Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders < on A and < on B are isomorphic if there is a bijection f from A to B with

1 if a < a′ then f(a) < f(a′);

2 if b < b′ then f−1(b) < f−1(b′);

Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over {a}.

Example

Each finite well-order isomorphic to < on {m | m < n} for some n ∈ N.

23

Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders < on A and < on B are isomorphic if there is a bijection f from A to B with

1 if a < a′ then f(a) < f(a′);

2 if b < b′ then f−1(b) < f−1(b′);

Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over {a}.

Example

Each finite well-order isomorphic to < on {m | m < n} for some n ∈ N.

23

Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders < on A and < on B are isomorphic if there is a bijection f from A to B with

1 if a < a′ then f(a) < f(a′);

2 if b < b′ then f−1(b) < f−1(b′);

Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over {a}.

Example

Each finite well-order isomorphic to < on {m | m < n} for some n ∈ N.

23



Ordinals

Motivation/intuition

Capture ordinals as in counting; e.g. the 1st, the 2nd, the 100th.

Definition

Well-orders < on A and < on B are isomorphic if there is a bijection f from A to B with

1 if a < a′ then f(a) < f(a′);

2 if b < b′ then f−1(b) < f−1(b′);

Ordinals represent isomorphic well-orders.

Example

< on natural numbers isomorphic to <lex on words over {a}.

Example

Each finite well-order isomorphic to < on {m | m < n} for some n ∈ N. 23

Infinite ordinals

Example

Extending the ordinal ω of the natural numbers either with an element ⊥ smaller than
all natural numbers to 1 + ω, or with an element > greater than all natural numbers to
ω + 1, can be depicted (omitting many transitive arrows) as:

omega+1

0 1 2 3 4

0 1 2 3 4

1 2 3 40

1+omega

omega

we see that ω and 1 + ω are isomorphic, but non-isomorphic to ω + 1. 24

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous or
equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

Adjoining ∗ to the natural numbers is equinumerous to the natural numbers; ω, 1 + ω,
and ω + 1 are equinumerous as sets of nodes (forgetting about the edges/order).

25

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous or
equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

Adjoining ∗ to the natural numbers is equinumerous to the natural numbers; ω, 1 + ω,
and ω + 1 are equinumerous as sets of nodes (forgetting about the edges/order).

25


	Structural induction

