
Summary last week

• lexicographic product of partial orders

• inductively defined structures as least set satisfying clauses

• structural induction as induction principle w.r.t. sub-structure relation

• proof by counterexample minimal w.r.t. some well-founded order

• relation operations: identity, converse, intersection, union, composition, product

• preservation of property P by n-ary operation f : P(f(x1, . . . , xn)), if P(x1), . . . , P(xn)

• being a function preserved: identity, composition, product

• being a partial order preserved: identity, converse, intersection, (lex) product

• being well-founded preserved: intersection, (lex) product, comp. extension

• well-founded /well-orders as well-founded partial/total orders

• counting by cardinals, sets w.r.t. bijection; equinumerous

• counting by ordinals, well-orders w.r.t. isomorphism; order-preserving bijection
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2



Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Dags and trees motivation

Example (Dags)

• resource dependencies (build, citation)

• statement dependencies (out-of-order execution)

• sub-expression sharing (call-by-need)

• binary decision diagrams

• . . .

Example (Trees)

• data structures (searching, sorting, XML)

• parse tree (of text)/abstract syntax tree (of program)

• spanning tree (of graph)

• computation tree (of non-deterministic machines)

• . . .
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Dags and trees

Definition (Cycle)

Let (V,E, src, tgt) be a directed multigraph

• a path is closed if its source is its target

• a non-empty closed path without repeated edges is a cycle

• directed multigraphs without cycles are cycle-free

Definition (Dags, forests and (rooted) trees)

• a dag is a directed acyclic graph

• a forest is a dag with nodes of in-degree ≤ 1

• in a forest, nodes with out-degree 0 are called leaves

• a tree is a forest where all v1, v2 have a common ancestor v having paths to both

• a rooted tree is a tree with a node, the root, having a path to all nodes
5



Dags and trees example

graph

6

Dags and trees example

graph but not a dag (cycle)
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Dags and trees example

dag

6

Dags and trees example

dag but not a forest (indegree 2)
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Dags and trees example

forest

6

Dags and trees example

forest but not a tree (no common ancestor)
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Dags and trees example

tree

6

Dags and trees example

tree but not a rooted tree (no root)
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Dags and trees example

rooted tree (root)

6

Dags and trees example

rooted tree
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Simplicity in cycles

Lemma

simple paths do not have repeated edges.

Proof.

Let p be a simple path. if some edge e were to occur twice in it, the source node v of
both occurrences of e would occur twice as well.

Corollary

every simple closed path in a multigraph is a cycle

Remark

Since paths may be shortened to simple paths, cycles represent closed paths.
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Topological sorting example

e

a

b c d

topological sorting: ()

others: (a, c,b,d, e), (a,b, c,d, e), (a,b,d, c, e), (a,d,b, c, e), (a,d, c,b, e)

8

Topological sorting example

e

b c d

topological sorting: (a)

others: (a, c,b,d, e), (a,b, c,d, e), (a,b,d, c, e), (a,d,b, c, e), (a,d, c,b, e)

8

Topological sorting example

e

b d
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Topological sorting example

b

e

topological sorting: (a, c,d)

others: (a, c,b,d, e), (a,b, c,d, e), (a,b,d, c, e), (a,d,b, c, e), (a,d, c,b, e)
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Topological sorting

Definition

a list (a0, . . . , an−1) is topologically ≤-sorted for partial order ≤, if ai < aj implies i < j

Remark

if ≤ is a total order, then topologically ≤-sorted iff globally ≤-sorted

Lemma

a finite set A can be topologically ≤-sorted by repeatedly removing minimal elements

Lemma

if G is a dag, then ≤G defined by v ≤G v′ if there is a path from v to v′, is a partial order.

Corollary

every finite dag G can be topologically ≤G-sorted.
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Shortest paths in dags

Lemma

in a finite dag, shortest and longest paths can be computed in O(n)

Proof.

shortest path adapting topological sorting: let G be weighted graph with nodes v, v′.

1 initialise v with distance 0

2 while G is non-empty
a) set w to a minimal node having some distance (no edges from other such to w), say d
b) if w = v′ return d
c) for each edge e : w→k w′ set the distance d′ of w′ to min(d′,d + k).
d) remove w and all edges from it, from G

3 return∞
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Facts on trees

Lemma

every finite tree is a rooted tree.

Proof.

let G be a finite tree having, say, n nodes {v1, . . . , vn}. Setting v′1 = v1 and v′i+1 to be a
common ancestor of v′i and vi+1, we obtain that v′n is a common ancestor of all nodes.
Therefore, v′n is the root.
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Lemma (Characterising forests and rooted trees)

1 in a forest there is at most one path from a node v to a node v′

2 a multigraph is a rooted tree iff there is a node v with a unique path to each node

Proof.

1 For a proof by contradiction, suppose there were two paths from v to v′. If v = v′,
then one of them would be a cycle, contradicting acyclicity. If v 6= v′ let e 6= f be
the last edges where the paths differ, starting comparing from v′. By being the
last such, e and f must have the same target, contradicting in-degree ≤ 1.

2 (only–if) By the definition of rooted tree and the previous item.
(if) Uniqueness of paths entails the multigraph can have neither parallel edges

nor cycles, so is a dag. If there were edges e 6= f with the same target v′,
then there would be distinct paths from v to v′ via the respective sources of e
and f , which cannot be, so in-degree ≤ 1 and we have a forest. Taking v as
root shows the forest is a rooted tree.
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The number of edges and vertices in a tree

Lemma

The number of vertices in a finite tree is the number of edges +1

Proof.

Since the tree is finite, it has some root v. Consider the relation R relating every
vertex v′ to the last edge on a path from v to v′.

• R is a function from V − {v} to E, since for each node v′ 6= v there is a unique
non-empty path from the root v to v′.

• R−1 relates edges to their targets. It is a function from E to V − {v}, since any
edge, say from v′ to v′′ is the last edge of the unique path from v to v′ to v′′, and
its target v′′ is distinct from the root (otherwise there would be a cycle).

We obtain R is bijection, hence V − {v} and E are equinumerous.
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Definition (undirected multigraph)

An undirected multigraph is given by

• a set of nodes or vertices V

• a set of edges E

• a map r : E→ {{c,d} | c,d ∈ V} with e 7→ r(e), that maps every edge e to a set
r(e) having one or two elements, its endpoints.

• e is an edge between, joining or incident on its endpoints

Example

Let V = {0,1,2,3}, E = {0,1,2, . . . ,7} and the function r be defined by

e r(e) e r(e)

0 {0} 4 {1,3}
1 {0,1} 5 {2}
2 {1,2} 6 {2,3}
3 {1,3} 7 {0,3}

14
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Example (Continued)

0

0 1
1
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3
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3
6
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5
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From directed to undirected multigraphs, and back

Definition

To a directed multigraph an undirected multigraph can be associated by forgetting the
directions of edges, defining the set of end-points of an edge e to comprise its source
and target: r(e) = {src(e), tgt(e)}.

Definition

To an undirected multigraph a directed multigraph can be associated by duplicating
each edge e into el and er directed to the left resp. right, i.e. if r(e) = {c,d} then el is
from d to c, and er from c to d.

Remark

Not inverse to each other, but often preserve properties. For instance, there being a
path between two nodes.
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Definition

• vertex c is a neighbour of the vertex d, if there exists an edge joining both

• an edge having only one endpoint is a loop

• two edges having the same endpoints are parallel

• the degree of a vertex v is the number of edges having v as endpoint

• a multigraph is vertex- resp. edge-labelled, if there is a function from V resp. E to
a set of labels.

• if the labels are numbers, we speak of weights and weighted multigraphs

Definition (undirected graph)

An undirected graph is an undirected multigraph without parallel edges: then there is
for every set of nodes {c,d} at most one edge joining c and d.
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Definition

• Let G = (V,E, r) be an undirected multigraph

• G′ = (V′,E′, r′) is sub-multigraph of G, if V′ ⊆ V, E′ ⊆ E and r′(e) = r(e) for e ∈ E′

• A sub-graph is a sub-multigraph that itself is a graph

Definition

Let (V,E, r) be an undirected multigraph, and let c,d be vertices

• A tuple (e0, e1, . . . , e`−1) ∈ E` is a path from c to d of length `, if there are vertices
v0, v1, . . . , v` with v0 = c, v` = d, and r(ei) = {vi, vi+1} for i = 0,1, . . . , `− 1

• v0 is the initial or starting node; v` it its end-node

• v1, v2, . . . , v`−1 are the intermediate nodes

• For every node v ∈ V, the empty tuple () ∈ E0 is the empty path with starting
node v and end-node v

18
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Definition (Continued)

• A sub-multigraph is connected, if there are paths between all its nodes

• A connected component is a maximal connected sub-multigraph

• Path is simple if non-empty and no repeated nodes (exception v0 = v`), edges.

• For every path (e0, e1, . . . , e`−2, e`−1) from c to d there is the inverse path
(e`−1, e`−2, . . . , e1, e0) from d to c

• The concatenation or composition of the paths (e0, e1, . . . , e`−1) from c to d and
(f0, f1, . . . , fm−1) from d to e is the path

(e0, e1, . . . , e`−1, f0, f1, . . . , fm−1)

from c to e

• A path is closed, if its starting and end-nodes are the same
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Undirected forests and trees

Definition

• A forest is a cycle-free undirected multigraph

• A tree is a connected forest

• leaves are nodes with degree ≤ 1 in a forest

Example

• In the multigraph in the first example there are the following paths from node 0 to
node 3

(1,2,6), (1,2,5,6), (1,3), (1,4), (1,3,7,1,3), (1,4,7,1,3), (7)

• The multigraph is connected

• There are simple cycles with starting-node 0

(0), (1,2,6,7, (1,3,7), (1,4,7), (7,3,1), (7,4,1), (7,6,2,1)
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Example

The following graph is a connected forest, and therefore a tree; its leaves are 1,2,4,9

1
3

5

7

6

8 9

4

2

0
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Characterising undirected trees

Lemma

For an undirected multigraph G, the following are equivalent.

0) G is connected but removing any edge makes the graph disconnected

1) in G there is a unique simple path between any two nodes

2) G is connected and acyclic but adding any edge makes the graph contain a cycle

Proof.

0)⇒1) Suppose there were two paths between two nodes. W.l.o.g. we may assume
these are of minimal (total) length. Then they do not have edges in common, so
removing any edge on them the graph would remain connected. Contradiction
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Characterising undirected trees

Lemma

For an undirected multigraph G, the following are equivalent.

0) G is connected but removing any edge makes the graph disconnected

1) in G there is a unique simple path between any two nodes

2) G is connected and acyclic but adding any edge makes the graph contain a cycle

Proof.

1)⇒2) By assumption, there is a unique path p between v and v′. Adding a fresh edge
e between them, makes the concatenation of p and e into a cycle.
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Characterising undirected trees

Lemma

For an undirected multigraph G, the following are equivalent.

0) G is connected but removing any edge makes the graph disconnected

1) in G there is a unique simple path between any two nodes

2) G is connected and acyclic but adding any edge makes the graph contain a cycle

Proof.

2)⇒0) If removing an edge e between v and v′ from G would not affect being
connected, there would be a path between v and v′ in which e does not occur. But
then the concatenation of e and p would be a cycle in G already. Contradiction.
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Definition

• Let G be an undirected multigraph
• A sub-graph G′ of G is a spanning forest of G, if

1 G is a forest, and
2 the partitionings of G resp. G′ into connected components are the same.

• Then V′ = V

Example

The following graph has 8 · 3 = 24 spanning forests

a b c

g

d

fe
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Theorem (Kruskal’s algorithm)

1 Let G = (V,E, r) be an undirected multigraph with weights b

2 We want to construct a partitioning of V into connected components, and a set of
edges F that constitutes a spanning forest of G having minimal weight

∑
e∈F b(e)

3 We preprocess G by removing all loops and all parallel edges except for a single
one of least weight

4 The algorithm then proceeds as follows, with complexity O(#(V) ·#(E))

Set F = ∅ and P = {{v} | v ∈ V}
For i from 0 to m− 1 repeat:

if the nodes v and u of ei are in distinct blocks of P,

combine both blocks of P and adjoin ei to F
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Example

For the weighted graph

1

2

2

3

1

2

31

a b c

g

d

fe

Kruskal’s algorithm starts with F = ∅; P = {{a}, {b}, {c}, {d}, {e}, {f}, {g}} and
terminates with

F = {{a,b}, {b, e}, {c,d}, {d,g}, {e, f}}
P = {{a,b, e, f}, {c,d,g}}
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Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}

• The algorithm starts with partitioning into singletons of nodes and then proceeds
by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight
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Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27



Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

27


