Summary last week

- dags as directed acyclic graphs
- topological \leq-sorting $\left(a_{0}, \ldots, a_{n}\right)$ of partial order \leq on $\left\{a_{0}, \ldots, a_{n}\right\}: i<j$ if $a_{i}<a_{j}$.
- topological sorting algorithm by repeated selection of \leq-minimal element
- O(n) shortest/longest path algorithm on dags based on topological sorting

Summary last week

- dags as directed acyclic graphs
- topological \leq-sorting $\left(a_{0}, \ldots, a_{n}\right)$ of partial order \leq on $\left\{a_{0}, \ldots, a_{n}\right\}: i<j$ if $a_{i}<a_{j}$.
- topological sorting algorithm by repeated selection of \leq-minimal element
- O(n) shortest/longest path algorithm on dags based on topological sorting
- forests as dags with nodes of in-degree ≤ 1
- trees as forests where pairs of nodes have common ancestors
- rooted trees as trees having a root (ancestor of all nodes)
- for trees, number of vertices $=$ number of edges +1

Summary last week

- dags as directed acyclic graphs
- topological \leq-sorting $\left(a_{0}, \ldots, a_{n}\right)$ of partial order \leq on $\left\{a_{0}, \ldots, a_{n}\right\}: i<j$ if $a_{i}<a_{j}$.
- topological sorting algorithm by repeated selection of \leq-minimal element
- O(n) shortest/longest path algorithm on dags based on topological sorting
- forests as dags with nodes of in-degree ≤ 1
- trees as forests where pairs of nodes have common ancestors
- rooted trees as trees having a root (ancestor of all nodes)
- for trees, number of vertices $=$ number of edges +1
- undirected graphs; edges have set of endpoints $\{u, v\}$ (instead of source,target)
- undirected versions of directed notions: path, cycles, forest, tree, ...
- spanning tree of graph as tree having same connected components
- Kruskal's spanning tree algorithm by adjoining edges of least weight (greedy)

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

Reminder: cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100. (only number no order)

Reminder: cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100. (only number no order)

Definition

If there exists a bijection $f: M \rightarrow N$, then the sets M and N are equinumerous or equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set $\{m \mid m<n\}$ for some $n \in \mathbb{N}$.

Example

$\mathbb{N} \cup\{*\}$ is equinumerous to \mathbb{N}; witnessed by bijection f mapping $*$ to 0 , and n to $n+1$.

Definition

- Set A is finite if there exist $n \in \mathbb{N}$ and bijective function $e:\{0,1, \ldots, n-1\} \rightarrow A$
- then n is unique, denoted by $\#(A):=n$, and called the number or cardinality of A
- the function e is in general not unique, and is called an enumeration of A
- a bijection $\nu: A \rightarrow\{0,1, \ldots, m-1\}$ is called a numbering of A
- an inverse of an enumeration is a numbering and vice versa
- A is infinite if it is not finite, and then we write $\#(A)=\infty$

Cardinalities for operations on finite sets

Lemma

Let $e:\{0, \ldots, m-1\} \rightarrow A$ and $f:\{0, \ldots, n-1\} \rightarrow B$ be enumerations of A, B.
$1 \#(\emptyset)=0$

Cardinalities for operations on finite sets

Lemma

Let $\mathrm{e}:\{0, \ldots, m-1\} \rightarrow A$ and $f:\{0, \ldots, n-1\} \rightarrow B$ be enumerations of A, B.
$1 \#(\emptyset)=0$
$2 \#(\{a\})=1$

Cardinalities for operations on finite sets

Lemma

Let $\mathrm{e}:\{0, \ldots, m-1\} \rightarrow A$ and $f:\{0, \ldots, n-1\} \rightarrow B$ be enumerations of A, B.
$1 \#(\emptyset)=0$
$2 \#(\{a\})=1$
$3 \#(A \times B)=\#(A) \cdot \#(B)=m \cdot n$

Cardinalities for operations on finite sets

Lemma

Let $\mathrm{e}:\{0, \ldots, m-1\} \rightarrow A$ and $f:\{0, \ldots, n-1\} \rightarrow B$ be enumerations of A, B.
$1 \#(\emptyset)=0$
$2 \#(\{a\})=1$
$3 \#(A \times B)=\#(A) \cdot \#(B)=m \cdot n$
$4 \#(A \cup B)=\#(A)+\#(B)=m+n$, if $A \cap B=\emptyset$

Cardinalities for operations on finite sets

Lemma

Let $\mathrm{e}:\{0, \ldots, m-1\} \rightarrow A$ and $f:\{0, \ldots, n-1\} \rightarrow B$ be enumerations of A, B.
$1 \#(\emptyset)=0$
$2 \#(\{a\})=1$
$3 \#(A \times B)=\#(A) \cdot \#(B)=m \cdot n$
$4 \#(A \cup B)=\#(A)+\#(B)=m+n$, if $A \cap B=\emptyset$
$5 \#\left(A^{B}\right)=\#(A)^{\#(B)}=m^{n}$, for A^{B} the set of functions from B to A

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.
2 mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.
2 mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
3 mapping k to $(e(k \div n), f(k \bmod n))$ is a bijection from $\{0, \ldots, m \cdot n-1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n+f^{-1}(b)$.

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.
2 mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
3 mapping k to $(e(k \div n), f(k \bmod n))$ is a bijection from $\{0, \ldots, m \cdot n-1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n+f^{-1}(b)$.
4 mapping k to $e(k)$ if $k<m$ and to $f(k-m)$ otherwise, is a bijection from $\{0, \ldots, m+n-1\}$ to $A \cup B$, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c)+m$ if $c \in B$.

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.
2 mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
3 mapping k to $(e(k \div n), f(k \bmod n))$ is a bijection from $\{0, \ldots, m \cdot n-1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n+f^{-1}(b)$.
4 mapping k to $e(k)$ if $k<m$ and to $f(k-m)$ otherwise, is a bijection from $\{0, \ldots, m+n-1\}$ to $A \cup B$, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c)+m$ if $c \in B$.
5 writing $k \in\left\{0, \ldots, m^{n}-1\right\}$ as $k_{n-1} \ldots k_{0}$ in base- m, mapping it to the function $g: B \rightarrow A$ that maps for $0 \leq i<n, f(i)$ to $e\left(k_{i}\right)$ is a bijection to A^{B}, with inverse numbering of elements of A^{B} given by mapping a function $g: B \rightarrow A$ to the number $\sum_{b \in B} f^{-1}(g(b)) m^{e^{-1}(b)}$ in $\left\{0, \ldots, m^{n}-1\right\}$.

Cardinalities for operations on finite sets

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset.
2 mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
3 mapping k to $(e(k \div n), f(k \bmod n))$ is a bijection from $\{0, \ldots, m \cdot n-1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n+f^{-1}(b)$.
4 mapping k to $e(k)$ if $k<m$ and to $f(k-m)$ otherwise, is a bijection from $\{0, \ldots, m+n-1\}$ to $A \cup B$, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c)+m$ if $c \in B$.
5 writing $k \in\left\{0, \ldots, m^{n}-1\right\}$ as $k_{n-1} \ldots k_{0}$ in base- m, mapping it to the function $g: B \rightarrow A$ that maps for $0 \leq i<n, f(i)$ to $e\left(k_{i}\right)$ is a bijection to A^{B}, with inverse numbering of elements of A^{B} given by mapping a function $g: B \rightarrow A$ to the number $\sum_{b \in B} f^{-1}(g(b)) m^{e^{-1}(b)}$ in $\left\{0, \ldots, m^{n}-1\right\}$.
Writing $B=\left\{b_{0}, \ldots, b_{n-1}\right\}$, then $g: B \rightarrow A$ is uniquely determined by the tuple $\left(g\left(b_{i}\right)\right)_{i=0}^{n-1}$ in B^{m}.

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection $f: A \rightarrow B$, then $\#(A)=\#(B)$

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection $f: A \rightarrow B$, then $\#(A)=\#(B)$
2 For pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{k}\right)=\#\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right)=\#\left(A_{1}\right)+\#\left(A_{2}\right)+\ldots+\#\left(A_{k}\right)=\sum_{i=1}^{k} \#\left(A_{i}\right)
$$

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection $f: A \rightarrow B$, then $\#(A)=\#(B)$
2 For pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{k}\right)=\#\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right)=\#\left(A_{1}\right)+\#\left(A_{2}\right)+\ldots+\#\left(A_{k}\right)=\sum_{i=1}^{k} \#\left(A_{i}\right)
$$

3 For finite sets A and B,

$$
\#(A-B)=\#(A \backslash B)=\#(A)-\#(A \cap B)
$$

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection $e:\{0,1, \ldots, m-1\} \rightarrow A$.

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection $e:\{0,1, \ldots, m-1\} \rightarrow A$.
Then consider the function composition

$$
f \circ e:\{0,1, \ldots, m-1\} \rightarrow B, i \mapsto f(e(i)),
$$

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection $e:\{0,1, \ldots, m-1\} \rightarrow A$.
Then consider the function composition

$$
f \circ e:\{0,1, \ldots, m-1\} \rightarrow B, i \mapsto f(e(i)),
$$

$f \circ e$ is bijective, therefore $\#(B)=m$

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection $e:\{0,1, \ldots, m-1\} \rightarrow A$.
Then consider the function composition

$$
f \circ e:\{0,1, \ldots, m-1\} \rightarrow B, i \mapsto f(e(i)),
$$

$f \circ e$ is bijective, therefore $\#(B)=m$
(3) Because we have for arbitrary sets that

$$
A=(A \backslash B) \cup(A \cap B)
$$

with the union disjoint, it follows by (2) that

$$
\#(A \backslash B)=\#(A)-\#(A \cap B)
$$

(2) Given bijections

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

their composition $e:\left\{0,1, \ldots, m_{1}+\ldots+m_{k}-1\right\} \rightarrow M_{1} \cup \ldots \cup M_{k}$ is again a bijection

$$
i \mapsto \begin{cases}e_{1}(i) & i \in\left\{0,1, \cdots, m_{1}-1\right\} \\ e_{2}\left(i-m_{1}\right) & i \in\left\{m_{1}, \cdots, m_{1}+m_{2}-1\right\} \\ \vdots & \vdots \\ e_{k}\left(i-m_{1}-\ldots-m_{k-1}\right) & i \in\left\{m_{1}+\ldots+m_{k-1}, \cdots, m_{1}+\right. \\ \left.\ldots+m_{k}-1\right\}\end{cases}
$$

(2) Given bijections

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

their composition $e:\left\{0,1, \ldots, m_{1}+\ldots+m_{k}-1\right\} \rightarrow M_{1} \cup \ldots \cup M_{k}$ is again a bijection

$$
i \mapsto \begin{cases}e_{1}(i) & i \in\left\{0,1, \cdots, m_{1}-1\right\} \\ e_{2}\left(i-m_{1}\right) & i \in\left\{m_{1}, \cdots, m_{1}+m_{2}-1\right\} \\ \vdots & \vdots \\ e_{k}\left(i-m_{1}-\ldots-m_{k-1}\right) & i \in\left\{m_{1}+\ldots+m_{k-1}, \cdots, m_{1}+\right. \\ \left.\ldots+m_{k}-1\right\}\end{cases}
$$

Theorem

4 Inclusion/exclusion principle
For finite sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=
$$

In particular,
$\#(A \cup B)=\#(A)+\#(B)-\#(A \cap B)$

Theorem

4 Inclusion/exclusion principle For finite sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=\left(\sum_{I \subseteq\{1, \ldots, k\}, \#(I) \text { odd }} \#\left(\bigcap_{i \in I} A_{i}\right)\right)-\left(\sum_{I \subseteq\{1, \ldots, k\}, \#(I) \text { even }} \#\left(\bigcap_{i \in I} A_{i}\right)\right)
$$

In particular,
$\#(A \cup B)=\#(A)+\#(B)-\#(A \cap B)$

Theorem

4 Inclusion/exclusion principle
For finite sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=\sum_{\substack{I \subseteq\{1,2, \ldots, k\} \\ l \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i}\right)
$$

In particular,
$\#(A \cup B)=\#(A)+\#(B)-\#(A \cap B)$

Theorem

4 Inclusion/exclusion principle
For finite sets $A_{1}, A_{2}, \ldots, A_{k}$

$$
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=\sum_{\substack{I \subseteq\{1,2, \ldots, k\} \\ I \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i}\right)
$$

In particular,
$\#(A \cup B)=\#(A)+\#(B)-\#(A \cap B)$
5 Let $M_{1}, M_{2}, \ldots, M_{k}$ be finite sets. Then cardinality of their Cartesian product, is the product of their cardinalities:

$$
\begin{aligned}
& \text { alities: } \\
& \#\left(M_{1} \times M_{2} \times \ldots \times M_{k}\right)=\prod_{i=1}^{k} \#\left(M_{i}\right) \text {. }
\end{aligned}
$$

In particular, $\#\left(M^{k}\right)=\#(M)^{k}$

Proof.

(4) By induction on k. In case $k=2, A_{1} \cup A_{2}=A_{1} \cup\left(A_{2} \backslash A_{1}\right)$

$$
\#\left(A_{1} \cup A_{2}\right)=\#\left(A_{1}\right)+\#\left(A_{2} \backslash A_{1}\right)=\#\left(A_{1}\right)+\#\left(A_{2}\right)-\#\left(A_{1} \cap A_{2}\right)
$$

Proof.

(4) By induction on k. In case $k=2, A_{1} \cup A_{2}=A_{1} \cup\left(A_{2} \backslash A_{1}\right)$

$$
\#\left(A_{1} \cup A_{2}\right)=\#\left(A_{1}\right)+\#\left(A_{2} \backslash A_{1}\right)=\#\left(A_{1}\right)+\#\left(A_{2}\right)-\#\left(A_{1} \cap A_{2}\right)
$$

For $k>2$ we have by the IH

$$
\begin{gathered}
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=\#\left(\left(\bigcup_{i=1}^{k-1} A_{i}\right) \cup A_{k}\right)=\#\left(\bigcup_{i=1}^{k-1} A_{i}\right)+\#\left(A_{k}\right)-\#\left(\bigcup_{i=1}^{k-1}\left(A_{i} \cap A_{k}\right)\right)= \\
=\sum_{\substack{I \subseteq\{1, \ldots, k-1\} \\
l \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i}\right)+\#\left(A_{k}\right)- \\
-\sum_{\substack{I \subseteq\{1, \ldots, k-1\} \\
l \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i} \cap A_{k}\right)=\sum_{\substack{J \subseteq\{1, \ldots, k\} \\
J \neq \varnothing}}(-1)^{\#()-1} \#\left(\bigcap_{i \in J} A_{i}\right)
\end{gathered}
$$

Proof.

(4) By induction on k. In case $k=2, A_{1} \cup A_{2}=A_{1} \cup\left(A_{2} \backslash A_{1}\right)$

$$
\#\left(A_{1} \cup A_{2}\right)=\#\left(A_{1}\right)+\#\left(A_{2} \backslash A_{1}\right)=\#\left(A_{1}\right)+\#\left(A_{2}\right)-\#\left(A_{1} \cap A_{2}\right)
$$

For $k>2$ we have by the IH

$$
\begin{gathered}
\#\left(\bigcup_{i=1}^{k} A_{i}\right)=\#\left(\left(\bigcup_{i=1}^{k-1} A_{i}\right) \cup A_{k}\right)=\#\left(\bigcup_{i=1}^{k-1} A_{i}\right)+\#\left(A_{k}\right)-\#\left(\bigcup_{i=1}^{k-1}\left(A_{i} \cap A_{k}\right)\right)= \\
=\sum_{\substack{I \subseteq\{1, \ldots, k-1\} \\
l \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i}\right)+\#\left(A_{k}\right)- \\
-\sum_{\substack{\subseteq \subseteq 1, \ldots, k-1\} \\
l \neq \varnothing}}(-1)^{\#(I)-1} \#\left(\bigcap_{i \in I} A_{i} \cap A_{k}\right)=\sum_{\substack{J \subseteq\{1, \ldots, k\} \\
J \neq \varnothing}}(-1)^{\#(J)-1} \#\left(\bigcap_{i \in J} A_{i}\right)
\end{gathered}
$$

The final equation holds for the three cases (i) $J=I$, (ii) $J=\{k\}$, (iii) $J=I \cup\{k\}$

Proof.

(5) By assumption we have bijections e_{i}

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

Proof.

(5) By assumption we have bijections e_{i}

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

Therefore, $e:\left\{0,1, \ldots, m_{1} \cdots m_{k}-1\right\} \rightarrow M_{1} \times \ldots \times M_{k}$ with

$$
n \mapsto\left(e_{1}\left(n / m_{2} \cdots m_{k}\right), \ldots, e_{k-1}\left(\left(n / m_{k}\right) \bmod m_{k-1}\right), e_{k}\left(n \bmod m_{k}\right)\right)
$$

is a bijection again.

Proof.

(5) By assumption we have bijections e_{i}

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

Therefore, $e:\left\{0,1, \ldots, m_{1} \cdots m_{k}-1\right\} \rightarrow M_{1} \times \ldots \times M_{k}$ with

$$
n \mapsto\left(e_{1}\left(n / m_{2} \cdots m_{k}\right), \ldots, e_{k-1}\left(\left(n / m_{k}\right) \bmod m_{k-1}\right), e_{k}\left(n \bmod m_{k}\right)\right)
$$

is a bijection again. From the respective numbers

$$
\begin{aligned}
i_{k} & =n \bmod m_{k} \\
i_{k-1} & =\left(n / m_{k}\right) \bmod m_{k-1} \\
& \vdots \\
i_{2} & =\left(n /\left(m_{3} \cdots m_{k}\right)\right) \bmod m_{2} \\
i_{1} & =n /\left(m_{2} \cdots m_{k}\right)
\end{aligned}
$$

the number n is obtained by

$$
n:=i_{1} \cdot m_{2} \cdots m_{k}+i_{2} \cdot m_{3} \cdots m_{k}+\ldots+i_{k-1} \cdot m_{k}+i_{k}
$$

Proof.

(5) By assumption we have bijections e_{i}

$$
e_{1}:\left\{0,1, \ldots, m_{1}-1\right\} \rightarrow M_{1}, \ldots, e_{k}:\left\{0,1, \ldots, m_{k}-1\right\} \rightarrow M_{k}
$$

Therefore, $e:\left\{0,1, \ldots, m_{1} \cdots m_{k}-1\right\} \rightarrow M_{1} \times \ldots \times M_{k}$ with

$$
n \mapsto\left(e_{1}\left(n / m_{2} \cdots m_{k}\right), \ldots, e_{k-1}\left(\left(n / m_{k}\right) \bmod m_{k-1}\right), e_{k}\left(n \bmod m_{k}\right)\right)
$$

is a bijection again. From the respective numbers

$$
\begin{aligned}
i_{k} & =n \bmod m_{k} \\
i_{k-1} & =\left(n / m_{k}\right) \bmod m_{k-1} \\
& \vdots \\
i_{2} & =\left(n /\left(m_{3} \cdots m_{k}\right)\right) \bmod m_{2} \\
i_{1} & =n /\left(m_{2} \cdots m_{k}\right)
\end{aligned}
$$

the number n is obtained by

$$
n:=i_{1} \cdot m_{2} \cdots m_{k}+i_{2} \cdot m_{3} \cdots m_{k}+\ldots+i_{k-1} \cdot m_{k}+i_{k}
$$

Example

In C-programs, the elements of a multi-dimensional array are stored consecutively in memory, where their order is such that „Iater indices go faster than earlier ones". For example, the elements of

$$
\text { int } M[2][3]=\{\{3,5,-2\},\{1,0,2\}\} \text {; }
$$

are arranged in memory as:

M[0] [0] 3	M[0] [1] 5	M[0] [2] -2	M[1] [0] 1	M[1] [1] 0	M[1] [2] 2

M

Example (continued)

```
double f(double *z, int m1, int m2, int m3)
{
}
int main( void)
{
    double x, y, A[2] [3] [4], B [3] [4] [2];
    x = f(&A[0][0][0],2,3,4);
    y = f(&B[0][0][0] ,3,4,2);
}
In the function f, the element "' z[i] [j] [k] "' can be addressed as
* (z+i*m2*m3+j*m3+k) the indices i, j, k of the element located at address z+l can be
computed as k = l%m3, j = (l/m3) %m2 and i = l/(m2*m3)
```


Theorem

6 Double counting An undirected graph is bipartite, if there exists a partition of its set of nodes in two blocks A and B, such that every edge has one endpoint in A and one in B.

For a finite bipartite graph $\sum_{e_{1} \in A} \operatorname{Deg}\left(e_{1}\right)=\sum_{e_{2} \in B} \operatorname{Deg}\left(e_{2}\right)$

Theorem

6 Double counting An undirected graph is bipartite, if there exists a partition of its set of nodes in two blocks A and B, such that every edge has one endpoint in A and one in B.

For a finite bipartite graph $\sum_{e_{1} \in A} \operatorname{Deg}\left(e_{1}\right)=\sum_{e_{2} \in B} \operatorname{Deg}\left(e_{2}\right)$

Proof.

(6) Both sums denote the number of edges

Theorem (Pigeon hole principle)

Let $f: M \rightarrow N$ be a function, with M, N finite. If $\#(M)>\#(N)$, then there is at least on element $y \in N$ having an inverse image with more than one element.

Theorem (Pigeon hole principle)

Let $f: M \rightarrow N$ be a function, with M, N finite. If $\#(M)>\#(N)$, then there is at least on element $y \in N$ having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is injective, and therefore $M \rightarrow f(M)$ bijective. Hence $\#(M)=\#(f(M))$ and by $f(M) \subseteq N$ we have $\#(M) \leqslant \#(N)$

Lemma

Maximum \geq average. For $R=\left(r_{i}\right)_{i \in I}$ a collection of numbers, $\max (R) \geq \frac{\sum R}{\#(I)}$.

Theorem (Pigeon hole principle)

Let $f: M \rightarrow N$ be a function, with M, N finite. If $\#(M)>\#(N)$, then there is at least on element $y \in N$ having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is injective, and therefore $M \rightarrow f(M)$ bijective. Hence $\#(M)=\#(f(M))$ and by $f(M) \subseteq N$ we have $\#(M) \leqslant \#(N)$

Lemma

Maximum \geq average. For $R=\left(r_{i}\right)_{i \in I}$ a collection of numbers, $\max (R) \geq \frac{\sum R}{\#(I)}$.

Alternative proof of PHP

Let $R=\left(\#\left(f^{-1}(n)\right)_{n \in N}\right.$. By the lemma $\max (R) \geq \frac{\sum R}{\#(N)}=\frac{\#(M)}{\#(N)}>1$.

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

$$
(m)_{k}:= \begin{cases}m(m-1)(m-2) \cdots(m-k+1) & \text { if } k \geqslant 1 \\ 1 & \text { if } k=0\end{cases}
$$

injective functions from K to M. The number $(m)_{k}$ is the falling factorial of m and k.

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

$$
(m)_{k}:= \begin{cases}m(m-1)(m-2) \cdots(m-k+1) & \text { if } k \geqslant 1 \\ 1 & \text { if } k=0\end{cases}
$$

injective functions from K to M. The number $(m)_{k}$ is the falling factorial of m and k.

Example

Obviously, there are no (total) injective functions from $\{0,1,2,3\}$ to $\{0,1\}$, which agrees with the theorem as $(2)_{4}=2 \cdot 1 \cdot 0 \cdot-1=0$.

Proof.

We show the claim by mathematical induction on k. In the base case, $k=0$, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$
K=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

and consider how to construct injective functions $f: K \rightarrow M$.

Proof.

We show the claim by mathematical induction on k. In the base case, $k=0$, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$
K=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

and consider how to construct injective functions $f: K \rightarrow M$. For x_{0} we have m ways to choose an image $f\left(x_{0}\right) \in M$. That element

$$
y_{0}:=f\left(x_{0}\right)
$$

then cannot by chosen as image of the other elements of K. That is, as images of x_{1}, \ldots, x_{k} we must choose elements among $M \backslash\left\{y_{0}\right\}$.

Proof.

We show the claim by mathematical induction on k. In the base case, $k=0$, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$
K=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

and consider how to construct injective functions $f: K \rightarrow M$. For x_{0} we have m ways to choose an image $f\left(x_{0}\right) \in M$. That element

$$
y_{0}:=f\left(x_{0}\right)
$$

then cannot by chosen as image of the other elements of K. That is, as images of x_{1}, \ldots, x_{k} we must choose elements among $M \backslash\left\{y_{0}\right\}$. By the IH there are $(m-1)_{k}$ such choices. Therefore, the total number of injective functions is

$$
m \cdot(m-1)_{k}=(m)_{k+1}
$$

Proof.

We show the claim by mathematical induction on k. In the base case, $k=0$, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$
K=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

and consider how to construct injective functions $f: K \rightarrow M$. For x_{0} we have m ways to choose an image $f\left(x_{0}\right) \in M$. That element

$$
y_{0}:=f\left(x_{0}\right)
$$

then cannot by chosen as image of the other elements of K. That is, as images of x_{1}, \ldots, x_{k} we must choose elements among $M \backslash\left\{y_{0}\right\}$. By the IH there are $(m-1)_{k}$ such choices. Therefore, the total number of injective functions is

$$
m \cdot(m-1)_{k}=(m)_{k+1}
$$

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$
m!:= \begin{cases}m(m-1)(m-2) \cdots 3 \cdot 2 \cdot 1 & m \geqslant 1 \\ 1 & m=0\end{cases}
$$

bijections from K to M. The number m ! is called m factorial

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$
m!:= \begin{cases}m(m-1)(m-2) \cdots 3 \cdot 2 \cdot 1 & m \geqslant 1 \\ 1 & m=0\end{cases}
$$

bijections from K to M. The number m ! is called m factorial

Proof.

Since $\#(K)=\#(M)=m$ every injective function from K to M is a bijection, hence the claim follows from the theorem, with $(m)_{m}=m$!.

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$
m!:= \begin{cases}m(m-1)(m-2) \cdots 3 \cdot 2 \cdot 1 & m \geqslant 1 \\ 1 & m=0\end{cases}
$$

bijections from K to M. The number m ! is called m factorial

Proof.

Since $\#(K)=\#(M)=m$ every injective function from K to M is a bijection, hence the claim follows from the theorem, with $(m)_{m}=m$!.

Theorem

Let M be a finite set with m elements. Then

$$
\#(\mathcal{P}(M))=2^{m}
$$

Theorem

Let M be a finite set with m elements. Then

$$
\#(\mathcal{P}(M))=2^{m}
$$

Proof.

We take some arbitrary but fixed enumeration $e:\{0,1, \ldots, m-1\} \rightarrow M$. The following function then is a bijection:

$$
F: \mathcal{P}(M) \rightarrow\{0,1\}^{m}, T \mapsto\left(t_{0}, \ldots, t_{m-1}\right), t_{i}:= \begin{cases}1 & \text { if } e(i) \in T \\ 0 & \text { otherwise }\end{cases}
$$

Theorem

Let M be a finite set with m elements. Then

$$
\#(\mathcal{P}(M))=2^{m}
$$

Proof.

We take some arbitrary but fixed enumeration $e:\{0,1, \ldots, m-1\} \rightarrow M$. The following function then is a bijection:

$$
F: \mathcal{P}(M) \rightarrow\{0,1\}^{m}, T \mapsto\left(t_{0}, \ldots, t_{m-1}\right), t_{i}:= \begin{cases}1 & \text { if } e(i) \in T \\ 0 & \text { otherwise }\end{cases}
$$

Naming

For $T \subseteq M$, the function $\chi_{T}: M \rightarrow\{0,1\}$ defined by $\chi_{T}(t)=1$ if $t \in T$ and 0 otherwise, is the characteristic function of T.

Counting the number of subsets of given size

Theorem

Let M be a finite set with m elements, and let k be a natural number. Then

$$
\#\left(\mathcal{P}_{k}(M)\right)=\binom{m}{k} .
$$

where $\mathcal{P}_{k}(M)$ denotes the subsets of size k, and where the binomial coefficient „m choose $k^{\prime \prime}$ or „m over $k^{\prime \prime}$ is defined by

$$
\binom{m}{k}:=\frac{m \cdot(m-1) \cdots(m-k+1)}{k \cdot(k-1) \cdots 1}= \begin{cases}\frac{m!}{k!(m-k)!} & \text { if } k \leqslant m \\ 0 & \text { otherwise }\end{cases}
$$

Proof.

An enumeration $e:\{0,1, \ldots, k-1\} \rightarrow T$ of a subset T of M having k elements, is obtained by choosing

- an arbitrary element $e(0) \in M$,
- an arbitrary element $e(1) \in M \backslash\{e(0)\}$,
- an arbitrary element $e(2) \in M \backslash\{e(0), e(1)\}$, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices is

$$
m \cdot(m-1) \cdots(m-k+1) / k!.
$$

Proof.

An enumeration $e:\{0,1, \ldots, k-1\} \rightarrow T$ of a subset T of M having k elements, is obtained by choosing

- an arbitrary element $e(0) \in M$,
- an arbitrary element $e(1) \in M \backslash\{e(0)\}$,
- an arbitrary element $e(2) \in M \backslash\{e(0), e(1)\}$, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices is

$$
m \cdot(m-1) \cdots(m-k+1) / k!.
$$

Infinite counting

Definition

A set M is countably infinite, if there is a bijection

$$
e: \mathbb{N} \rightarrow M, i \mapsto x_{i},
$$

between M and the set of natural numbers \mathbb{N}. M may than be written as

$$
M=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\},
$$

e is called an enumeration of M, and e^{-1} a numbering of M.

Infinite counting

Definition

A set M is countably infinite, if there is a bijection

$$
e: \mathbb{N} \rightarrow M, i \mapsto x_{i},
$$

between M and the set of natural numbers \mathbb{N}. M may than be written as

$$
M=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\},
$$

e is called an enumeration of M, and e^{-1} a numbering of M.

Example

- The set \mathbb{N} of natural numbers is countably infinite
- And so is the set \mathbb{Z} of integers

The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Theorem

The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Proof.

Instead of an enumeration $\mathrm{e}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, we give a numbering $\nu: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. We lay-out the pairs (m, n) two-dimensionally

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	\ldots
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	\ldots
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	\ldots
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	\ldots

and number diagonally, where we assign to the pair (m, n) the number $\left(\sum_{i=0}^{m+n-1}(i+1)\right)+m$. The function $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},(m, n) \mapsto \frac{(m+n)(m+n+1)}{2}+m$ is bijective.

Theorem

The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Proof.

Instead of an enumeration $\mathrm{e}: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$, we give a numbering $\nu: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. We lay-out the pairs (m, n) two-dimensionally

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	\ldots
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	\ldots
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	\ldots
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	\ldots

and number diagonally, where we assign to the pair (m, n) the number
$\left(\sum_{i=0}^{m+n-1}(i+1)\right)+m$. The function $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},(m, n) \mapsto \frac{(m+n)(m+n+1)}{2}+m$ is bijective.

Beyond countably infinite?

Question

From the previous slide we know that products of countably infinite sets are countably infinite again. We can contrast this to that the product of two sets having, say, 4 elements has more than 4 elements (namely $4 \cdot 4=16$). Can you find an operation on sets, such that applying it to countably infinite sets yields a set having more than countably infinite elements?

