
Summary last week

• dags as directed acyclic graphs

• topological ≤-sorting (a0, . . . , an) of partial order ≤ on {a0, . . . , an}: i < j if ai < aj.

• topological sorting algorithm by repeated selection of ≤-minimal element

• O(n) shortest/longest path algorithm on dags based on topological sorting

• forests as dags with nodes of in-degree ≤ 1

• trees as forests where pairs of nodes have common ancestors

• rooted trees as trees having a root (ancestor of all nodes)

• for trees, number of vertices = number of edges +1

• undirected graphs; edges have set of endpoints {u, v} (instead of source,target)

• undirected versions of directed notions: path, cycles, forest, tree, . . .

• spanning tree of graph as tree having same connected components

• Kruskal’s spanning tree algorithm by adjoining edges of least weight (greedy)
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2



Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Reminder: cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous or
equipollent. Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

N ∪{∗} is equinumerous to N ; witnessed by bijection f mapping ∗ to 0, and n to n+ 1.
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Definition

• Set A is finite if there exist n ∈ N and bijective function e : {0,1, . . . ,n− 1} → A

• then n is unique, denoted by #(A) := n, and called the number or cardinality of A

• the function e is in general not unique, and is called an enumeration of A

• a bijection ν : A→ {0,1, . . . ,m− 1} is called a numbering of A

• an inverse of an enumeration is a numbering and vice versa

• A is infinite if it is not finite, and then we write #(A) =∞
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Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n
4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅
5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A
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Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.

2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.
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Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection f : A→ B, then #(A) = #(B)

2 For pairwise disjoint sets A1,A2, . . . ,Ak

#(
⋃

k
i=1Ak) = #(A1 ∪ A2 ∪ . . . ∪ Ak) = #(A1) +#(A2) + . . .+#(Ak) =

∑
k
i=1#(Ai) .

3 For finite sets A and B,

#(A− B) = #(A \ B) = #(A)−#(A ∩ B) .

8
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Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection
e : {0,1, . . . ,m− 1} → A.

Then consider the function composition

f ◦ e : {0,1, . . . ,m− 1} → B , i 7→ f(e(i)) ,

f ◦ e is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

A = (A \ B) ∪ (A ∩ B)

with the union disjoint, it follows by (2) that

#(A \ B) = #(A)−#(A ∩ B)
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Proof.

(2) Given bijections

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

their composition e : {0,1, . . . ,m1 + . . .+ mk − 1} → M1 ∪ . . . ∪Mk is again a
bijection

i 7→



e1(i) i ∈ {0,1, · · · ,m1 − 1}
e2(i−m1) i ∈ {m1, · · · ,m1 + m2 − 1}
...

...

ek(i−m1 − . . .−mk−1)
i ∈ {m1 + . . . + mk−1, · · · ,m1 +
. . .+ mk − 1}
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Theorem

4 Inclusion/exclusion principle
For finite sets A1,A2, . . . ,Ak

#(
k⋃

i=1

Ai) =

In particular,
#(A ∪ B) = #(A) + #(B)−#(A ∩ B)

5 Let M1,M2, . . . ,Mk be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

#(M1 ×M2 × . . .×Mk) =
k∏

i=1

#(Mi) .

In particular, #(Mk) = #(M)k
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Proof.

(4) By induction on k. In case k = 2, A1 ∪ A2 = A1 ∪ (A2 \ A1)
#(A1 ∪ A2) = #(A1) + #(A2 \ A1) = #(A1) + #(A2)−#(A1 ∩ A2)

For k > 2 we have by the IH

#(
k⋃

i=1

Ai) = #((
k−1⋃
i=1

Ai) ∪ Ak) = #(
k−1⋃
i=1

Ai) + #(Ak)−#(
k−1⋃
i=1

(Ai ∩ Ak)) =

=
∑

I⊆{1,...,k−1}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai) + #(Ak)−

−
∑

I⊆{1,...,k−1}
I 6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai ∩ Ak) =
∑

J⊆{1,...,k}
J6=∅

(−1)#(J)−1 #(
⋂
i∈J

Ai)

The final equation holds for the three cases (i) J = I, (ii) J = {k}, (iii) J = I ∪ {k}
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Proof.

(5) By assumption we have bijections ei

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

Therefore, e : {0,1, . . . ,m1 · · ·mk − 1} → M1 × . . .×Mk with

n 7→ (e1(n/m2 · · ·mk), . . . , ek−1((n/mk) mod mk−1), ek(n mod mk))

is a bijection again. From the respective numbers
ik = n mod mk

ik−1 = (n/mk) mod mk−1
...

i2 = (n/(m3 · · ·mk)) mod m2

i1 = n/(m2 · · ·mk)

the number n is obtained by

n := i1 ·m2 · · ·mk + i2 ·m3 · · ·mk + . . .+ ik−1 ·mk + ik

13
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Example

In C-programs, the elements of a multi-dimensional array are stored consecutively in
memory, where their order is such that „later indices go faster than earlier ones“. For
example, the elements of

int M[2][3] = {{3,5,-2},{1,0,2}};

are arranged in memory as:

M[0][0]
3

M[0][1]
5

M[0][2]
-2

M[1][0]
1

M[1][1]
0

M[1][2]
2

M

14



Example (continued)

double f(double *z, int m1, int m2, int m3)

{

...

}

...

int main( void)

{

double x, y, A[2][3][4], B[3][4][2];

...

x = f(&A[0][0][0],2,3,4);

y = f(&B[0][0][0],3,4,2);

...

}

In the function f, the element "‘z[i][j][k] "’ can be addressed as
*(z+i*m2*m3+j*m3+k) the indices i, j, k of the element located at address z+l can be
computed as k = l%m3, j = (l/m3)%m2 and i = l/(m2*m3)

15

Theorem

6 Double counting An undirected graph is bipartite, if there exists a partition of its
set of nodes in two blocks A and B, such that every edge has one endpoint in A
and one in B.

A B

For a finite bipartite graph
∑

e1∈A Deg(e1) =
∑

e2∈B Deg(e2)

Proof.

(6) Both sums denote the number of edges
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Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least on
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

17



Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least on
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

17

Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least on
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

17

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

(m)k :=

{
m(m− 1)(m− 2) · · · (m− k + 1) if k > 1

1 if k = 0

injective functions from K to M. The number (m)k is the falling factorial of m and k.

Example

Obviously, there are no (total) injective functions from {0,1,2,3} to {0,1}, which
agrees with the theorem as (2)4 = 2 · 1 · 0 · −1 = 0.
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Proof.

We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0, x1, . . . , xk}

and consider how to construct injective functions f : K → M.

For x0 we have m ways to
choose an image f(x0) ∈ M. That element

y0 := f(x0)

then cannot by chosen as image of the other elements of K. That is, as images of
x1, . . . , xk we must choose elements among M \ {y0}. By the IH there are (m− 1)k

such choices. Therefore, the total number of injective functions is

m · (m− 1)k = (m)k+1
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Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

m! :=

{
m(m− 1)(m− 2) · · ·3 · 2 · 1 m > 1

1 m = 0

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the
claim follows from the theorem, with (m)m = m!.
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Theorem

Let M be a finite set with m elements. Then

#(P(M)) = 2m .

Proof.

We take some arbitrary but fixed enumeration e : {0,1, . . . ,m− 1} → M. The
following function then is a bijection:

F : P(M)→ {0,1}m , T 7→ (t0, . . . , tm−1) , ti :=

{
1 if e(i) ∈ T

0 otherwise.

Naming

For T ⊆ M, the function χT : M→ {0,1} defined by χT(t) = 1 if t ∈ T and 0 otherwise, is
the characteristic function of T.

21
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Counting the number of subsets of given size

Theorem

Let M be a finite set with m elements, and let k be a natural number. Then

#(Pk(M)) =

(
m

k

)
.

where Pk(M) denotes the subsets of size k, and where the binomial coefficient „m
choose k“ or „m over k“ is defined by

(
m

k

)
:=

m · (m− 1) · · · (m− k + 1)

k · (k − 1) · · ·1
=


m!

k!(m− k)!
if k 6 m

0 otherwise

22

Proof.

An enumeration e : {0,1, . . . , k − 1} → T of a subset T of M having k elements, is
obtained by choosing

• an arbitrary element e(0) ∈ M,

• an arbitrary element e(1) ∈ M \ {e(0)},
• an arbitrary element e(2) ∈ M \ {e(0), e(1)}, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices
is

m · (m− 1) · · · (m− k + 1)/k! .
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Infinite counting

Definition

A set M is countably infinite, if there is a bijection

e : N → M , i 7→ xi ,

between M and the set of natural numbers N . M may than be written as

M = {x0, x1, x2, . . .} ,

e is called an enumeration of M, and e−1 a numbering of M.

Example

• The set N of natural numbers is countably infinite

• And so is the set Z of integers
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Theorem

The set N × N is countably infinite.

Proof.

Instead of an enumeration e : N → N × N , we give a numbering ν : N × N → N . We
lay-out the pairs (m,n) two-dimensionally

(0,0) (1,0) (2,0) (3,0) . . .

(0,1) (1,1) (2,1) (3,1) . . .

(0,2) (1,2) (2,2) (3,2) . . .

(0,3) (1,3) (2,3) (3,3) . . .
...

and number diagonally, where we assign to the pair (m,n) the number(∑m+n−1
i=0 (i + 1)

)
+ m. The function N × N → N , (m,n) 7→ (m+n)(m+n+1)

2 + m is

bijective.
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Beyond countably infinite?

Question

From the previous slide we know that products of countably infinite sets are countably
infinite again. We can contrast this to that the product of two sets having, say, 4
elements has more than 4 elements (namely 4 · 4 = 16). Can you find an operation on
sets, such that applying it to countably infinite sets yields a set having more than
countably infinite elements?
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