
Summary last week

• enumeration of set A is bijection from (initial segment of) N to A; A countable
• if initial segment, then A finite, otherwise countably infinite
• numbering inverse of enumeration

• double counting:
∑

e1∈A Deg(e1) =
∑

e2∈B Deg(e2), bipartite graph, partitions A,B

• pigeon hole principle: max(R) ≥
∑

R
#(I) for R = (ri)i∈I collection of numbers

• in/exclusion principle: #(
⋃

i∈I Ai) =
∑

J⊆I
J6=∅

(−1)#(J)−1 #(
⋂

j∈J Aj)

• #(A× B) = #(A) ·#(B), if A ∩ B = ∅ then #(A ∪ B) = #(A) + #(B)
• #(A− B) = #(A)−#(A ∩ B), #(AB) = #(A)#(B) functions B→ A
• (#A)#B injective functions B→ A; falling factorial
• if #A = #B, then #A! bijective functions B→ A; if B = A, then permutations
• subsets of B, #(P(B)) = 2#B = #({0,1}B), characteristic functions B→ {0,1}
• #(Pk(B)) =

(#B
k

)
subsets of size k; binomial coefficent

(n
k

)
= n!

k!(n−k)!
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2



Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Infinite counting

Definition

A set A is countably infinite, if there is a bijection

e : N → A , i 7→ ai ,

between the set of natural numbers N and A. A may than be written as

A = {a0, a1, a2, . . .} ,

e is called an enumeration of A, and e−1 a numbering of A.

Example

• The set N of natural numbers is countably infinite

• And so is the set Z of integers
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Theorem

The set N × N is countably infinite.

Proof.

We lay-out the pairs (m,n) two-dimensionally

(0,0) (1,0) (2,0) (3,0) . . .

(0,1) (1,1) (2,1) (3,1) . . .

(0,2) (1,2) (2,2) (3,2) . . .

(0,3) (1,3) (2,3) (3,3) . . .
...

Instead of an enumeration e : N → N × N , we give a numbering ν : N × N → N . We
number by dove tailing: (0,0) 7→ 0, (0,1) 7→ 1, (1,0) 7→ 2, (0,2) 7→ 3, (1,1) 7→ 4,

(2,0) 7→ 5, (0,3) 7→ 3·(3+1)
2 = 6, . . .

(m,n) 7→ (m+n)(m+n+1)
2 + m; is bijective
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Definition

A set is countable, if it is finite or countably infinite.

Theorem

1 Every subset of a countable set is countable.

2 The image of a countable set if countable.

3 The union of a sequence of countable sets is countable

4 The cartesian product of finitely many countable sets, is countable

Example

The monoid of words Σ∗ is countable, if Σ is a finite alphabet

Σ∗ :=
⋃
n>0

Σn = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·

6
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Beyond countable?

Question

From the previous slides we know that being countable is preserved by various
operations (product, subset, image, sequence).

1 Contrast this to that the product of two sets having, say, 4 elements has more
than 4 elements (namely 4 · 4 = 16).

2 Can you find any operation on sets, such that applying it to countable sets yields
a set having more than countably many elements?

7

Theorem (Cantor diagonalisation)

Let Σ be an alphabet containing at least two letters, say a and b, and let s0, s1, s2, . . .
be an infinite sequence of infinite sequences in Σ:

s0 = s00s01s02 . . .

s1 = s10s11s12 . . .

s2 = s20s21s22 . . .
...

Then the sequence
dn := snn :=

{
b if snn = a

a if snn 6= a

a new sequence, i.e. different from the given ones

Proof.

If d were not a new sequence, then there would be an index n such that d = sn, and in
particular dn = snn, contradicting the construction of d as distinct at the diagonal.

8
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Diagonalisation consequences

Corollary

none of the following are countable

1 the set of infinite sequences over {a,b}
2 functions 2N ; as infinite sequence is function N → 2 = {a,b}
3 subsets P(N ); by characteristic function 2N

4 reals R ; by sequence obtained by decimal expansion

Question

Can we still compare such sets in size/cardinality?

Answer

Via injective functions.
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Comparing set sizes

Definition

For sets A and B, we write |A| ≤ |B|, if there is an injective function f : A→ B.

Lemma

1 |A| ≤ |A|
2 if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|
3 |A| ≤ |B| and |B| ≤ |A|, does not imply A = B

Proof.

1) by the identity function (is injective). 2) by composing the injective functions (is
injective). 3) take e.g. A = N and B = Z .

Suspicion for 3rd item

there is a bijection between A and B
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Theorem (Schröder–Bernstein)

Let f : A→ B and g : B→ A be injective functions. Then there is a bijection f ′ : A→ B

Example (Picture on the board/animation next slide)

Let A = N , B = {a}∗, and f : A→ B, g : B→ A be defined by:

f(n) := a2n

g(an) := 2n

f and g are injective; a bijection f ′ : A→ B can be constructed from f ,g by:

f ′(n) :=


ε if n = 0

g−1(n) = a
n
2 n has odd number of 2-factors

f(n) = a2n otherwise
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Animation of construction of bijection f ′ from injections f , g

Example (Continued)

graph of f union g
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a5

a6
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a

aa

aaa

a
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Animation of construction of bijection f ′ from injections f , g

Example (Continued)

a
descending chain

right

leftending
descending chain
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leftending
descending chain

ending
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infinite descending chain
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Animation of construction of bijection f ′ from injections f , g

Example (Continued)

bijection f’ by choosing g pre−image for

f image

right
g pre−image

left
f image

left
f image

left
f image

right
g pre−image

nodes on 

f image
infinite 0
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5
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aaa
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nodesand f image for otherrightchains ending

left
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Proof of Schröder–Bernstein theorem

Proof.

We construct f ′ : A→ B and g′ : B→ A inverse to each other, as in animation.

• let R = f ∪ g; viewed as relation on A ] B (disjoint union)

• for c ∈ A ∪ B consider descending c-chain . . . c′′ R c′ R c; unique by f ,g injective.
colour c red if c-chain ends in B (on the right), blue otherwise (ends on left or∞).

• define f ′(a) for a ∈ A by cases on the colour of a:
a) f ′(a) := g−1(a) (g pre-image if a is red; pre-image exists as a-chain ends on right)
a) f ′(a) := f(a) (otherwise f image)

• define g′(b) for b ∈ B by cases on the colour of b:
b) g′(b) := f−1(b) (f pre-image if b is blue; exists as b-chain ends on left or∞)
b) g′(b) := g(b) (otherwise g image)

• verify f ′, g′ inverse to each other. f ′ ; g′ (g′ ; f ′ analogous) by cases on colour a ∈ A:
a) g′(f ′(a)) = g′(g−1(a)) = g(g−1(a)) = a, as g−1(a) is red if a is, being on same chain.
a) g′(f ′(a)) = g′(f(a)) = f−1(f(a)) = a, as f(a) is blue if a is, being on same chain.
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Partially ordering sets up to equinumerosity

Definition

|M| := {N | N equinumerous to M}

Lemma

if A,A′ ∈ |M| and B,B′ ∈ |N|, and injection f : A→ B, then exists injection f ′ : A′ → B′.

Proof.

for bijections g : A′ → A and g′ : B→ B′, composition g ; f ; g′ : A′ → B′ is injection.

Corollary

≤ is a partial order on the collections |M|

Corollary

|N | < |R |

14

Partially ordering sets up to equinumerosity

Definition

|M| := {N | N equinumerous to M}

Lemma

if A,A′ ∈ |M| and B,B′ ∈ |N|, and injection f : A→ B, then exists injection f ′ : A′ → B′.

Proof.

for bijections g : A′ → A and g′ : B→ B′, composition g ; f ; g′ : A′ → B′ is injection.

Corollary

≤ is a partial order on the collections |M|

Corollary

|N | < |R |

14



Partially ordering sets up to equinumerosity

Definition

|M| := {N | N equinumerous to M}

Lemma

if A,A′ ∈ |M| and B,B′ ∈ |N|, and injection f : A→ B, then exists injection f ′ : A′ → B′.

Proof.

for bijections g : A′ → A and g′ : B→ B′, composition g ; f ; g′ : A′ → B′ is injection.

Corollary

≤ is a partial order on the collections |M|

Corollary

|N | < |R |

14

Partially ordering sets up to equinumerosity

Definition

|M| := {N | N equinumerous to M}

Lemma

if A,A′ ∈ |M| and B,B′ ∈ |N|, and injection f : A→ B, then exists injection f ′ : A′ → B′.

Proof.

for bijections g : A′ → A and g′ : B→ B′, composition g ; f ; g′ : A′ → B′ is injection.

Corollary

≤ is a partial order on the collections |M|

Corollary

|N | < |R |
14

Equivalence relations

Definition

An equivalence relation ∼ is a reflexive, symmetric, transitive relation

Definition

• x and y are equivalent, if (x, y) ∈ ∼ that is, if x ∼ y.

• The equivalence class of x is [x] := {y ∈ M | x ∼ y}
• The elements of an equivalence class K are the representatives of K

• A system of representatives of ∼ is a set that contains a unique representative of
each equivalence class of ∼.

Remark

An equivalence class contains all objects having the same property
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Example

• Relating equinumerous sets is an equivalence (same #)

• Relating n to m if n (mod k) = m (mod k) is an equivalence

• Relating n
m and n′

m′ if n ·m′ = m · n′ is an equivalence (same normalised fraction)

Example

Triples in B 3 are equivalent, if obtained by reordering components

∼ = {(000,000), (001,001), (001,010), (001,100), (010,001),

(010,010), (010,100), (100,001), (100,010), (100,100),

(011,011), (011,101), (011,110), (101,011), (101,101),

(101,110), (110,011), (110,101), (110,110), (111,111)}

That is, 000

, 001 ∼ 010 ∼ 100, 011 ∼ 101 ∼ 110, 111

Equivalence classes: {000}, {001,010,100}, {011,101,110}, {111} (prop: same # of 1s)
System of representatives: {000,001,011,111}, {000,010,011,111}, . . .
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Theorem

x ∼ z⇔ [x] = [z] for equivalence relation∼

Proof.

• ⇒ (we show [x] ⊆ [z]; the other inclusion is analogous )

x ∼ z and y ∈ [x]⇒ z ∼ x (symmetry) ⇒ x ∼ y (Def. equivalence class)⇒ z ∼ y
(transitivity)⇒ y ∈ [z] (Def. equivalence class)

• ⇐ [x] = [z]

⇒ {y | x ∼ y} = {y | z ∼ y} ⇒ x ∼ z

Lemma

Let f : M→ N be a function. Then

x ∼ z :⇔ f(x) = f(z)

defines an equivalence relation. The equivalence classes are the inverse images
f−1(y) = {x ∈ M | f(x) = y} for y ∈ f(M).
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Definition

{B1, . . . ,Bn} is a partition of M, if B1 ] . . . ] Bn = M (] denotes unions disjoint)

Bi are blocks

Example

{{000}, {001,010,100}, {011,101,110}, {111}} is a partition of B 3

Theorem

(1) Let P be a partition of M. Then is ∼ is an equivalence relation on M, such that

x ∼ y :⇔ x and y are in the same block of P

(2) Let ∼ be an equivalence relation on M. The set P of all equivalence classes w.r.t. ∼
is then a partition of M.

(3) The functions P 7→ ∼ in (1) and ∼ 7→ P in (2) are inverse to each other

18
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From orders to equivalence relations

Lemma

if ≤ is a reflexive, transitive, then ≤ ∩≥ is induced equivalence relation.

Proof.

reflexivity, transitivity of ≤ ∩≥ hold by the same for ≤; symmetry by definition.

Example

1
n
m ≤

n′

m′ if n ·m′ ≤ m · n′ induces the equivalence on (positive) fractions above

2 relating sets by injections induces equinumerosity

3 ≤ on natural numbers induces equality =

19
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Elementary number theory: Euclid

Definition

• d ∈ Z is a divisor of a ∈ Z , if there exists a c ∈ Z such that a = c · d
• „d divides a“, „a is a multiple of d“ d | a
• the divisor ±1,±a are called trivial divisors of a

Definition

Let a,b ∈ Z , a,b 6= 0

• The greatest common divisor gcd(a,b) of a and b divides a and b, and for all c
such that c | a and c | b, c divides gcd(a,b)

• The least common multiple lcm(a,b) of a and b is a multiple of both a and b, and
for all c such that a | c and b | c, c is a multiple of lcm(a,b)

20
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Theorem

Let a,b, c ∈ Z with a 6= 0, b 6= 0 and a 6= c · b; then

gcd(a,b) = gcd(|a|, |b|) and gcd(a,b) = gcd(a− c · b,b)

Proof.

• If dc = a, then d(−c) = −a, hence a and |a| have the same divisors

• If an integer d divides a and b, then it also divides a− c · b. Vice versa, if d divides
a− c · b and b, then it also divides a.

• the common divisors of a and b are the common divisors of a− c · b and b, and
therefore they have the same greatest common divisors as well

21
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a− c · b and b, then it also divides a.

• the common divisors of a and b are the common divisors of a− c · b and b, and
therefore they have the same greatest common divisors as well
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Theorem (Euclidean algorithm for integers)

The greatest common divisor of non-zero integers can be computed as follows:

Replace the integers by their absolute values.

While the integers are distinct, repeat:

Replace the larger of the two by the difference of the larger and the smaller.

The resulting integer is the greatest common divisor.

If repeated subtraction is replaced by repeated integer division (with remainder), the
following, typically faster, algorithm is obtained.
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Theorem (Variant)

Replace the integers by their absolute values.

While neither integer is a multiple of the other, repeat:

Replace the larger of the two by its remainder after dividing by the other

The resulting divisor is the greatest common divisor.

Proof.

• By the previous theorem, the greatest common divisors remain unchanged in
each step of the algorithm, from which correctness follows

• Since the numbers remain positive in every iteration of the loop, and their
maximum decreases by at least 1, the algorithm must terminate after finitely
many steps
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Example

We have gcd(138,−48) = 6, according to the first method:

gcd(138,−48) = gcd(138,48) = gcd(90,48) = gcd(42,48)

= gcd(42,6) = gcd(36,6) = gcd(30,6)

= gcd(24,6) = gcd(18,6) = gcd(12,6)

= gcd(6,6) = 6

The second method yields

gcd(138,−48) = gcd(138,48) = gcd(42,48) = gcd(42,6) = 6 .
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Theorem (Bézout’s lemma)

Let a and b be non-zero integers. Then there exist natural numbers u and v with

u · a + v · b = gcd(a,b)

which can be computed by the following algorithm

Set A = (|a|,1,0) and B = (|b|,0,1).

While B1 does not divide A1, do:

Compute the integer quotient of A1 and B1.

Set C = B.

Set B = A− q · C (componentwise)

Set A = C.

Set u = sgn(a) · B2 and v = sgn(b) · B3.
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Proof.

• Let T = (T1, T2, T3) be a triple of integers and (∗) the property

T1 = |a| · T2 + |b| · T3 (∗)

• If the triples A and B have the property (∗), then so do all triples A− q · B and
q ∈ Z .

• The first two triples in the algorithm have this property, hence all the subsequent
triples have it as well. Restricting to the first components of triples the Euclidean
algorithm is obtained. Therefore, we have for the final triples B

gcd(a,b) = B1 = |a| · B2 + |b| · B3 = (sgn(a) · B2︸ ︷︷ ︸
u

) · a + (sgn(b) · B3︸ ︷︷ ︸
v

) · b
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Example

Bézout’s lemma for a = 138 and b = −48, yields u = −1, v = −3 and
gcd(138,−48) = 6

A B q

(138,1,0) (48,0,1) 2

(48,0,1) (42,1,−2) 1

(42,1,−2) (6,−1,3)
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Theorem (Computing the least common multiple)

Let a and b be non-zero integers. Then

lcm(a,b) =
|a| · |b|

gcd(a,b)
.

Proof.

Obviously,

m :=
|b|

gcd(a,b)
· |a| =

|a|
gcd(a,b)

· |b|

is a multiple both of a and b, hence a common multiple. We show that m is the least
common multiple of a and b. To that end, let z be an arbitrary positive common
multiple of a and b. Then there are integers c,d with

z = c · a and z = d · b
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