Summary last week

A countably infinite if enumeration N — A; countable if finite or countably infinite.
countability preserved by subset, image, union, cartesian product

* non-countability of infinite sequences, 2, P(N), R by diagonalisation (Cantor)
injections f : A— B, g : B — A, then exists bijection A — B (Schréder-Bernstein)
collections |_| of equinumerous sets partially ordered by injections; N < R.

Summary last week

A countably infinite if enumeration N — A; countable if finite or countably infinite.
® countability preserved by subset, image, union, cartesian product

* non-countability of infinite sequences, 2, P(N), R by diagonalisation (Cantor)
® injectionsf: A — B, g : B — A, then exists bijection A — B (Schréder-Bernstein)
¢ collections |_| of equinumerous sets partially ordered by injections; N < R.

® equivalence relation if reflexive, transitive, and symmetric

¢ if ~ equivalence on A, then [a] = {b | @ ~ b} is equivalence class of a € A

® b representative of [a] if b € [a]

® B system of representatives if for all a € A, unique representative b of [a] in B

® bijection between partitionings P and equivalences a ~ b if 3B € P, a,b € B.

e reflexive, transitive relation < induces equivalence relation <N >

Summary last week

A countably infinite if enumeration N — A; countable if finite or countably infinite.
® countability preserved by subset, image, union, cartesian product

* non-countability of infinite sequences, 2, P(N), R by diagonalisation (Cantor)
® injectionsf: A — B, g : B — A, then exists bijection A — B (Schréder-Bernstein)

¢ collections |_| of equinumerous sets partially ordered by injections; N < R.

® equivalence relation if reflexive, transitive, and symmetric

¢ if ~ equivalence on A, then [a] = {b | @ ~ b} is equivalence class of a € A

® b representative of [a] if b € [a]

® B system of representatives if for all a € A, unique representative b of [a] in B

® bijection between partitionings P and equivalences a ~ b if 3B € P, a,b € B.

e reflexive, transitive relation < induces equivalence relation <N >

e algorithm for ged(x,y) with x,y € Z by subtraction, division modulo (Euclid)

e extended algorithm for u, v with ged(x,y) = u-x+ v -y (Bézout); lem(x,y) = %

1

Course themes

® directed and undirected graphs

® relations and functions

® orders and induction

® trees and dags

¢ finite and infinite counting

® elementary number theory

® Turing machines, algorithms, and complexity
® decidable and undecidable problem

Discrete structures

functions

orders

—

algorithms

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))
(1) 77 = 1-77+ 0-30
(2) 30= 0-77+ 1-30

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 77 -30= (1-0)-77+ (0-1)-30 (1)—(2)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 47 = 1-77+ (-1)-30 (1)-(2)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30
(2) 30= 0-77+ 1-30
(3) 47 = 1-77+ (-1):30 (1) —(2)

(4) 17 = 177+ (=2)-30 (3)-(2)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+
(2) 30= 0-77+
(3) 47 = 1-77+
(4) 17= 1-77+
(5) 3= (-1)-77+

= @

w

-30
-30
-30
-30
-30

(1)-(2)
(3)-(2)
(2) - (4)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30
(2) 30= 0-77+ 1-30
(3) 47 = 1-77+ ~1)-30 (1)—(2)
(4) 17 = 177+ (=2)-30 (3)-(2)
(5) 13= (-1)-77+ 3.30 (2)—(4)
(6) 4= 2-77+ (=5)-30 (4)—(5)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 47 = 1-77+ (-1)-30 (1)—(2)
(4) 17= 1-77+ (=2)-30 (3)—(2)
(5) 13= (-1)-77+ 3.30 (2)—(4)
(6) 4= 2-77+ (=5)-30 (4)—(5)
(7) 9= (=3)-77+ 8-30 (5)—(6)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 47 = 1.77+ (-1)-30 (1)—(2)
(4) 17 = 1.77+ (=2)-30 (3)—(2)
(5) 13= (-1)-77+ 3.30 (2)-(4)
(6) 4= 277+ (-5)-30 (4)—(5)
(7) 9= (-3)-77+ 8-30 (5)—(6)
(8) 5= (=5)-77+ 13.30 (7) - (6)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 47 = 1-77+ (-1)-30 (1)—(2)
(4) 17= 1-77+ (=2)-30 (3)—(2)
(5) 13= (-1)-77+ 3.30 (2)—(4)
(6) 4= 2.77+ (-5)-30 (4)—(5)
(7) 9= (=3)-77+ 8-30 (5)—(6)
(8) 5= (=5)-77+ 13-30 (7)—(6)
(9) 1= (=7)-77+ 18-30 (8)—(6)

Theorem (Bézout’s lemma)

for a,b € Z not zero, there exist u,v € Z with gcd(a,b) =u-a+v-b

Example (1 = gcd(77,30))

(1) 77 = 1-77+ 0-30

(2) 30= 0-77+ 1-30

(3) 47 = 1-77+ (-1)-30 (1)—(2)

(4) 17 = 1-77+ (-2)-30 3)-(2)

(5) 13= (-1)-77+ 3-30 (2) - (4)

(6) 4= 2-77+ (-=5)-30 (4)—(5)

(7) 9= (-3)-77+ 8-30 (5)—(6)

(8) 5= (=5)-77+ 13-30 (7)—(6)

(9) 1= (=7)-77+ 18-30 (8) —(6)

may stop at 1 since 1 is least possible divisor, it’s trivial. u = —7 and v = 18

indeed 1 = ged(77,30) = (—7) - 77 + 18 - 30 = —539 + 540

The divisibility order | (recall from weeks 4 and 5)

Lemma

divisibility | is a well-founded partial order on the positive natural numbers N+

The divisibility order |
e |

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)

The divisibility order |
e |

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)

e reflexivity: x | x since x - 1 = x

The divisibility order |
e |

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)

e reflexivity: x | x since x - 1 = x
e transitivity: if x |y andy | z, thenx -y =y andy - Z = z for some y’, Z. Hence
settingx’ .=y’ -z, wehavex- X' =x-y' -Z=y.-Z =2z s0x |z

The divisibility order |

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)
e reflexivity: x | x since x - 1 = x
e transitivity: if x | yandy | z, thenx -y =y andy - Z = z for some y’, Z. Hence
settingx’ .=y’ -z, wehavex- X' =x-y' -Z=y.-Z =2z s0x |z
® anti-symmetry: if x |y and y | x, then x <y and y < x, hence x =y by
anti-symmetry of <

The divisibility order |

Lemma

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)

reflexivity: x | x since x -1 = x

transitivity: if x |yandy | z, then x -y’ =y and y - Z = z for some y’, Z. Hence

settingx’ .=y’ -z, wehavex- X' =x-y' -Z=y.-Z =2z s0x |z

anti-symmetry: if x | y and y | x, then x <y and y < x, hence x =y by

anti-symmetry of <

well-founded: if ... x" | X' | x were an infinite descending chain, then so would
..x" < x' < x, contradicting well-foundedness of < [|

The divisibility order |

Lemma

divisibility | is a well-founded partial order on the positive natural numbers N+

note: if x | y then x + ... + x =y hence x < y (for y positive)

reflexivity: x | x since x -1 = x

transitivity: if x |yandy | z, then x -y’ =y and y - Z = z for some y’, Z. Hence

settingx’ .=y’ -z, wehavex- X' =x-y' -Z=y.-Z =2z s0x |z

anti-symmetry: if x | y and y | x, then x <y and y < x, hence x =y by

anti-symmetry of <

well-founded: if ... x" | X' | x were an infinite descending chain, then so would
..x" < x' < x, contradicting well-foundedness of < [|

= proofs by well-founded induction on | for statements on N-pand N-; = N — {0, 51}

® pisprimeifpe N-jandforallx,y,ifp|x-ythenp|xorp|y

® pisirreducible or indecomposable if p € N+; and p only has trivial divisors

® pisprimeifpe N-jandforallx,y,ifp|x-ythenp|xorp|y

® pisirreducible or indecomposable if p € N+; and p only has trivial divisors

for p € N<1, we have p is prime iff p is indecomposable iff p is |-minimal (on N~ 1)

® pisprimeifpe N-jandforallx,y,ifp|x-ythenp|xorp|y
® pisirreducible or indecomposable if p € N+; and p only has trivial divisors

for p € N<1, we have p is prime iff p is indecomposable iff p is |-minimal

® Assume p prime and suppose p = x - y. By p being prime p | x or p | y, say w.l.0.g.
p | x. By x | p, then x = p and y = 1, so both are trivial hence p is indecomposable

® pisprimeifpe N-jandforallx,y,ifp|x-ythenp|xorp|y
® pisirreducible or indecomposable if p € N+; and p only has trivial divisors

for p € N<1, we have p is prime iff p is indecomposable iff p is |-minimal

e Assume p prime and suppose p = x - y. By p being prime p | x or p | y, say w.l.0.g.
p | x. By x | p, then x = p and y = 1, so both are trivial hence p is indecomposable

® Assume p indecomposable and suppose x | p with x € N+, i.e. x -y = p for some
y. By p being indecomposable, then x, y are trivial, so p = x and p is |-minimal

® pisprimeifpe N-jandforallx,y,ifp|x-ythenp|xorp|y
® pisirreducible or indecomposable if p € N+; and p only has trivial divisors

for p € N<1, we have p is prime iff p is indecomposable iff p is |-minimal

e Assume p prime and suppose p = x - y. By p being prime p | x or p | y, say w.l.0.g.
p | x. By x | p, then x = p and y = 1, so both are trivial hence p is indecomposable

® Assume p indecomposable and suppose x | p with x € N+, i.e. x -y = p for some
y. By p being indecomposable, then x, y are trivial, so p = x and p is |-minimal

® Assume p |-minimal and suppose p | x-y, i.e. p-d = x -y for some d. Either p | x or
else gecd(p, x) = 1 by p being |-minimal. Then 1 = u-p+v-x for some u, v (Bézout):
y:y]_:y(up+vx):yup+yVXZyuer\/pd:(qurvd)p
hence p | y. That is, eitherp | x or p | y, so p is prime M

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

e we first show that Vx € N+ there exists a collection of prime numbers p; such
that x = [] p;, by induction on x well-foundedly ordered by |.
recall from week 5.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

e we first show that Vx € N+, there exists a collection of prime numbers p; such
that x = [p;, by induction on x well-foundedly ordered by |.
If x is not prime itself, then x = y - z for y, z non-trivial (by the lemma), hence
y =[] gy and z =[] rk for collections of primes g, and rk by the IH twice.
Combining both, x = [[q; - [[rx, i.e. we may take the concatenation of g; and rk.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

e we first show that Vx € N+, there exists a collection of prime numbers p; such
that x = [p;, by induction on x well-foundedly ordered by |.
If x is not prime itself, then x = y - z for y, z non-trivial (by the lemma), hence
y =[] gy and z =[] rk for collections of primes g, and rk by the IH twice.
Combining both, x = [[q; - [[rx, i.e. we may take the concatenation of g; and rk.

* next we show uniqueness, i.e. if [[py = [] g, then the collections of prime
numbers p, and g; are the same up to order, by mathematical induction on #/.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

e we first show that Vx € N+, there exists a collection of prime numbers p; such
that x = [p;, by induction on x well-foundedly ordered by |.
If x is not prime itself, then x = y - z for y, z non-trivial (by the lemma), hence
y =[] gy and z =[] rk for collections of primes g, and rk by the IH twice.
Combining both, x = [[q; - [[rx, i.e. we may take the concatenation of g; and rk.

* next we show uniqueness, i.e. if [[py = [] q; then the collections of prime
numbers p,; and g; are the same up to order, by mathematical induction on #/.
Suppose i € I. Then p; | [[p; = [g, so Jj € J such that p; | g; hence p; = g; (by the
lemma twice). Therefore, [[p;_;y = Hp’ = qu = [[q)—g, and by the IH p;_j
and g,_g; are the same up to order, hence so are p; and g. [|

there are infinitely many prime numbers.

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Theorem

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Theorem

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes

e setn =[], pi sothatp; | n for each i.

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Theorem

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes

e setn =[], pi sothatp; | n for each i.
® by FTA n + 1 has prime factorisation, with primes among ps, ..., px by assumption

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Theorem

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes

e setn =[], pi sothatp; | n for each i.
® by FTA n + 1 has prime factorisation, with primes among ps, ..., px by assumption
e if pj | n+ 1, then also p; | (n + 1) — n = 1; contradicting p; is prime. |

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Theorem

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes
e setn =[], pi sothatp; | n for each i.
® by FTA n + 1 has prime factorisation, with primes among ps, ..., px by assumption
e if pj | n+ 1, then also p; | (n + 1) — n = 1; contradicting p; is prime. |

there are countably many primes since subset of N.

https://en.wikipedia.org/wiki/Goldbach's_conjecture

there are infinitely many prime numbers.

for a proof by contradiction, suppose p1, ..., px were the finite list of primes

e setn =[], pi sothatp; | n for each i.
® by FTA n + 1 has prime factorisation, with primes among ps, ..., px by assumption
e if pj | n+ 1, then also p; | (n + 1) — n = 1; contradicting p; is prime. |

there are countably many primes since subset of N.

FTA links numbers wrt addition (+,—) to numbers wrt multiplication (-,+). Connections
between both hard in general, cf. Goldbach'’s conjecture: if n > 2, then n = p; + p;.

https://en.wikipedia.org/wiki/Goldbach's_conjecture

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

e 77 =20.30.50.71.111 exponents e = (0,0,0,1,1) and 28 = 22.3°.5%.71.110

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

e 77 =20.30.50.71.111 exponents e = (0,0,0,1,1) and 28 = 22.3°.5%.71.110
e 77.28 = 20+2 X 30+0 X 50+0 X 71+1 X 111+0 _ 22 X 30 X 50 . 72 . 111 = 2156

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

e 77 =20.30.50.71.111 exponents e = (0,0,0,1,1) and 28 = 22.3°.5%.71.110
e 77.28 = 20+2 X 30+0 X 50+0 X 71+1 X 111+0 _ 22 X 30 X 50 . 72 . 111 = 2156
® 77 +28 =20:2.30-0.50-0, 71=1 9710 _20.30.50.70.771 — 11

X + y cut-off division (= § iff y | x), x = y cut-off subtraction (= x — y iff y < x)

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

e 77 =20.30.50.71.111 exponents e = (0,0,0,1,1) and 28 = 22.3°.5%.71.110
e 77.28 = 20+2 X 30+0 X 50+0 X 71+1 X 111+0 _ 22 X 30 X 50 . 72 . 111 = 2156
o 77 =~ 28 = 20-2.300 500 711 771-0 _20.30.50.70.731 — 11
x + y cut-off division (= § iff y | x), x = y cut-off subtraction (= x — y iff y < x)
° ng(77, 28) _ 2min(0,2) .3min(0,0) _5min(0,0) _7min(l,l) X 11min(1,0) _ 20_30.50.71 110 =7

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as pg := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

e 77 =20.30.50.71.111 exponents e = (0,0,0,1,1) and 28 = 22.3°.5%.71.110
e 77.28 — 20423040 . 50+0 7141 11140 _ 22 .30.50.72.111 — 2156
® 77 28 =20-2.30:0.500 71-1.771=0 — 20.30.50.70. 771 =11

x + y cut-off division (= § iff y | x), x = y cut-off subtraction (= x — y iff y < x)
° ng(77, 28) — min(0,2) , 3min(0,0) . 5min(0,0) .7min(1,1) 1qmin(1,0) _ 0, 30.50.71.710 — 7
° |cm(77, 28):2max(0,2)‘3max(0,0).5max(0,0)‘7max(1,1)‘11max(1,0):22.30.50‘71,111 — 308

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as p}, := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

Corollary
min(e,f) max(e,f)

ph - ph =pst, P+ ph =p5, ged(p§, pf) =pn ', and lem(ps, ph) = ph

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as p}, := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

Corollary
min(e,f) max(e,f)

p5 - ph =pst, P+ ph = p5, ged(p§, pf) =pn ', and lem(ps, ph) = ph

Corollary

for a,b € Z not zero, lcm(a, b) = gcd(a.b)

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n € N+ can be uniquely written as p}, := Hf;l pf" given a long enough initial
segment py of the prime numbers in ascending order, and collection ey of exponents

Corollary
= in(e,f f
pe - pf, = pe+f, pe + pf, = pe=f, ged(pe, pf) = pr™&), and lem(pe, pf) = pr(&f)

Corollary

fora,b € Z not zero, lcm(a, b) =

writing |a| = p€ and |b| = pf, for n large enough, by the previous corollary:

f f—min(e,f e(pf) _ lal-
m(a,b) = lem(pg. pf) = p®) — pgH e _ Gt _ oo

using max(x,y) = x + y — min(x, y) for natural numbers x, y. 'l

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.

10

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Number theory (factorisation, modulo) application: RSA

Cryptography
may be based on one-way functions f, easy to compute f, hard to compute 1.
caveat: not known whether one-way functions exist

10

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard;

10

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

10

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline, omitting some conditions

10

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)
E choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)
El choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)
El encrypt message m into cypher text ¢ := m® (mod n)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)
El choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)
El encrypt message m into cypher text ¢ := m® (mod n)

[decrypt cypher text c into original message m = c? (mod n)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)

El choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)
El encrypt message m into cypher text ¢ := m® (mod n)

[decrypt cypher text c into original message m = c? (mod n)

kEier

correct: ¢ = (m®)¥= me9= mitk(P-1)(a-1) = m . (mP-1)-(a-1)) m -1 = m(modn)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline
El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)
El choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)
El encrypt message m into cypher text ¢ := m® (mod n)
[decrypt cypher text c into original message m = c? (mod n)
correct: ¢ = (m®)?= me9= mi+k(e-1@-1) = m . (mE-DE@- DKL 1 — m (mod n)
secure: to decrypt c given (e, n), need (d)so ¢ = (p—1)- (g — 1) given p - g; factoring!

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute 1.
RSA: p - g easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

El choose large primes p,g. setn:=p-gand¢:=(p—1)-(q—1)
El choose e,d such thate-d =1 (mod ¢); public key := (e, n), private key := (d)
El encrypt message m into cypher text ¢ := m® (mod n)

[decrypt cypher text c into original message m = c? (mod n)

correct: ¢ = (m®)?= me9= mi+k(e-1@-1) = m . (mE-DE@- DKL 1 — m (mod n)

secure: to decrypt c given (e, n), need (d)so ¢ = (p—1)- (g — 1) given p - g; factoring!

RSA ingredients developed on following slides:

modulo, Euler (RSA case), fast exponentiation, Chinese remainder (speed-up)

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Shor's_algorithm

Modulo

Definition (modulo some positive natural number n)

* integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

Modulo

Definition (modulo some positive natural number n)

* integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

® congruence modulo n is equivalence relation

Modulo

Definition (modulo some positive natural number n)

* integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

® congruence modulo n is equivalence relation

e congruence modulo n is +,--congruence: if a = b (mod n) and c = d (mod n),
thena+c=b+d (modn)anda-c=b-d (mod n)

integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

congruence modulo n is equivalence relation

congruence modulo n is +,--congruence: ifa = b (mod n) and c = d (mod n),
thena+c=b+d (modn)anda-c=b-d (mod n)
equivalence class of a is congruence or residue class: a:={a+z-n|z€ Z}

integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

congruence modulo n is equivalence relation

congruence modulo n is +,--congruence: ifa = b (mod n) and c = d (mod n),
thena+c=b+d (modn)anda-c=b-d (mod n)

equivalence class of a is congruence or residue class: a:={a+z-n|z€ Z}
Z /nZ is the set of all congruence classes modulo n

* integers a, b are congruent modulo n, denoted by a = b (mod n) if remainders
a mod n and b mod n after division by n are the same

® congruence modulo n is equivalence relation

® congruence modulo n is +,--congruence: if a = b (mod n) and c = d (mod n),
thena+c=b+d (modn)anda-c=b-d (mod n)

e equivalence class of a is congruence or residue class: a:={a+z-n|z€ Z}
® 7 /nZ is the set of all congruence classes modulo n

As system of representatives we usually employ the smallest non-negative
remainders {0,1,2,...,n — 1} or the absolutely-smallest remainders

{-n/2+1,...,-1,0,1,...,n/2} if n is even
{-(n-1)/2,...,-1,0,1,...,(n—1)/2} ifnisodd. H

Modulo (continued)

12

Modulo (continued)

0 ={0,5,10,15,. }_5 and 2+

Lemma

The functions

+:Z/nZ x Z/nZ — Z/nZ , (a,b)

:Z/nZ x Z/nZ — Z/nZ ,(a,b)

are well-defined ||

Modulo (continued)

+ |

Lemma

The functions
+:Z/nZ x Z/nZ — Z/nZ ,(a,b)—a+b:=a+b,

. Z/nZ x Z/nZ — Z/nZ ,(a,b)—a-b:=a-b

are well-defined ||

In many programming languages there is a data type for integers corresponding to
Z/22" Z for some n > 3. For example unsigned int in C corresponds to n =5 resp.
n=6. Forn =5, i.e. a 32-bits architecture, the sumof22° —1 =232 _1and1is0."

Inverses modulo

A congruence class @ modulo n is invertible, if there is a congruence class b modulo n
suchthata-b =1 (mod n), i.e.ifa-b—1=k-nfor some k.

13

Inverses modulo

A congruence class @ modulo n is invertible, if there is a congruence class b modulo n
suchthata-b =1 (mod n), i.e.ifa-b—1=k-nfor some k.

Lemma

a modulo n is invertible for non-zero a iff gcd(a,n) = 1 ; in that case, we can compute
using Bézout’s lemma, integers u,v suchthat u-a+v-n=1anda *=u

Inverses modulo

A congruence class @ modulo n is invertible, if there is a congruence class b modulo n
suchthata-b =1 (mod n), i.e.ifa-b—1=k-nfor some k.

a modulo n is invertible for non-zero a iff gcd(a,n) = 1 ; in that case, we can compute
using Bézout’s lemma, integers u,v suchthat u-a+v-n=1anda *=u

ifged(a,n)=1landu-a+v-n=1,thenl=u-a+Vv-n=u-a. vice versa, ifa
invertible, then @- b = 1 for some b, hence a- b — 1 = 0; and thereforen | (a-b — 1).
thus ged(a,n) = 1, as ged(a, n) divides n hencea-b —1, and a hencea-b |

13

Inverses modulo

A congruence class @ modulo n is invertible, if there is a congruence class b modulo n
suchthata-b =1 (mod n), i.e.ifa-b—1=k-nfor some k.

a modulo n is invertible for non-zero a iff gcd(a,n) = 1 ; in that case, we can compute
using Bézout’s lemma, integers u,v suchthat u-a+v-n=1anda *=u

ifged(a,n)=1landu-a+v-n=1,thenl=u-a+Vv-n=u-a. vice versa, ifa
invertible, then @- b = 1 for some b, hence a- b — 1 = 0; and thereforen | (a-b — 1).
thus ged(a,n) = 1, as ged(a, n) divides n hencea-b —1, and a hencea-b |

Corollary (cancellation by multiplication with 3~ ')

13

if0<a<panda-b=a-c (mod p) with p prime, then b =c (mod p)

Theorem (Fermat’s little theorem, FLT)

for prime p, and integer a with p 1 a, we have aP~! = 1 (mod p)

Theorem (Fermat’s little theorem, FLT)

for prime p, and integer a with p { a, we have aP~! =1 (mod p)

by cancellationof 1-2---(p — 1) from

l-2-~~(p—1)-ap—1:l-a~2~a--~(p—1)~a:1-2~~-(p—1)-I

where we use cancellation again to show 1-a,2-a,...,(p — 1) - a are all distinct and
also from 0, so that they must be a permutation of the congruence classes
1,2,...,(p — 1), to conclude their products are the same (double counting). [|

14

Theorem (Fermat’s little theorem, FLT)

for prime p, and integer a with p { a, we have aP~! =1 (mod p)

by cancellationof 1-2---(p — 1) from

1-2-~~(p—1)-ap—1:l-a~2~a--~(p—1)~a:1-2~~-(p—1)-T

where we use cancellation again to show 1-a,2-a,...,(p — 1) - a are all distinct and
also from 0, so that they must be a permutation of the congruence classes
1,2,...,(p — 1), to conclude their products are the same (double counting). [|

Corollary (Euler’s theorem, RSA case)

for all primes p, q, and integers a with gcd(a,p-q) =1, a®~1(@"1) =1 (mod p - q)

14

Theorem (Fermat’s little theorem, FLT)

for prime p, and integer a with p { a, we have aP~! =1 (mod p)

by cancellationof 1-2---(p — 1) from

1-2-~~(p—1)-ap—1:1-a~2~a--~(p—1)~a:1-2~~-(p—1)-T

where we use cancellation again to show 1-a,2-a,...,(p — 1) - a are all distinct and
also from 0, so that they must be a permutation of the congruence classes
1,2,...,(p — 1), to conclude their products are the same (double counting). [|

Corollary (Euler’s theorem, RSA case)

for all primes p, q, and integers a with gcd(a,p-q) = 1, a®~1(@"1) =1 (mod p - q)

By FTA and p, q | aP~1)(@=1) — 1, from FLT twice, with a?~1, g resp. a9, p.

Fast exponentiation

We compute: 39 = 3(1001): — 32°.32° _ 3831 _ ((32)2)2.3 = 19683. The
computation uses 4 muIt|pI|cat|ons, of which 3 are for squaring.

15

Fast exponentiation

We compute: 39 = 3(1001)2 — 327 . 32% _ 3831 _ ((32)2)2.3 = 19683. The
computation uses 4 multiplications, of which 3 are for squaring.

Theorem (exponentiation by squaring)

Let a be an integer and let n be a positive integer with binary representation
bibk_1 - - - bo where by = 1; in symbols (bxbk—_1 - - - bo)2 = n. We can then compute the
power a" by squaring (and possibly multiplying) k-times:

Set x = a.
For i from k — 1 down to 0O repeat:
Set x = x°.

If bj=1, set x=xx*a.

Fast exponentation (continued)

* By mathematical induction on k; for k = 0 n = 1 and the algorithm yields a! = a

® For kK > 0 we write

k k k—1
n=>Y b2 =m-2+by with m=> b2"1=> b2
i=0 i=1 i=0

By the induction hypothesis, the first k — 1 loops yield the value a™; therefore, the
last time (i = 0) yields
(am)2 . abo _ an

16

Fast exponentation (continued)

* By mathematical induction on k; for k = 0 n = 1 and the algorithm yields a! = a

® For kK > 0 we write

k k k—1
n=>Y b2 =m-2+by with m=> b2"1=> b2
i=0 i=1 i=0

By the induction hypothesis, the first k — 1 loops yield the value a™; therefore, the
last time (i = 0) yields

m\2 .bo _ 4n
(@mM)°-a* =a -

16

Fast exponentation (continued)

* By mathematical induction on k; for k = 0 n = 1 and the algorithm yields a! = a

® For kK > 0 we write

k k k—1
n=>Y b2 =m-2+by with m=> b2"1=> b2
i=0 i=1 i=0

By the induction hypothesis, the first k — 1 loops yield the value a™; therefore, the
last time (i = 0) yields
(@™)?-a% =a" -

during exponentiation modulo some number n, no numbers >n need to be used.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p, q) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < q, is a bijection:

x — (x mod p, x mod q)

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 0+ (0,0)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1+ (1,1)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 2+ (2,2)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 3 3+ (0,3)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 3 4 (1,4)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 3 5+ (2,0)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0|6 3 6+ (0,1)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0| 6 3 7+ (1,2)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0| 6 3 8+ (2,3)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0| 6 S | & 9+ (0,4)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1 2 3 4

0] 6 319 10 — (1,0)
10
5 2 | 8

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1 2 3 4

0| 6 319 11+ (2,1)
10
5|11 2 | 8

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1 2 3 4

0 6 | 12 | 3 9 12 + (0,2)
10
5 |11 | 2 8

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1 2 3 4

0|6 123]9 13 5 (1,3)
101 7|13
5 11| 2 | 8

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 5)

0 1 2 3 4

0 6 12 3 9 14+ (2,4)
10 | 1 7 | 13

5 |11 | 2 8 | 14

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 3)

0 1 2

0 0+ (0,0)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 3)

0 1 2

0 1+ (1,1)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 3)

0 1 2

0 2 (2,2)

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < g, is a bijection:

X — (x mod p,x mod q)

Example (p = 3,g = 3)

0 1 2

0 3+ (0,0) gcd(p,q) =3 # 1, crt not a bijection

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p, q) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < q, is a bijection:

X — (x mod p,x mod q)

sufficient to prove injectivity.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p, q) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < q, is a bijection:

X — (x mod p,x mod q)

sufficient to prove injectivity. suppose 0 < x,x’ < p - q. if crt(x) = crt(x’), then
x =x' (mod p) and x = x’ (mod q), hence p,q | x — x'. Thus

Pg pPq
1 ged(p, g

p-q):Icm(p,q)lx—xl

that is, solutions are p - g apart, sox — x’ = 0 and x = x’.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p, q) = 1, then the following function crt from numbers 0 < x < p - g to pairs
(a,b) with0 < a < pand0 < b < q, is a bijection:

X — (x mod p,x mod q)

sufficient to prove injectivity. suppose 0 < x,x’ < p - q. if crt(x) = crt(x’), then
x =x' (mod p) and x = x’ (mod q), hence p,q | x — x'. Thus

Pg pPq
1 ged(p, g

p-q):Icm(p,q)lx—xl

that is, solutions are p - g apart, sox — x’ = 0 and x = x’. |

Theorem (Chinese remainder theorem, Bézout)

Let p and g be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary
integers. The congruence system

x=b (mod q)

then has the unique solution x = vqa + upb (mod pq) where the integers u and v such
that up + vq = 1 can be computed using Bézout’s lemma.

18

Theorem (Chinese remainder theorem, Bézout)

Let p and g be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary
integers. The congruence system

x=a (modp)
x=b (mod q)

then has the unique solution x = vqa + upb (mod pq) where the integers u and v such
that up + vq = 1 can be computed using Bézout’s lemma.

® (existence) weshow x=v-q-a+u-p-bforup+ vqg = 1 satisfies equations:
XxX=v-q-at+u-p-b=v-g-ra=(1—-u-p)-a=a—u-p-a=a (modp)and
similarly for x = b (mod q)

® (uniqueness)

Theorem (Chinese remainder theorem, Bézout)

Let p and g be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary
integers. The congruence system

x=a (modp)
x=b (mod q)

then has the unique solution x = vqa + upb (mod pq) where the integers u and v such
that up + vq = 1 can be computed using Bézout’s lemma.

® (existence) weshow x=v-q-a+u-p-bforup+ vqg =1 satisfies equations:
X=v-q-at+u-p-b=v-g-ra=(1-u-p)-a=a—u-p-a=a (modp)and
similarly for x = b (mod q)

® (uniqueness) as before: if both x, x’ are solutions to the two equations, then
p,q | (x — x’), hence lem(p, q) = gcf('gq) =p-q|(x—x'). Thatis, solutions are p - q
apart, hence unique in {0,...,p-q — 1}. 18

Theorem (Chinese remainder theorem, Bézout)

Let p and g be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary
integers. The congruence system

x=a (modp)
x=b (mod q)

then has the unique solution x = vqa + upb (mod pq) where the integers u and v such
that up + vq = 1 can be computed using Bézout’s lemma.

® (existence) weshow x=v-q-a+u-p-bforup+ vqg =1 satisfies equations:
X=v-q-at+u-p-b=v-g-ra=(1-u-p)-a=a—u-p-a=a (modp)and
similarly for x = b (mod q)

® (uniqueness) as before: if both x, x’ are solutions to the two equations, then
p,q | (x — x’), hence lem(p, q) = gcf('gq) =p-q|(x—x'). Thatis, solutions are p - q
apart, hence unique in {0,...,p-q — 1}. |

The following congruence system has the unique solution x = 16 (mod 35)
x=1 (mod5)
x=2 (mod7)

19

The following congruence system has the unique solution x = 16 (mod 35)
x=1 (mod5)
x=2 (mod7)

We compute integers u and v, such thatu -5+ v -7 = ged(5, 7).

A= (5,1,0) B=(7,0,1) q=0
A=(7,0,1) B=(51,00 qg=1
A=(5,1,0) B=(2,-1,1) g=2
A=(2,-1,-1) B=(1,3,-2) g=2

Henceu =3,v = —-2and gcd(5,7) =3-5—2-7 =1, and therefore
—-2-7 -1+ 3 .5-.-2 =16

NI AN N i
v q a u P b

By the theorem, the solution x = 16 (mod 35) is unique 19

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

x = a (modp)

b (mod q) = x=a+p-((p-(b—a))modg) (modp-q)

X

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let ged(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

X a (mod p)

x = b (mod q) = x=a+p-((p'-(b—a)) modqg) (modp-q)

< x=a+p-((p-(b—a))modq)+k-p-g=a (mod p)
x=a+p-p'-(b—a)+k-p-g=a+b—a=>b (mod q)

20

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)
Let ged(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

X a (mod p) B /
x = b (mod q) = x=a+p-((p'-(b—a)) modqg) (modp-q)

< x=a+p-((p-(b—a))modq)+k-p-g=a (mod p)
x=a+p-p'-(b—a)+k-p-g=a+b—a=b (mod q)

= previous item shows rhs is a solution. now show it is unique modulo p - g.
0 < x,x’ < p-q being solutions entails x = x’ (mod p) and x = x’ (mod g), hence

p,q|x—x".Thus,p-q= gccf(g,q) =lem(p,q) | x —x,sox—x' =0andx=x". W

20

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)
Let ged(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

= a (mod p)
x = b (mod q)

Letp =3, g =5 (see above). Thenp’ =2 (3:-2=1 (mod 5)). E.g.fora=1and b =2,
we obtainx =1+3-(2-(2—-1) mod 5) =7, and 7 is indeed the number we find at
coordinates (a,b) = (1,2) in the table on slide 17. For another example, at coordinate
(2,1)inthetablex=2+3-(2-(1—=2)mod5)=2+3-(—2mod5)=2+3-3=11.

< x=a+p- ((p"-(b—a))modg) (modp-q)

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

X = ZE:ZZZ; — x=a+p-((p-(b—a))modq) (modp-q)

Application to RSA

Speed up computation of ¢? mod (p - q) for ged(p,q) = 1?

20

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

X = ZE:ZZZ; — x=a+p-((p-(b—a))modq) (modp-q)

Application to RSA

Speed up computation of ¢? mod (p - q) for ged(p,q) = 1?
E1 compute a := ¢ ™4 (P=1) mod p; by FLT ¢? = a (mod p)

20

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

X = ZE:Z:Z; — x=a+p-((p-(b—a))modq) (modp-q)

Application to RSA

Speed up computation of ¢? mod (p - q) for ged(p, q) = 1?
E1 compute a := ¢ ™4 (P=1) mod p; by FLT ¢? = a (mod p)
Bl compute b := ¢dM°d (9-1) mod q; by FLT ¢? = b (mod q)

20

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p’ be inverse of p modulo q, i.e. p-p’ =1 (mod q). Then

a (mod p) B /
x = b (mod q) = x=a+p-((p'-(b—a)) modqg) (modp-q)

Application to RSA

Speed up computation of ¢? mod (p - q) for ged(p, q) = 1?
E1 compute a := ¢ ™4 (P=1) mod p; by FLT ¢? = a (mod p)
Bl compute b := ¢dM°d (9-1) mod g; by FLT ¢? = b (mod q)
El computem:=a+p-((p’ - (b—a)) mod q) mod (p-q); by CRTm=c“ (mod p - q).

20

