Summary last week

- A countably infinite if enumeration $\mathbb{N} \rightarrow A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}, \mathcal{P}(\mathbb{N}), \mathbb{R}$ by diagonalisation (Cantor)
- injections $f: A \rightarrow B, g: B \rightarrow A$, then exists bijection $A \rightarrow B$ (Schröder-Bernstein)
- collections |_| of equinumerous sets partially ordered by injections; $\mathbb{N}<\mathbb{R}$.

Summary last week

- A countably infinite if enumeration $\mathbb{N} \rightarrow A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}, \mathcal{P}(\mathbb{N}), \mathbb{R}$ by diagonalisation (Cantor)
- injections $f: A \rightarrow B, g: B \rightarrow A$, then exists bijection $A \rightarrow B$ (Schröder-Bernstein)
- collections |_| of equinumerous sets partially ordered by injections; $\mathbb{N}<\mathbb{R}$.
- equivalence relation if reflexive, transitive, and symmetric
- if \sim equivalence on A, then $[a]=\{b \mid a \sim b\}$ is equivalence class of $a \in A$
- b representative of [a] if $b \in[a]$
- B system of representatives if for all $a \in A$, unique representative b of [a] in B
- bijection between partitionings P and equivalences $a \sim b$ if $\exists B \in P, a, b \in B$.
- reflexive, transitive relation \leq induces equivalence relation $\leq \cap \geq$

Summary last week

- A countably infinite if enumeration $\mathbb{N} \rightarrow A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}, \mathcal{P}(\mathbb{N}), \mathbb{R}$ by diagonalisation (Cantor)
- injections $f: A \rightarrow B, g: B \rightarrow A$, then exists bijection $A \rightarrow B$ (Schröder-Bernstein)
- collections $\left|_\right|$of equinumerous sets partially ordered by injections; $\mathbb{N}<\mathbb{R}$.
- equivalence relation if reflexive, transitive, and symmetric
- if \sim equivalence on A, then $[a]=\{b \mid a \sim b\}$ is equivalence class of $a \in A$
- b representative of [a] if $b \in[a]$
- B system of representatives if for all $a \in A$, unique representative b of [a] in B
- bijection between partitionings P and equivalences $a \sim b$ if $\exists B \in P, a, b \in B$.
- reflexive, transitive relation \leq induces equivalence relation $\leq \cap \geq$
- algorithm for $\operatorname{gcd}(x, y)$ with $x, y \in \mathbb{Z}$ by subtraction, division modulo (Euclid)
- extended algorithm for u, v with $\operatorname{gcd}(x, y)=u \cdot x+v \cdot y$ (Bézout); $\operatorname{Icm}(x, y)=\frac{x \cdot y}{\operatorname{gcd}(x, y)}$

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

Theorem (Bézout's lemma)
for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30))$

Theorem (Bézout's lemma)
for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30)$)

(1)
$77=$
1.77+
$0 \cdot 30$

Theorem (Bézout's lemma)
for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30)$)

(1)	77	$=$	$1 \cdot 77+$
(2)	30	$=$	$0 \cdot 77+$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30)$)

(1)	77	$=$	$1 \cdot 77+$	$0 \cdot 30$
(2)	30	$=$	$0 \cdot 77+$	$1 \cdot 30$
(3)	$77-30$		$(1-0) \cdot 77+$	$(0-1) \cdot 30$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30)$)

(1)	77	$=$	$1.77+$	$0 \cdot 30$
(2)	30	$=$	$0.77+$	$1 \cdot 30$
(3)	47	$=$	$1.77+$	$(-1) \cdot 30$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$

Example $(1=\operatorname{gcd}(77,30)$)

(1)	$77=$	$1 \cdot 77+$	$0 \cdot 30$	
(2)	30	$=$	$0 \cdot 77+$	$1 \cdot 30$
(3)	47	$=$	$1 \cdot 77+$	$(-1) \cdot 30$
(4)	17	$=$	$1 \cdot 77+$	$(1)-(2) \cdot 30$
			$(3)-(2)$	

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30)$)

(1)	77	$=$	$1 \cdot 77+$	$0 \cdot 30$
(2)	30	$=$	$0 \cdot 77+$	$1 \cdot 30$
(3)	47	$=$	$1 \cdot 77+$	$(-1) \cdot 30$
(4)	17		$1 \cdot 77+$	$(-2) \cdot 30$
(5)	13	$=$	$(-1) \cdot 77+$	$3 \cdot 30$
$(2)-(2)$				
				$(2)-(4)$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30))$

(1)	$77=$	1.77+	$0 \cdot 30$	
(2)	$30=$	0.77+	1. 30	
(3)	$47=$	1.77+	$(-1) \cdot 30$	(1) - (2)
(4)	$17=$	1.77+	$(-2) \cdot 30$	(3) - (2)
(5)	$13=$	$(-1) \cdot 77+$	$3 \cdot 30$	(2) - (4)
(6)	$4=$	2.77+	$(-5) \cdot 30$	(4) - (5)

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30))$

(1)	$77=$	$1 \cdot 77+$	$0 \cdot 30$	
(2)	$30=$	$0 \cdot 77+$	$1 \cdot 30$	
(3)	$47=$	$1 \cdot 77+$	$(-1) \cdot 30$	$(1)-(2)$
(4)	$17=$	$1 \cdot 77+$	$(-2) \cdot 30$	$(3)-(2)$
(5)	$13=$	$(-1) \cdot 77+$	$3 \cdot 30$	$(2)-(4)$
(6)	$4=$	$2 \cdot 77+$	$(-5) \cdot 30$	$(4)-(5)$
(7)	$9=$	$(-3) \cdot 77+$	$8 \cdot 30$	$(5)-(6)$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30))$

(1)	77	$=$	$1 \cdot 77+$	$0 \cdot 30$
(2)	30	$=$	$0 \cdot 77+$	$1 \cdot 30$
(3)	47	$=$	$1 \cdot 77+$	$(-1) \cdot 30$
(4)	17	$=$	$1 \cdot 77+$	$(-2) \cdot 30$
(5)	13	$=$	$(-1) \cdot 77+$	$3 \cdot 30$
(6)	$2 \cdot$	$(2)-(47+$	$(-5) \cdot 30$	$(4)-(5)$
(6)	9	$=$	$(-3) \cdot 77+$	$8 \cdot 30$
(7)	5	$=$	$(-5) \cdot 77+$	$13 \cdot 30$
(8)				$(7)-(6)$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30))$

(1)	$77=$	1.77+	$0 \cdot 30$	
(2)	$30=$	$0 \cdot 77+$	$1 \cdot 30$	
(3)	$47=$	1.77+	$(-1) \cdot 30$	(1) - (2)
(4)	$17=$	1.77+	$(-2) \cdot 30$	(3) - (2)
(5)	$13=$	(-1).77+	$3 \cdot 30$	(2) - (4)
(6)	$4=$	2.77+	$(-5) \cdot 30$	(4) - (5)
(7)	$9=$	$(-3) \cdot 77+$	$8 \cdot 30$	(5) - (6)
(8)	$5=$	$(-5) \cdot 77+$	$13 \cdot 30$	(7) - (6)
(9)	$1=$	(-7) $\cdot 77+$	$18 \cdot 30$	(8) - (6)

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=u \cdot a+v \cdot b$
Example $(1=\operatorname{gcd}(77,30)$)

(1)	$77=$	$1 \cdot 77+$	$0 \cdot 30$	
(2)	$30=$	$0 \cdot 77+$	$1 \cdot 30$	
(3)	$47=$	$1 \cdot 77+$	$(-1) \cdot 30$	$(1)-(2)$
(4)	$17=$	$1 \cdot 77+$	$(-2) \cdot 30$	$(3)-(2)$
(5)	$13=$	$(-1) \cdot 77+$	$3 \cdot 30$	$(2)-(4)$
(6)	$4=$	$2 \cdot 77+$	$(-5) \cdot 30$	$(4)-(5)$
(7)	$9=$	$(-3) \cdot 77+$	$8 \cdot 30$	$(5)-(6)$
(8)	$5=$	$(-5) \cdot 77+$	$13 \cdot 30$	$(7)-(6)$
(9)	$1=$	$(-7) \cdot 77+$	$18 \cdot 30$	$(8)-(6)$

may stop at 1 since 1 is least possible divisor, it's trivial. $u=-7$ and $v=18$ indeed $1=\operatorname{gcd}(77,30)=(-7) \cdot 77+18 \cdot 30=-539+540$

The divisibility order | (recall from weeks 4 and 5)

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1=x$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1=x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y^{\prime}=y$ and $y \cdot z^{\prime}=z$ for some y^{\prime}, z^{\prime}. Hence setting $x^{\prime}:=y^{\prime} \cdot z^{\prime}$, we have $x \cdot x^{\prime}=x \cdot y^{\prime} \cdot z^{\prime}=y \cdot z^{\prime}=z$, so $x \mid z$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1=x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y^{\prime}=y$ and $y \cdot z^{\prime}=z$ for some y^{\prime}, z^{\prime}. Hence setting $x^{\prime}:=y^{\prime} \cdot z^{\prime}$, we have $x \cdot x^{\prime}=x \cdot y^{\prime} \cdot z^{\prime}=y \cdot z^{\prime}=z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence $x=y$ by anti-symmetry of \leq

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1=x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y^{\prime}=y$ and $y \cdot z^{\prime}=z$ for some y^{\prime}, z^{\prime}. Hence setting $x^{\prime}:=y^{\prime} \cdot z^{\prime}$, we have $x \cdot x^{\prime}=x \cdot y^{\prime} \cdot z^{\prime}=y \cdot z^{\prime}=z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence $x=y$ by anti-symmetry of \leq
- well-founded: if $\ldots x^{\prime \prime}\left|x^{\prime}\right| x$ were an infinite descending chain, then so would $\ldots x^{\prime \prime}<x^{\prime}<x$, contradicting well-foundedness of \leq

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}>0$

Proof.

note: if $x \mid y$ then $x+\ldots+x=y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1=x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y^{\prime}=y$ and $y \cdot z^{\prime}=z$ for some y^{\prime}, z^{\prime}. Hence setting $x^{\prime}:=y^{\prime} \cdot z^{\prime}$, we have $x \cdot x^{\prime}=x \cdot y^{\prime} \cdot z^{\prime}=y \cdot z^{\prime}=z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence $x=y$ by anti-symmetry of \leq
- well-founded: if $\ldots x^{\prime \prime}\left|x^{\prime}\right| x$ were an infinite descending chain, then so would $\ldots x^{\prime \prime}<x^{\prime}<x$, contradicting well-foundedness of \leq
\Rightarrow proofs by well-founded induction on \mid for statements on $\mathbb{N}_{>0}$ and $\mathbb{N}_{>1}=\mathbb{N}-\left\{0,{ }_{5}^{1}\right\}$

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is \mid-minimal (on $\mathbb{N}_{>1}$)

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is \mid-minimal

Proof.

- Assume p prime and suppose $p=x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then $x=p$ and $y=1$, so both are trivial hence p is indecomposable

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is \mid-minimal

Proof.

- Assume p prime and suppose $p=x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then $x=p$ and $y=1$, so both are trivial hence p is indecomposable
- Assume p indecomposable and suppose $x \mid p$ with $x \in \mathbb{N}_{>1}$, i.e. $x \cdot y=p$ for some y. By p being indecomposable, then x, y are trivial, so $p=x$ and p is \mid-minimal

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is \mid-minimal

Proof.

- Assume p prime and suppose $p=x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then $x=p$ and $y=1$, so both are trivial hence p is indecomposable
- Assume p indecomposable and suppose $x \mid p$ with $x \in \mathbb{N}_{>1}$, i.e. $x \cdot y=p$ for some y. By p being indecomposable, then x, y are trivial, so $p=x$ and p is \mid-minimal
- Assume $p \mid$-minimal and suppose $p \mid x \cdot y$, i.e. $p \cdot d=x \cdot y$ for some d. Either $p \mid x$ or else $\operatorname{gcd}(p, x)=1$ by p being \mid-minimal. Then $1=u \cdot p+v \cdot x$ for some u, v (Bézout): $y=y \cdot 1=y \cdot(u \cdot p+v \cdot x)=y \cdot u \cdot p+y \cdot v \cdot x=y \cdot u \cdot p+v \cdot p \cdot d=(y \cdot u+v \cdot d) \cdot p$ hence $p \mid y$. That is, either $p \mid x$ or $p \mid y$, so p is prime

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}_{>1}$ there exists a collection of prime numbers p_{l} such that $x=\prod p_{1}$, by induction on x well-foundedly ordered by \mid. recall from week 5.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}_{>1}$ there exists a collection of prime numbers p_{I} such that $x=\prod p_{1}$, by induction on x well-foundedly ordered by \mid.
If x is not prime itself, then $x=y \cdot z$ for y, z non-trivial (by the lemma), hence $y=\Pi q_{\mu}$ and $z=\prod r_{K}$ for collections of primes q_{\jmath} and r_{K} by the IH twice. Combining both, $x=\Pi q_{J} \cdot \Pi r_{K}$, i.e. we may take the concatenation of q_{J} and r_{K}.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}>1$ there exists a collection of prime numbers p_{l} such that $x=\prod p_{1}$, by induction on x well-foundedly ordered by \mid.
If x is not prime itself, then $x=y \cdot z$ for y, z non-trivial (by the lemma), hence $y=\Pi q_{ر}$ and $z=\prod r_{K}$ for collections of primes q_{\jmath} and r_{K} by the IH twice. Combining both, $x=\Pi q_{J} \cdot \Pi r_{K}$, i.e. we may take the concatenation of q_{J} and r_{K}.
- next we show uniqueness, i.e. if $\Pi p_{l}=\prod q_{J}$ then the collections of prime numbers p_{l} and q_{J} are the same up to order, by mathematical induction on \#I.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}>1$ there exists a collection of prime numbers p_{l} such that $x=\prod p_{l}$, by induction on x well-foundedly ordered by \mid.
If x is not prime itself, then $x=y \cdot z$ for y, z non-trivial (by the lemma), hence $y=\Pi q_{\jmath}$ and $z=\prod r_{K}$ for collections of primes q_{\jmath} and r_{K} by the IH twice. Combining both, $x=\Pi q_{J} \cdot \Pi r_{K}$, i.e. we may take the concatenation of q_{J} and r_{K}.
- next we show uniqueness, i.e. if $\Pi p_{l}=\prod q_{j}$ then the collections of prime numbers p_{l} and q_{J} are the same up to order, by mathematical induction on \#I. Suppose $i \in I$. Then $p_{i} \mid \prod p_{I}=\prod q_{J}$, so $\exists j \in J$ such that $p_{i} \mid q_{j}$ hence $p_{i}=q_{j}$ (by the lemma twice). Therefore, $\prod p_{I-\{i\}}=\frac{\prod p_{I}}{p_{i}}=\frac{\prod q_{j}}{q_{j}}=\prod q_{J-\{j\}}$, and by the IH $p_{I-\{i\}}$ and $q_{J-\{j\}}$ are the same up to order, hence so are p_{I} and q_{J}.

Theorem

there are infinitely many prime numbers.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

- set $n:=\prod_{i=1}^{k} p_{i}$, so that $p_{i} \mid n$ for each i.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

- set $n:=\prod_{i=1}^{k} p_{i}$, so that $p_{i} \mid n$ for each i.
- by FTA $n+1$ has prime factorisation, with primes among p_{1}, \ldots, p_{k} by assumption

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

- set $n:=\prod_{i=1}^{k} p_{i}$, so that $p_{i} \mid n$ for each i.
- by FTA $n+1$ has prime factorisation, with primes among p_{1}, \ldots, p_{k} by assumption
- if $p_{i} \mid n+1$, then also $p_{i} \mid(n+1)-n=1$; contradicting p_{i} is prime.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

- set $n:=\prod_{i=1}^{k} p_{i}$, so that $p_{i} \mid n$ for each i.
- by FTA $n+1$ has prime factorisation, with primes among p_{1}, \ldots, p_{k} by assumption
- if $p_{i} \mid n+1$, then also $p_{i} \mid(n+1)-n=1$; contradicting p_{i} is prime.

Remark

there are countably many primes since subset of \mathbb{N}.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_{1}, \ldots, p_{k} were the finite list of primes

- set $n:=\prod_{i=1}^{k} p_{i}$, so that $p_{i} \mid n$ for each i.
- by FTA $n+1$ has prime factorisation, with primes among p_{1}, \ldots, p_{k} by assumption
- if $p_{i} \mid n+1$, then also $p_{i} \mid(n+1)-n=1$; contradicting p_{i} is prime.

Remark

there are countably many primes since subset of \mathbb{N}.

Remark

FTA links numbers wrt addition $(+,-)$ to numbers wrt multiplication (\cdot, \div). Connections between both hard in general, cf. Goldbach's conjecture: if $n>2$, then $n=p_{i}+p_{j}$.

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Example

- $77=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents $e=(0,0,0,1,1)$ and $28=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Example

- $77=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents $e=(0,0,0,1,1)$ and $28=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $77 \cdot 28=2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0}=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{2} \cdot 11^{1}=2156$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Example

- $77=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents $e=(0,0,0,1,1)$ and $28=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $77 \cdot 28=2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0}=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{2} \cdot 11^{1}=2156$
- $77 \div 28=2^{0-2} \cdot 3^{0-0} \cdot 5^{0-0} \cdot 7^{1-1} \cdot 11^{1-0}=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{0} \cdot 11^{1}=11$ $x \div y$ cut-off division $\left(=\frac{x}{y}\right.$ iff $\left.y \mid x\right), x \div y$ cut-off subtraction ($=x-y$ iff $y \leq x$)

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Example

- $77=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents $e=(0,0,0,1,1)$ and $28=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $77 \cdot 28=2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0}=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{2} \cdot 11^{1}=2156$
- $77 \div 28=2^{0-2} \cdot 3^{0-0} \cdot 5^{0-0} \cdot 7^{1-1} \cdot 11^{1-0}=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{0} \cdot 11^{1}=11$ $x \div y$ cut-off division ($=\frac{x}{y}$ iff $y \mid x$), $x \doteq y$ cut-off subtraction ($=x-y$ iff $y \leq x$)
- $\operatorname{gcd}(77,28)=2^{\min (0,2)} \cdot 3^{\min (0,0)} \cdot 5^{\min (0,0)} \cdot 7^{\min (1,1)} \cdot 11^{\min (1,0)}=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}=7$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Example

- $77=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents $e=(0,0,0,1,1)$ and $28=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $77 \cdot 28=2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0}=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{2} \cdot 11^{1}=2156$
- $77 \div 28=2^{0-2} \cdot 3^{0-0} \cdot 5^{0-0} \cdot 7^{1-1} \cdot 11^{1-0}=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{0} \cdot 11^{1}=11$ $x \div y$ cut-off division ($=\frac{x}{y}$ iff $y \mid x$), $x \doteq y$ cut-off subtraction ($=x-y$ iff $y \leq x$)
- $\operatorname{gcd}(77,28)=2^{\min (0,2)} \cdot 3^{\min (0,0)} \cdot 5^{\min (0,0)} \cdot 7^{\min (1,1)} \cdot 11^{\min (1,0)}=2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}=7$
- $\operatorname{Icm}(77,28)=2^{\max (0,2)} \cdot 3^{\max (0,0)} \cdot 5^{\max (0,0)} \cdot 7^{\max (1,1)} \cdot 11^{\max (1,0)}=2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}=308$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Corollary

$p_{n}^{e} \cdot p_{n}^{f}=p_{n}^{e+f}, p_{n}^{e} \div p_{n}^{f}=p_{n}^{e-f}, \operatorname{gcd}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\min (e, f)}$, and $\operatorname{Icm}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\max (e, f)}$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Corollary

$p_{n}^{e} \cdot p_{n}^{f}=p_{n}^{\mathrm{e}+f}, p_{n}^{e} \div p_{n}^{f}=p_{n}^{e-f}, \operatorname{gcd}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\min (e, f)}$, and $\operatorname{Icm}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\max (e, f)}$

Corollary

for $a, b \in \mathbb{Z}$ not zero, $\operatorname{Icm}(a, b)=\frac{|a| \cdot|b|}{\operatorname{gcd}(a, b)}$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_{k}^{e}:=\prod_{i=1}^{k} p_{i}^{e_{i}}$ given a long enough initial segment p_{k} of the prime numbers in ascending order, and collection e_{k} of exponents

Corollary

$p_{n}^{e} \cdot p_{n}^{f}=p_{n}^{e+f}, p_{n}^{e} \div p_{n}^{f}=p_{n}^{e-f}, \operatorname{gcd}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\min (e, f)}$, and $\operatorname{lcm}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\max (e, f)}$

Corollary

for $a, b \in \mathbb{Z}$ not zero, $\operatorname{lcm}(a, b)=\frac{|a| \cdot|b|}{\operatorname{gcd}(a, b)}$

Proof.

writing $|a|=p_{n}^{e}$ and $|b|=p_{n}^{f}$ for n large enough, by the previous corollary:
$\operatorname{lcm}(a, b)=\operatorname{lcm}\left(p_{n}^{e}, p_{n}^{f}\right)=p_{n}^{\max (e, f)}=p_{n}^{e+f-\min (e, f)}=\frac{\left(p_{n}^{e}\right) \cdot\left(p_{n}^{f}\right)}{\operatorname{gcd}\left(p_{n}^{e}, p_{n}^{f}\right)}=\frac{|a| \cdot|b|}{\operatorname{gcd}(a, b)}$
using $\max (x, y)=x+y-\min (x, y)$ for natural numbers x, y.

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}.

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. caveat: not known whether one-way functions exist

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard;

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline, omitting some conditions

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$
3 encrypt message m into cypher text $c:=m^{e}(\bmod n)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$
3 encrypt message m into cypher text $c:=m^{e}(\bmod n)$
4 decrypt cypher text c into original message $m \equiv c^{d}(\bmod n)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$
3 encrypt message m into cypher text $c:=m^{e}(\bmod n)$
4 decrypt cypher text c into original message $m \equiv c^{d}(\bmod n)$
correct: $c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e \cdot d} \equiv m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \cdot\left(m^{(p-1) \cdot(q-1)}\right)^{k} \stackrel{\text { Euler }}{\equiv} m \cdot 1 \equiv m(\bmod n)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$
3 encrypt message m into cypher text $c:=m^{e}(\bmod n)$
4 decrypt cypher text c into original message $m \equiv c^{d}(\bmod n)$
correct: $c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e \cdot d} \equiv m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \cdot\left(m^{(p-1) \cdot(q-1)}\right)^{k} \stackrel{\text { Euler }}{\equiv} m \cdot 1 \equiv m(\bmod n)$ secure: to decrypt c given (e, n), need (d) so $\phi=(p-1) \cdot(q-1)$ given $p \cdot q$; factoring!

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1}. RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p, q. set $n:=p \cdot q$ and $\phi:=(p-1) \cdot(q-1)$
2 choose e, d such that $e \cdot d \equiv 1(\bmod \phi)$; public key $:=(e, n)$, private key $:=(d)$
3 encrypt message m into cypher text $c:=m^{e}(\bmod n)$
4 decrypt cypher text c into original message $m \equiv c^{d}(\bmod n)$
correct: $c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e \cdot d} \equiv m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \cdot\left(m^{(p-1) \cdot(q-1)}\right)^{k} \stackrel{\text { Euler }}{\equiv} m \cdot 1 \equiv m(\bmod n)$ secure: to decrypt c given (e, n), need (d) so $\phi=(p-1) \cdot(q-1)$ given $p \cdot q$; factoring!

RSA ingredients developed on following slides:

modulo, Euler (RSA case), fast exponentiation, Chinese remainder (speed-up)

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same
- congruence modulo n is equivalence relation

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same
- congruence modulo n is equivalence relation
- congruence modulo n is,+- congruence: if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a \cdot c \equiv b \cdot d(\bmod n)$

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same
- congruence modulo n is equivalence relation
- congruence modulo n is,+- congruence: if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a \cdot c \equiv b \cdot d(\bmod n)$
- equivalence class of a is congruence or residue class: $\bar{a}:=\{a+z \cdot n \mid z \in \mathbb{Z}\}$

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same
- congruence modulo n is equivalence relation
- congruence modulo n is,+- congruence: if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a \cdot c \equiv b \cdot d(\bmod n)$
- equivalence class of a is congruence or residue class: $\bar{a}:=\{a+z \cdot n \mid z \in \mathbb{Z}\}$
- $\mathbb{Z} / n \mathbb{Z}$ is the set of all congruence classes modulo n

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b(\bmod n)$ if remainders $a \bmod n$ and $b \bmod n$ after division by n are the same
- congruence modulo n is equivalence relation
- congruence modulo n is,+- congruence: if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a \cdot c \equiv b \cdot d(\bmod n)$
- equivalence class of a is congruence or residue class: $\bar{a}:=\{a+z \cdot n \mid z \in \mathbb{Z}\}$
- $\mathbb{Z} / n \mathbb{Z}$ is the set of all congruence classes modulo n

Remark

As system of representatives we usually employ the smallest non-negative remainders $\{0,1,2, \ldots, n-1\}$ or the absolutely-smallest remainders

$$
\begin{cases}\{-n / 2+1, \ldots,-1,0,1, \ldots, n / 2\} & \text { if } n \text { is even } \\ \{-(n-1) / 2, \ldots,-1,0,1, \ldots,(n-1) / 2\} & \text { if } n \text { is odd. }\end{cases}
$$

Modulo (continued)

Example

We have $\mathbb{Z} / 5 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}=\{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}, \overline{2}\}$; moreover
$\overline{0}=\{0,5,10,15, \ldots\}=\overline{5}$, and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4} \cdot \overline{4} \cdot \overline{3}=\overline{4 \cdot 4} \cdot \overline{3}=\overline{1} \cdot \overline{3}=\overline{3}$.

Modulo (continued)

Example

We have $\mathbb{Z} / 5 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}=\{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}, \overline{2}\}$; moreover
$\overline{0}=\{0,5,10,15, \ldots\}=\overline{5}$, and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4} \cdot \overline{4} \cdot \overline{3}=\overline{4 \cdot 4} \cdot \overline{3}=\overline{1} \cdot \overline{3}=\overline{3}$.

Lemma

The functions

$$
\begin{gathered}
+: \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z},(\bar{a}, \bar{b}) \mapsto \bar{a}+\bar{b}:=\overline{a+b}, \\
\quad:: \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z},(\bar{a}, \bar{b}) \mapsto \bar{a} \cdot \bar{b}:=\overline{a \cdot b}
\end{gathered}
$$

are well-defined

Modulo (continued)

Example

We have $\mathbb{Z} / 5 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}=\{\overline{-2}, \overline{-1}, \overline{0}, \overline{1}, \overline{2}\}$; moreover
$\overline{0}=\{0,5,10,15, \ldots\}=\overline{5}$, and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4} \cdot \overline{4} \cdot \overline{3}=\overline{4 \cdot 4} \cdot \overline{3}=\overline{1} \cdot \overline{3}=\overline{3}$.

Lemma

The functions

$$
\begin{gathered}
+: \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z},(\bar{a}, \bar{b}) \mapsto \bar{a}+\bar{b}:=\overline{a+b}, \\
\quad:: \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z},(\bar{a}, \bar{b}) \mapsto \bar{a} \cdot \bar{b}:=\overline{a \cdot b},
\end{gathered}
$$

are well-defined

Example

In many programming languages there is a data type for integers corresponding to $\mathbb{Z} / 2^{2^{n}} \mathbb{Z}$ for some $n \geq 3$. For example unsigned int in C corresponds to $n=5$ resp. $n=6$. For $n=5$, i.e. a 32 -bits architecture, the sum of $2^{2^{5}}-1=2^{32}-1$ and 1 is 0 .

Inverses modulo

Definition

A congruence class \bar{a} modulo n is invertible, if there is a congruence class \bar{b} modulo n such that $\bar{a} \cdot \bar{b} \equiv \overline{1}(\bmod n)$, i.e. if $a \cdot b-1=k \cdot n$ for some k.

Inverses modulo

Definition

A congruence class \bar{a} modulo n is invertible, if there is a congruence class \bar{b} modulo n such that $\bar{a} \cdot \bar{b} \equiv \overline{1}(\bmod n)$, i.e. if $a \cdot b-1=k \cdot n$ for some k.

Lemma

\bar{a} modulo n is invertible for non-zero a iff $\operatorname{gcd}(a, n)=1$; in that case, we can compute using Bézout's lemma, integers u, v such that $u \cdot a+v \cdot n=1$ and $\bar{a}^{-1}=\bar{u}$

Inverses modulo

Definition

A congruence class \bar{a} modulo n is invertible, if there is a congruence class \bar{b} modulo n such that $\bar{a} \cdot \bar{b} \equiv \overline{1}(\bmod n)$, i.e. if $a \cdot b-1=k \cdot n$ for some k.

Lemma

à modulo n is invertible for non-zero a iff $\operatorname{gcd}(a, n)=1$; in that case, we can compute using Bézout's lemma, integers u, v such that $u \cdot a+v \cdot n=1$ and $\bar{a}^{-1}=\bar{u}$

Proof.

if $\operatorname{gcd}(a, n)=1$ and $u \cdot a+v \cdot n=1$, then $\overline{1}=\bar{u} \cdot \bar{a}+\bar{v} \cdot \bar{n}=\bar{u} \cdot \bar{a}$. vice versa, if \bar{a} invertible, then $\bar{a} \cdot \bar{b}=\overline{1}$ for some b, hence $\overline{a \cdot b-1}=\overline{0}$; and therefore $n \mid(a \cdot b-1)$. thus $\operatorname{gcd}(a, n)=1$, as $\operatorname{gcd}(a, n)$ divides n hence $a \cdot b-1$, and a hence $a \cdot b$

Inverses modulo

Definition

A congruence class \bar{a} modulo n is invertible, if there is a congruence class \bar{b} modulo n such that $\bar{a} \cdot \bar{b} \equiv \overline{1}(\bmod n)$, i.e. if $a \cdot b-1=k \cdot n$ for some k.

Lemma

\bar{a} modulo n is invertible for non-zero a iff $\operatorname{gcd}(a, n)=1$; in that case, we can compute using Bézout's lemma, integers u, v such that $u \cdot a+v \cdot n=1$ and $\bar{a}^{-1}=\bar{u}$

Proof.

if $\operatorname{gcd}(a, n)=1$ and $u \cdot a+v \cdot n=1$, then $\overline{1}=\bar{u} \cdot \bar{a}+\bar{v} \cdot \bar{n}=\bar{u} \cdot \bar{a}$. vice versa, if \bar{a} invertible, then $\bar{a} \cdot \bar{b}=\overline{1}$ for some b, hence $\overline{a \cdot b-1}=\overline{0}$; and therefore $n \mid(a \cdot b-1)$. thus $\operatorname{gcd}(a, n)=1$, as $\operatorname{gcd}(a, n)$ divides n hence $a \cdot b-1$, and a hence $a \cdot b$

Corollary (cancellation by multiplication with \bar{a}^{-1})

$$
\text { if } 0<a<p \text { and } a \cdot b \equiv a \cdot c(\bmod p) \text { with } p \text { prime, then } b \equiv c(\bmod p)
$$

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1(\bmod p)$

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1(\bmod p)$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots(p-1)}$ from

$$
\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{a^{p-1}}=\overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a}=\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{1}
$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1(\bmod p)$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots(p-1)}$ from

$$
\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{a^{p-1}}=\overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a}=\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{1}
$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

Corollary (Euler's theorem, RSA case)

for all primes p, q, and integers a with $\operatorname{gcd}(a, p \cdot q)=1, a^{(p-1) \cdot(q-1)} \equiv 1(\bmod p \cdot q)$

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1(\bmod p)$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots(p-1)}$ from

$$
\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{a^{p-1}}=\overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a}=\overline{1 \cdot 2 \cdots(p-1)} \cdot \overline{1}
$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

Corollary (Euler's theorem, RSA case)

for all primes p, q, and integers a with $\operatorname{gcd}(a, p \cdot q)=1, a^{(p-1) \cdot(q-1)} \equiv 1(\bmod p \cdot q)$
Proof.
By FTA and $p, q \mid a^{(p-1) \cdot(q-1)}-1$, from FLT twice, with a^{p-1}, q resp. a^{q-1}, p.

Fast exponentiation

Example

We compute: $3^{9}=3^{(1001)_{2}}=3^{2^{3}} \cdot 3^{2^{0}}=3^{8} \cdot 3^{1}=\left(\left(3^{2}\right)^{2}\right)^{2} \cdot 3=19683$. The computation uses 4 multiplications, of which 3 are for squaring.

Fast exponentiation

Example

We compute: $3^{9}=3^{(1001)_{2}}=3^{2^{3}} \cdot 3^{2^{0}}=3^{8} \cdot 3^{1}=\left(\left(3^{2}\right)^{2}\right)^{2} \cdot 3=19683$. The computation uses 4 multiplications, of which 3 are for squaring.

Theorem (exponentiation by squaring)

Let a be an integer and let n be a positive integer with binary representation $b_{k} b_{k-1} \cdots b_{0}$ where $b_{k}=1$; in symbols $\left(b_{k} b_{k-1} \cdots b_{0}\right)_{2}=n$. We can then compute the power a^{n} by squaring (and possibly multiplying) k-times:

$$
\begin{aligned}
& \text { Set } x=a \\
& \text { For } i \text { from } k-1 \text { down to } 0 \text { repeat: } \\
& \text { Set } x=x^{2} \text {. } \\
& \text { If } b_{i}=1 \text {, set } x=x * a \text {. }
\end{aligned}
$$

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for $k=0 n=1$ and the algorithm yields $a^{1}=a$
- For $k>0$ we write

$$
n=\sum_{i=0}^{k} b_{i} 2^{i}=m \cdot 2+b_{0} \quad \text { with } \quad m=\sum_{i=1}^{k} b_{i} 2^{i-1}=\sum_{i=0}^{k-1} b_{i+1} 2^{i}
$$

By the induction hypothesis, the first $k-1$ loops yield the value a^{m}; therefore, the last time ($i=0$) yields

$$
\left(a^{m}\right)^{2} \cdot a^{b_{0}}=a^{n}
$$

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for $k=0 n=1$ and the algorithm yields $a^{1}=a$
- For $k>0$ we write

$$
n=\sum_{i=0}^{k} b_{i} 2^{i}=m \cdot 2+b_{0} \quad \text { with } \quad m=\sum_{i=1}^{k} b_{i} 2^{i-1}=\sum_{i=0}^{k-1} b_{i+1} 2^{i}
$$

By the induction hypothesis, the first $k-1$ loops yield the value a^{m}; therefore, the last time $(i=0)$ yields

$$
\left(a^{m}\right)^{2} \cdot a^{b_{0}}=a^{n}
$$

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for $k=0 n=1$ and the algorithm yields $a^{1}=a$
- For $k>0$ we write

$$
n=\sum_{i=0}^{k} b_{i} 2^{i}=m \cdot 2+b_{0} \quad \text { with } \quad m=\sum_{i=1}^{k} b_{i} 2^{i-1}=\sum_{i=0}^{k-1} b_{i+1} 2^{i}
$$

By the induction hypothesis, the first $k-1$ loops yield the value a^{m}; therefore, the last time $(i=0)$ yields

$$
\left(a^{m}\right)^{2} \cdot a^{b_{0}}=a^{n}
$$

Remark

during exponentiation modulo some number n, no numbers $\geq n$ need to be used.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b	0	1	2	3	4
0	0				
1					
2					

$$
0 \mapsto(0,0)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b	0	1	2	3	4
0	0				
1		1			
2					

$$
1 \mapsto(1,1)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b	0	1	2	3	4
0	0				
1		1			
2			2		

$$
2 \mapsto(2,2)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b a	0	1	2	3	4
0	0			3	
1		1			
2			2		

$$
3 \mapsto(0,3)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b a	0	1	2	3	4
0	0			3	
1		1			4
2			2		

$$
4 \mapsto(1,4)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

b a	0	1	2	3	4
0	0			3	
1		1			4
2	5		2		

$$
5 \mapsto(2,0)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

a b	0	1	2	3	4
0	0	6		3	
1		1			4
2	5		2		

$$
6 \mapsto(0,1)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6		3	
1		1	7		4
2	5		2		

$$
7 \mapsto(1,2)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6		3	
1		1	7		4
2	5		2	8	

$$
8 \mapsto(2,3)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6		3	9
1		1	7		4
2	5		2	8	

$$
9 \mapsto(0,4)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6		3	9
1	10	1	7		4
2	5		2	8	

$$
10 \mapsto(1,0)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6		3	9
1	10	1	7		4
2	5	11	2	8	

$$
11 \mapsto(2,1)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7		4
2	5	11	2	8	

$$
12 \mapsto(0,2)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7	13	4
2	5	11	2	8	

$$
13 \mapsto(1,3)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example $(p=3, q=5)$

$a b$	0	1	2	3	4
0	0	6	12	3	9
1	10	1	7	13	4
2	5	11	2	8	14

$$
14 \mapsto(2,4)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example ($p=3, q=3$)

b	0	1	2
a			
0	0		
1			
2			

$$
0 \mapsto(0,0)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example ($p=3, q=3$)

b	0	1	2
0			
0	0		
1		1	
2			

$$
1 \mapsto(1,1)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example ($p=3, q=3$)

b a	0	1	2
0	0		
1		1	
2			2

$$
2 \mapsto(2,2)
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Example ($p=3, q=3$)

b a	0	1	2
0	0		
1		1	
2			2

$$
3 \mapsto(0,0) \quad \operatorname{gcd}(p, q)=3 \neq 1, \text { crt not a bijection }
$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Proof.

sufficient to prove injectivity.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Proof.

sufficient to prove injectivity. suppose $0 \leq x, x^{\prime}<p \cdot q$. if $\operatorname{crt}(x)=\operatorname{crt}\left(x^{\prime}\right)$, then $x \equiv x^{\prime}(\bmod p)$ and $x \equiv x^{\prime}(\bmod q)$, hence $p, q \mid x-x^{\prime}$. Thus

$$
\left.p \cdot q=\frac{p \cdot q}{1}=\frac{p \cdot q}{\operatorname{gcd}(p, q)}=\operatorname{Icm}(p, q) \right\rvert\, x-x^{\prime}
$$

that is, solutions are $p \cdot q$ apart, so $x-x^{\prime}=0$ and $x=x^{\prime}$.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if $\operatorname{gcd}(p, q)=1$, then the following function crt from numbers $0 \leq x<p \cdot q$ to pairs (a, b) with $0 \leq a<p$ and $0 \leq b<q$, is a bijection:

$$
x \mapsto(x \bmod p, x \bmod q)
$$

Proof.

sufficient to prove injectivity. suppose $0 \leq x, x^{\prime}<p \cdot q$. if $\operatorname{crt}(x)=\operatorname{crt}\left(x^{\prime}\right)$, then $x \equiv x^{\prime}(\bmod p)$ and $x \equiv x^{\prime}(\bmod q)$, hence $p, q \mid x-x^{\prime}$. Thus

$$
\left.p \cdot q=\frac{p \cdot q}{1}=\frac{p \cdot q}{\operatorname{gcd}(p, q)}=\operatorname{Icm}(p, q) \right\rvert\, x-x^{\prime}
$$

that is, solutions are $p \cdot q$ apart, so $x-x^{\prime}=0$ and $x=x^{\prime}$.

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that $\operatorname{gcd}(p, q)=1$, and let a and b be arbitrary integers. The congruence system

$$
\begin{array}{ll}
x \equiv a & (\bmod p) \\
x \equiv b & (\bmod q)
\end{array}
$$

then has the unique solution $x \equiv v q a+u p b(\bmod p q)$ where the integers u and v such that $u p+v q=1$ can be computed using Bézout's lemma.

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that $\operatorname{gcd}(p, q)=1$, and let a and b be arbitrary integers. The congruence system

$$
\begin{array}{ll}
x \equiv a & (\bmod p) \\
x \equiv b & (\bmod q)
\end{array}
$$

then has the unique solution $x \equiv v q a+u p b(\bmod p q)$ where the integers u and v such that $u p+v q=1$ can be computed using Bézout's lemma.

Proof.

- (existence) we show $x=v \cdot q \cdot a+u \cdot p \cdot b$ for $u p+v q=1$ satisfies equations: $x \equiv v \cdot q \cdot a+u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv(1-u \cdot p) \cdot a \equiv a-u \cdot p \cdot a \equiv a(\bmod p)$ and similarly for $x \equiv b(\bmod q)$
- (uniqueness)

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that $\operatorname{gcd}(p, q)=1$, and let a and b be arbitrary integers. The congruence system

$$
\begin{array}{ll}
x \equiv a & (\bmod p) \\
x \equiv b & (\bmod q)
\end{array}
$$

then has the unique solution $x \equiv v q a+u p b(\bmod p q)$ where the integers u and v such that $u p+v q=1$ can be computed using Bézout's lemma.

Proof.

- (existence) we show $x=v \cdot q \cdot a+u \cdot p \cdot b$ for $u p+v q=1$ satisfies equations: $x \equiv v \cdot q \cdot a+u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv(1-u \cdot p) \cdot a \equiv a-u \cdot p \cdot a \equiv a(\bmod p)$ and similarly for $x \equiv b(\bmod q)$
- (uniqueness) as before: if both x, x^{\prime} are solutions to the two equations, then $p, q \mid\left(x-x^{\prime}\right)$, hence $\left.\operatorname{lcm}(p, q)=\frac{p \cdot q}{\operatorname{gcd}(p, q)}=p \cdot q \right\rvert\,\left(x-x^{\prime}\right)$. That is, solutions are $p \cdot q$ apart, hence unique in $\{0, \ldots, p \cdot q-1\}$.

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that $\operatorname{gcd}(p, q)=1$, and let a and b be arbitrary integers. The congruence system

$$
\begin{array}{ll}
x \equiv a & (\bmod p) \\
x \equiv b & (\bmod q)
\end{array}
$$

then has the unique solution $x \equiv v q a+u p b(\bmod p q)$ where the integers u and v such that $u p+v q=1$ can be computed using Bézout's lemma.

Proof.

- (existence) we show $x=v \cdot q \cdot a+u \cdot p \cdot b$ for $u p+v q=1$ satisfies equations: $x \equiv v \cdot q \cdot a+u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv(1-u \cdot p) \cdot a \equiv a-u \cdot p \cdot a \equiv a(\bmod p)$ and similarly for $x \equiv b(\bmod q)$
- (uniqueness) as before: if both x, x^{\prime} are solutions to the two equations, then $p, q \mid\left(x-x^{\prime}\right)$, hence $\left.\operatorname{lcm}(p, q)=\frac{p \cdot q}{\operatorname{gcd}(p, q)}=p \cdot q \right\rvert\,\left(x-x^{\prime}\right)$. That is, solutions are $p \cdot q$ apart, hence unique in $\{0, \ldots, p \cdot q-1\}$.

Example

The following congruence system has the unique solution $x \equiv 16(\bmod 35)$

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 5) \\
x \equiv 2 & (\bmod 7)
\end{array}
$$

Example

The following congruence system has the unique solution $x \equiv 16(\bmod 35)$

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 5) \\
x \equiv 2 & (\bmod 7)
\end{array}
$$

We compute integers u and v, such that $u \cdot 5+v \cdot 7=\operatorname{gcd}(5,7)$.

$$
\begin{array}{lll}
A=(5,1,0) & B=(7,0,1) & q=0 \\
A=(7,0,1) & B=(5,1,0) & q=1 \\
A=(5,1,0) & B=(2,-1,1) & q=2 \\
A=(2,-1,-1) & B=(1,3,-2) & q=2 \\
\hline
\end{array}
$$

Hence $u=3, v=-2$ and $\operatorname{gcd}(5,7)=3 \cdot 5-2 \cdot 7=1$, and therefore

$$
\underbrace{-2}_{v} \cdot \underbrace{7}_{q} \cdot \underbrace{1}_{a}+\underbrace{3}_{u} \cdot \underbrace{5}_{p} \cdot \underbrace{2}_{b}=16
$$

By the theorem, the solution $x \equiv 16(\bmod 35)$ is unique

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Proof.

$$
\begin{aligned}
\Leftarrow & x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)+k \cdot p \cdot q \equiv a(\bmod p) \\
& x \equiv a+p \cdot p^{\prime} \cdot(b-a)+k \cdot p \cdot q \equiv a+b-a \equiv b(\bmod q)
\end{aligned}
$$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod a)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Proof.

$$
\begin{aligned}
\Leftarrow & x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)+k \cdot p \cdot q \equiv a(\bmod p) \\
& x \equiv a+p \cdot p^{\prime} \cdot(b-a)+k \cdot p \cdot q \equiv a+b-a \equiv b(\bmod q)
\end{aligned}
$$

\Rightarrow previous item shows rhs is a solution. now show it is unique modulo $p \cdot q$.
$0 \leq x, x^{\prime}<p \cdot q$ being solutions entails $x \equiv x^{\prime}(\bmod p)$ and $x \equiv x^{\prime}(\bmod q)$, hence $p, q \mid x-x^{\prime}$. Thus, $\left.p \cdot q=\frac{p \cdot q}{\operatorname{gcd}(p, q)}=\operatorname{Icm}(p, q) \right\rvert\, x-x^{\prime}$, so $x-x^{\prime}=0$ and $x=x^{\prime}$.

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod a)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Example

Let $p=3, q=5\left(\right.$ see above). Then $p^{\prime}=2(3 \cdot 2 \equiv 1(\bmod 5))$. E.g. for $a=1$ and $b=2$, we obtain $x=1+3 \cdot(2 \cdot(2-1) \bmod 5)=7$, and 7 is indeed the number we find at coordinates $(a, b)=(1,2)$ in the table on slide 17. For another example, at coordinate $(2,1)$ in the table $x=2+3 \cdot(2 \cdot(1-2) \bmod 5)=2+3 \cdot(-2 \bmod 5)=2+3 \cdot 3=11$.

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Application to RSA

Speed up computation of $c^{d} \bmod (p \cdot q)$ for $\operatorname{gcd}(p, q)=1$?

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Application to RSA

Speed up computation of $c^{d} \bmod (p \cdot q)$ for $\operatorname{gcd}(p, q)=1$?
1 compute $a:=c^{d \bmod (p-1)} \bmod p$; by FLT $c^{d} \equiv a(\bmod p)$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \quad \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Application to RSA

Speed up computation of $c^{d} \bmod (p \cdot q)$ for $\operatorname{gcd}(p, q)=1$?
1 compute $a:=c^{d \bmod (p-1)} \bmod p ;$ by FLT $c^{d} \equiv a(\bmod p)$
2 compute $b:=c^{d \bmod (q-1)} \bmod q ;$ by FLT $c^{d} \equiv b(\bmod q)$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let $\operatorname{gcd}(p, q)=1$ and let p^{\prime} be inverse of p modulo q, i.e. $p \cdot p^{\prime} \equiv 1(\bmod q)$. Then

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned} \Longleftrightarrow \quad x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)
$$

Application to RSA

Speed up computation of $c^{d} \bmod (p \cdot q)$ for $\operatorname{gcd}(p, q)=1$?
1 compute $a:=c^{d \bmod (p-1)} \bmod p ;$ by FLT $c^{d} \equiv a(\bmod p)$
2 compute $b:=c^{d \bmod (q-1)} \bmod q$; by FLT $c^{d} \equiv b(\bmod q)$
3 compute $m:=a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right) \bmod (p \cdot q)$; by CRT $m \equiv c^{d}(\bmod p \cdot q)$.

