
Summary last week

• A countably infinite if enumeration N → A; countable if finite or countably infinite.
• countability preserved by subset, image, union, cartesian product
• non-countability of infinite sequences, 2N , P(N ), R by diagonalisation (Cantor)
• injections f : A→ B, g : B→ A, then exists bijection A→ B (Schröder–Bernstein)
• collections |_| of equinumerous sets partially ordered by injections; N < R .

• equivalence relation if reflexive, transitive, and symmetric
• if ∼ equivalence on A, then [a] = {b | a ∼ b} is equivalence class of a ∈ A
• b representative of [a] if b ∈ [a]
• B system of representatives if for all a ∈ A, unique representative b of [a] in B
• bijection between partitionings P and equivalences a ∼ b if ∃B ∈ P, a,b ∈ B.
• reflexive, transitive relation ≤ induces equivalence relation ≤ ∩≥
• algorithm for gcd(x, y) with x, y ∈ Z by subtraction, division modulo (Euclid)
• extended algorithm for u, v with gcd(x, y) = u · x+ v · y (Bézout); lcm(x, y) = x·y
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Theorem (Bézout’s lemma)

for a,b ∈ Z not zero, there exist u, v ∈ Z with gcd(a,b) = u · a + v · b

Example (1 = gcd(77,30))

(1) 77= 1 ·77+ 0 ·30

(2) 30= 0 ·77+ 1 ·30

(3) = ·77+ ·30 (1)− (2)

(4) 17= 1 ·77+ (−2) ·30 (3)− (2)

(5) 13= (−1) ·77+ 3 ·30 (2)− (4)

(6) 4= 2 ·77+ (−5) ·30 (4)− (5)

(7) 9= (−3) ·77+ 8 ·30 (5)− (6)

(8) 5= (−5) ·77+ 13 ·30 (7)− (6)

(9) 1= (−7) ·77+ 18 ·30 (8)− (6)
may stop at 1 since 1 is least possible divisor, it’s trivial. u = −7 and v = 18
indeed 1 = gcd(77,30) = (−7) · 77 + 18 · 30 = −539 + 540
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The divisibility order | (recall from weeks 4 and 5)

Lemma

divisibility | is a well-founded partial order on the positive natural numbers N>0

Proof.

note: if x | y then x + . . .+ x = y hence x ≤ y (for y positive)

• reflexivity: x | x since x · 1 = x

• transitivity: if x | y and y | z, then x · y′ = y and y · z′ = z for some y′, z′. Hence
setting x′ := y′ · z′, we have x · x′ = x · y′ · z′ = y · z′ = z, so x | z
• anti-symmetry: if x | y and y | x, then x ≤ y and y ≤ x, hence x = y by

anti-symmetry of ≤
• well-founded: if . . . x′′ | x′ | x were an infinite descending chain, then so would
. . . x′′ < x′ < x, contradicting well-foundedness of ≤

⇒ proofs by well-founded induction on | for statements on N>0 and N>1 = N −{0,1}
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Definition

• p is prime if p ∈ N>1 and for all x, y, if p | x · y then p | x or p | y
• p is irreducible or indecomposable if p ∈ N>1 and p only has trivial divisors

Lemma

for p ∈ N>1, we have p is prime iff p is indecomposable iff p is |-minimal

Proof.

• Assume p prime and suppose p = x · y. By p being prime p | x or p | y, say w.l.o.g.
p | x. By x | p, then x = p and y = 1, so both are trivial hence p is indecomposable

• Assume p indecomposable and suppose x | p with x ∈ N>1, i.e. x · y = p for some
y. By p being indecomposable, then x, y are trivial, so p = x and p is |-minimal

• Assume p |-minimal and suppose p | x · y, i.e. p · d = x · y for some d. Either p | x or
else gcd(p, x) = 1 by p being |-minimal. Then 1 = u ·p+v ·x for some u, v (Bézout):
y = y · 1 = y · (u · p + v · x) = y · u · p + y · v · x = y · u · p + v · p · d = (y · u + v · d) · p
hence p | y. That is, either p | x or p | y, so p is prime
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Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers,
its prime factors, which are unique up to their order.

Proof.

• we first show that ∀x ∈ N>1 there exists a collection of prime numbers pI such
that x =

∏
pI, by induction on x well-foundedly ordered by |.

If x is not prime itself, then x = y · z for y, z non-trivial (by the lemma), hence
y =

∏
qJ and z =

∏
rK for collections of primes qJ and rK by the IH twice.

Combining both, x =
∏

qJ ·
∏

rK , i.e. we may take the concatenation of qJ and rK .

• next we show uniqueness, i.e. if
∏

pI =
∏

qJ then the collections of prime
numbers pI and qJ are the same up to order, by mathematical induction on #I.
Suppose i ∈ I. Then pi |

∏
pI =

∏
qJ, so ∃j ∈ J such that pi | qj hence pi = qj (by the

lemma twice). Therefore,
∏

pI−{i} =
∏

pI

pi
=

∏
qJ

qj
=

∏
qJ−{j}, and by the IH pI−{i}

and qJ−{j} are the same up to order, hence so are pI and qJ.
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Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p1, . . . ,pk were the finite list of primes

• set n :=
∏k

i=1 pi, so that pi | n for each i.

• by FTA n + 1 has prime factorisation, with primes among p1, . . . ,pk by assumption

• if pi | n + 1, then also pi | (n + 1)− n = 1; contradicting pi is prime.

Remark

there are countably many primes since subset of N .

Remark

FTA links numbers wrt addition (+,−) to numbers wrt multiplication (·,÷). Connections
between both hard in general, cf. Goldbach’s conjecture: if n > 2, then n = pi + pj.
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Operations on numbers via exponents of prime factors

Corollary (to FTA)

any n ∈ N>0 can be uniquely written as pe
k :=

∏k
i=1 pei

i given a long enough initial
segment pk of the prime numbers in ascending order, and collection ek of exponents

Corollary

pe
n · pf

n = pe+f
n , pe

n ÷ pf
n = pe�f

n , gcd(pe
n,p

f
n) = p

min(e,f)
n , and lcm(pe

n,p
f
n) = p

max(e,f)
n

Corollary

for a,b ∈ Z not zero, lcm(a,b) = |a|·|b|
gcd(a,b)

Proof.

writing |a| = pe
n and |b| = pf

n for n large enough, by the previous corollary:

lcm(a,b) = lcm(pe
n,p

f
n) = p

max(e,f)
n = p

e+f−min(e,f)
n = (pe

n)·(pf
n)

gcd(pe
n,p

f
n)

= |a|·|b|
gcd(a,b)

using max(x, y) = x + y−min(x, y) for natural numbers x, y.

9
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Example

• 77 = 20 · 30 · 50 · 71 · 111 exponents e = (0,0,0,1,1) and 28 = 22 · 30 · 50 · 71 · 110

• 77 · 28 = 20+2 · 30+0 · 50+0 · 71+1 · 111+0 = 22 · 30 · 50 · 72 · 111 = 2156

• 77÷ 28 = 20�2 · 30�0 · 50�0 · 71�1 · 111�0 = 20 · 30 · 50 · 70 · 111 = 11
x÷ y cut-off division (= x

y iff y | x), x � y cut-off subtraction (= x− y iff y ≤ x)

• gcd(77,28) = 2min(0,2) ·3min(0,0) ·5min(0,0) ·7min(1,1) ·11min(1,0) = 20 ·30 ·50 ·71 ·110 = 7
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Corollary
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n , pe

n ÷ pf
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n , and lcm(pe
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n

Corollary

for a,b ∈ Z not zero, lcm(a,b) = |a|·|b|
gcd(a,b)
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Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f , easy to compute f , hard to compute f−1.

RSA outline

1 choose large primes p,q. set n := p · q and φ := (p− 1) · (q− 1)

2 choose e,d such that e · d ≡ 1 (mod φ); public key := (e,n), private key := (d)

3 encrypt message m into cypher text c := me (mod n)

4 decrypt cypher text c into original message m ≡ cd (mod n)

correct: cd ≡ (me)d≡ me·d≡ m1+k·(p−1)·(q−1)≡ m · (m(p−1)·(q−1))k Euler≡ m · 1 ≡ m(modn)
secure: to decrypt c given (e,n), need (d) so φ = (p− 1) · (q− 1) given p · q; factoring!

RSA ingredients developed on following slides:

modulo, Euler (RSA case), fast exponentiation, Chinese remainder (speed-up)

10
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Modulo

Definition (modulo some positive natural number n)

• integers a,b are congruent modulo n, denoted by a ≡ b (mod n) if remainders
a mod n and b mod n after division by n are the same

• congruence modulo n is equivalence relation

• congruence modulo n is +,·-congruence: if a ≡ b (mod n) and c ≡ d (mod n),
then a + c ≡ b + d (mod n) and a · c ≡ b · d (mod n)

• equivalence class of a is congruence or residue class: a := {a + z · n | z ∈ Z }
• Z /nZ is the set of all congruence classes modulo n

Remark

As system of representatives we usually employ the smallest non-negative
remainders {0,1,2, . . . ,n− 1} or the absolutely-smallest remainders{

{−n/2 + 1, . . . ,−1,0,1, . . . ,n/2} if n is even

{−(n− 1)/2, . . . ,−1,0,1, . . . , (n− 1)/2} if n is odd.
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Modulo (continued)

Example

We have Z /5Z = {0,1,2,3,4} = {−2,−1,0,1,2}; moreover
0 = {0,5,10,15, . . .} = 5, and 2 + 4 = 6 = 1 and 4 · 4 · 3 = 4 · 4 · 3 = 1 · 3 = 3.

Lemma

The functions

+: Z /nZ × Z /nZ → Z /nZ , (a,b) 7→ a + b := a + b ,

· : Z /nZ × Z /nZ → Z /nZ , (a,b) 7→ a · b := a · b ,

are well-defined

Example

In many programming languages there is a data type for integers corresponding to
Z /22n Z for some n ≥ 3. For example unsigned int in C corresponds to n = 5 resp.
n = 6. For n = 5, i.e. a 32-bits architecture, the sum of 225 − 1 = 232 − 1 and 1 is 0.

12
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Inverses modulo

Definition

A congruence class a modulo n is invertible, if there is a congruence class b modulo n
such that a · b ≡ 1 (mod n), i.e. if a · b− 1 = k · n for some k.

Lemma

a modulo n is invertible for non-zero a iff gcd(a,n) = 1 ; in that case, we can compute
using Bézout’s lemma, integers u, v such that u · a + v · n = 1 and a−1 = u

Proof.

if gcd(a,n) = 1 and u · a + v · n = 1, then 1 = u · a + v · n = u · a. vice versa, if a
invertible, then a · b = 1 for some b, hence a · b− 1 = 0; and therefore n | (a · b− 1).
thus gcd(a,n) = 1, as gcd(a,n) divides n hence a · b− 1, and a hence a · b

Corollary (cancellation by multiplication with a−1)

if 0 < a < p and a · b ≡ a · c (mod p) with p prime, then b ≡ c (mod p)
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Inverses modulo

Definition

A congruence class a modulo n is invertible, if there is a congruence class b modulo n
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Theorem (Fermat’s little theorem, FLT)

for prime p, and integer a with p - a, we have ap−1 ≡ 1 (mod p)

Proof.

by cancellation of 1 · 2 · · · (p− 1) from

1 · 2 · · · (p− 1) · ap−1 = 1 · a · 2 · a · · · (p− 1) · a = 1 · 2 · · · (p− 1) · 1

where we use cancellation again to show 1 · a,2 · a, . . . , (p− 1) · a are all distinct and
also from 0, so that they must be a permutation of the congruence classes
1,2, . . . , (p− 1), to conclude their products are the same (double counting).

Corollary (Euler’s theorem, RSA case)

for all primes p,q, and integers a with gcd(a,p · q) = 1, a(p−1)·(q−1) ≡ 1 (mod p · q)

Proof.

By FTA and p,q | a(p−1)·(q−1) − 1, from FLT twice, with ap−1, q resp. aq−1, p.
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Fast exponentiation

Example

We compute: 39 = 3(1001)2 = 323 · 320
= 38 · 31 = ((32)2)2 · 3 = 19683. The

computation uses 4 multiplications, of which 3 are for squaring.

Theorem (exponentiation by squaring)

Let a be an integer and let n be a positive integer with binary representation
bkbk−1 · · ·b0 where bk = 1; in symbols (bkbk−1 · · ·b0)2 = n. We can then compute the
power an by squaring (and possibly multiplying) k-times:

Set x = a.

For i from k − 1 down to 0 repeat:

Set x = x2.

If bi = 1, set x = x ∗ a.
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Fast exponentation (continued)

Proof.

• By mathematical induction on k; for k = 0 n = 1 and the algorithm yields a1 = a

• For k > 0 we write

n =
k∑

i=0

bi2
i = m · 2 + b0 with m =

k∑
i=1

bi2
i−1 =

k−1∑
i=0

bi+12i

By the induction hypothesis, the first k − 1 loops yield the value am; therefore, the
last time (i = 0) yields

(am)2 · ab0 = an

Remark

during exponentiation modulo some number n, no numbers ≥n need to be used.
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Fast exponentation (continued)

Proof.
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

17



Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0

1

2

0 7→ (0,0)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0

1 1

2 2

2 7→ (2,2)

17



Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 3

1 1

2 2

3 7→ (0,3)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 3

1 1 4

2 2

4 7→ (1,4)

17



Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 3

1 1 4

2 5 2

5 7→ (2,0)

17



Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3

1 1 4

2 5 2

6 7→ (0,1)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3

1 1 7 4

2 5 2

7 7→ (1,2)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3

1 1 7 4

2 5 2 8

8 7→ (2,3)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3 9

1 1 7 4

2 5 2 8

9 7→ (0,4)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3 9

1 10 1 7 4

2 5 2 8

10 7→ (1,0)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 3 9

1 10 1 7 4

2 5 11 2 8

11 7→ (2,1)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 12 3 9

1 10 1 7 4

2 5 11 2 8

12 7→ (0,2)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 12 3 9

1 10 1 7 13 4

2 5 11 2 8

13 7→ (1,3)
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 5)

a
b 0 1 2 3 4

0 0 6 12 3 9

1 10 1 7 13 4

2 5 11 2 8 14

14 7→ (2,4)

17
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Example (p = 3,q = 3)

a
b 0 1 2

0 0

1 1

2 2

3 7→ (0,0) gcd(p,q) = 3 6= 1, crt not a bijection
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Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers 0 ≤ x < p · q to pairs
(a,b) with 0 ≤ a < p and 0 ≤ b < q, is a bijection:

x 7→ (x mod p, x mod q)

Proof.

sufficient to prove injectivity.

suppose 0 ≤ x, x′ < p · q. if crt(x) = crt(x′), then
x ≡ x′ (mod p) and x ≡ x′ (mod q), hence p,q | x− x′. Thus

p · q =
p · q

1
=

p · q
gcd(p,q)

= lcm(p,q) | x− x′

that is, solutions are p · q apart, so x− x′ = 0 and x = x′.
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Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary
integers. The congruence system

x ≡ a (mod p)

x ≡ b (mod q)

then has the unique solution x ≡ vqa + upb (mod pq) where the integers u and v such
that up + vq = 1 can be computed using Bézout’s lemma.

Proof.

• (existence) we show x = v · q · a + u · p · b for up + vq = 1 satisfies equations:
x ≡ v · q · a + u · p · b ≡ v · q · a ≡ (1− u · p) · a ≡ a− u · p · a ≡ a (mod p) and
similarly for x ≡ b (mod q)

• (uniqueness) as before: if both x, x′ are solutions to the two equations, then
p,q | (x− x′), hence lcm(p,q) = p·q

gcd(p,q) = p · q | (x− x′). That is, solutions are p · q
apart, hence unique in {0, ...,p · q− 1}.
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Example

The following congruence system has the unique solution x ≡ 16 (mod 35)

x ≡ 1 (mod 5)

x ≡ 2 (mod 7)

We compute integers u and v, such that u · 5 + v · 7 = gcd(5,7).

A = (5,1,0) B = (7,0,1) q = 0

A = (7,0,1) B = (5,1,0) q = 1

A = (5,1,0) B = (2,−1,1) q = 2

A = (2,−1,−1) B = (1,3,−2) q = 2

Hence u = 3, v = −2 and gcd(5,7) = 3 · 5− 2 · 7 = 1, and therefore

−2︸︷︷︸
v

· 7︸︷︷︸
q

· 1︸︷︷︸
a

+ 3︸︷︷︸
u

· 5︸︷︷︸
p

· 2︸︷︷︸
b

= 16

By the theorem, the solution x ≡ 16 (mod 35) is unique
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Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p′ be inverse of p modulo q, i.e. p · p′ ≡ 1 (mod q). Then

x ≡ a (mod p)

x ≡ b (mod q)
⇐⇒ x ≡ a + p · ((p′ · (b− a)) mod q) (mod p · q)

20



Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p′ be inverse of p modulo q, i.e. p · p′ ≡ 1 (mod q). Then

x ≡ a (mod p)

x ≡ b (mod q)
⇐⇒ x ≡ a + p · ((p′ · (b− a)) mod q) (mod p · q)

Proof.

⇐ x ≡ a + p · ((p′ · (b− a)) mod q) + k · p · q ≡ a (mod p)
x ≡ a + p · p′ · (b− a) + k · p · q ≡ a + b− a ≡ b (mod q)

⇒ previous item shows rhs is a solution. now show it is unique modulo p · q.
0 ≤ x, x′ < p · q being solutions entails x ≡ x′ (mod p) and x ≡ x′ (mod q), hence
p,q | x− x′. Thus, p · q = p·q

gcd(p,q) = lcm(p,q) | x− x′, so x− x′ = 0 and x = x′.
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Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p′ be inverse of p modulo q, i.e. p · p′ ≡ 1 (mod q). Then

x ≡ a (mod p)

x ≡ b (mod q)
⇐⇒ x ≡ a + p · ((p′ · (b− a)) mod q) (mod p · q)

Example

Let p = 3, q = 5 (see above). Then p′ = 2 (3 · 2 ≡ 1 (mod 5)). E.g. for a = 1 and b = 2,
we obtain x = 1 + 3 · (2 · (2− 1) mod 5) = 7, and 7 is indeed the number we find at
coordinates (a,b) = (1,2) in the table on slide 17. For another example, at coordinate
(2,1) in the table x = 2 + 3 · (2 · (1− 2) mod 5) = 2 + 3 · (−2 mod 5) = 2 + 3 · 3 = 11.
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Let gcd(p,q) = 1 and let p′ be inverse of p modulo q, i.e. p · p′ ≡ 1 (mod q). Then

x ≡ a (mod p)

x ≡ b (mod q)
⇐⇒ x ≡ a + p · ((p′ · (b− a)) mod q) (mod p · q)

Application to RSA

Speed up computation of cd mod (p · q) for gcd(p,q) = 1?

1 compute a := cd mod (p−1) mod p; by FLT cd ≡ a (mod p)

2 compute b := cd mod (q−1) mod q; by FLT cd ≡ b (mod q)

3 compute m := a + p · ((p′ · (b− a)) mod q) mod (p · q); by CRT m ≡ cd (mod p · q).
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