Summary last week

- A countably infinite if enumeration $\mathbb{N} \to A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N})$, \mathbb{R} by diagonalisation (Cantor)
- injections $f: A \to B$, $g: B \to A$, then exists bijection $A \to B$ (Schröder-Bernstein)
- collections | | of equinumerous sets partially ordered by injections; $\mathbb{N} < \mathbb{R}$.

Summary last week

- A countably infinite if enumeration $\mathbb{N} \to A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N})$, \mathbb{R} by diagonalisation (Cantor)
- injections $f: A \rightarrow B$, $g: B \rightarrow A$, then exists bijection $A \rightarrow B$ (Schröder–Bernstein)
- collections $| \cdot |$ of equinumerous sets partially ordered by injections; $\mathbb{N} < \mathbb{R}$.
- equivalence relation if reflexive, transitive, and symmetric
- if \sim equivalence on A, then $[a] = \{b \mid a \sim b\}$ is equivalence class of $a \in A$
- b representative of [a] if $b \in [a]$
- B system of representatives if for all $a \in A$, unique representative b of [a] in B
- bijection between partitionings P and equivalences $a \sim b$ if $\exists B \in P$, $a, b \in B$.
- reflexive, transitive relation \leq induces equivalence relation \leq \cap \geq

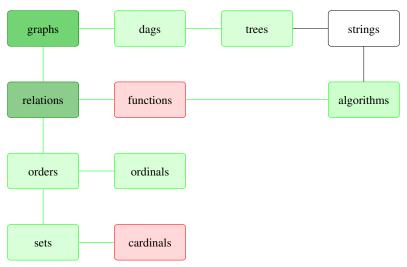
Summary last week

- A countably infinite if enumeration $\mathbb{N} \to A$; countable if finite or countably infinite.
- countability preserved by subset, image, union, cartesian product
- non-countability of infinite sequences, $2^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N})$, \mathbb{R} by diagonalisation (Cantor)
- injections $f: A \rightarrow B$, $g: B \rightarrow A$, then exists bijection $A \rightarrow B$ (Schröder–Bernstein)
- ullet collections $[\]$ of equinumerous sets partially ordered by injections; $\, \mathbb{N} \, < \, \mathbb{R} \, .$
- equivalence relation if reflexive, transitive, and symmetric
- if \sim equivalence on A, then $[a] = \{b \mid a \sim b\}$ is equivalence class of $a \in A$
- b representative of [a] if $b \in [a]$
- B system of representatives if for all $a \in A$, unique representative b of [a] in B
- bijection between partitionings P and equivalences $a \sim b$ if $\exists B \in P$, $a, b \in B$.
- \bullet reflexive, transitive relation \leq induces equivalence relation \leq \cap \geq
- algorithm for gcd(x, y) with $x, y \in \mathbb{Z}$ by subtraction, division modulo (Euclid)
- extended algorithm for u, v with $\gcd(x, y) = u \cdot x + v \cdot y$ (Bézout); $\operatorname{lcm}(x, y) = \frac{x \cdot y}{\gcd(x, y)}$

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures



Theorem (Bézout's lemma)

for $a,b\in\mathbb{Z}$ not zero, there exist $u,v\in\mathbb{Z}$ with $\gcd(a,b)=u\cdot a+v\cdot b$

Example ($1 = \gcd(77, 30)$ **)**

Theorem (Bézout's lemma)

for $a,b\in\mathbb{Z}$ not zero, there exist $u,v\in\mathbb{Z}$ with $\gcd(a,b)=u\cdot a+v\cdot b$

Example (1 = gcd(77, 30)**)**

Theorem (Bézout's lemma)

for $a,b\in\mathbb{Z}$ not zero, there exist $u,v\in\mathbb{Z}$ with $\gcd(a,b)=u\cdot a+v\cdot b$

Example (1 = gcd(77, 30)**)**

$$1 \cdot 77 +$$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example (1 = gcd(77, 30)**)**

(1) 77 = 1.77 + 0.30

(2) 30 = 0.77 + 1.30

(3) $77 - 30 = (1 - 0) \cdot 77 + (0 - 1) \cdot 30$ (1) - (2)

Theorem (Bézout's lemma)

for $a,b\in\mathbb{Z}$ not zero, there exist $u,v\in\mathbb{Z}$ with $\gcd(a,b)=u\cdot a+v\cdot b$

Example ($1 = \gcd(77, 30)$ **)**

(1) 77 = 1.77 + 0.30

(2) 30 = 0.77 + 1.30

(3) $47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example ($1 = \gcd(77, 30)$ **)**

(1) 77 = 1.77 + 0.30

(2) 30 = 0.77 + 1.30

(3) $47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$

(4) $17 = 1 \cdot 77 + (-2) \cdot 30 \quad (3) - (2)$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example ($1 = \gcd(77, 30)$ **)**

(1) $77 = 1 \cdot 77 + 0 \cdot 30$

(2) 30 = 0.77 + 1.30

(3) $47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$

(4) $17 = 1 \cdot 77 + (-2) \cdot 30 \quad (3) - (2)$

(5) $13 = (-1) \cdot 77 + 3 \cdot 30 \quad (2) - (4)$

Theorem (Bézout's lemma)

for $a,b \in \mathbb{Z}$ not zero, there exist $u,v \in \mathbb{Z}$ with $gcd(a,b) = u \cdot a + v \cdot b$

Example ($1 = \gcd(77, 30)$ **)**

(1)	77 =	$1 \cdot 77 +$	0 · 30

(2)
$$30 = 0.77 + 1.30$$

(3)
$$47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$$

$$(4) 17 = 1 \cdot 77 + (-2) \cdot 30 (3) - (2)$$

(5)
$$13 = (-1) \cdot 77 + 3 \cdot 30 \quad (2) - (4)$$

(6)
$$4 = 2 \cdot 77 + (-5) \cdot 30 \quad (4) - (5)$$

Theorem (Bézout's lemma)

for $a,b \in \mathbb{Z}$ not zero, there exist $u,v \in \mathbb{Z}$ with $gcd(a,b) = u \cdot a + v \cdot b$

Example (1 = gcd(77, 30)**)**

(1)
$$77 = 1 \cdot 77 + 0 \cdot 30$$

(2)
$$30 = 0.77 + 1.30$$

(3)
$$47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$$

$$(4) 17 = 1 \cdot 77 + (-2) \cdot 30 (3) - (2)$$

(5)
$$13 = (-1) \cdot 77 + 3 \cdot 30 \quad (2) - (4)$$

(6) $4 = 2 \cdot 77 + (-5) \cdot 30 \quad (4) - (5)$

(7)
$$9 = (-3) \cdot 77 + 8 \cdot 30 \quad (5) - (6)$$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example ($1 = \gcd(77, 30)$ **)**

(1)
$$77 = 1.77 + 0.30$$

(2)
$$30 = 0.77 + 1.30$$

(3)
$$47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$$

$$(4) 17 = 1 \cdot 77 + (-2) \cdot 30 (3) - (2)$$

(5)
$$13 = (-1) \cdot 77 + 3 \cdot 30 \quad (2) - (4)$$

(6)
$$4 = 2.77 + (-5).30 (4) - (5)$$

(7)
$$9 = (-3) \cdot 77 + 8 \cdot 30 \quad (5) - (6)$$

(8)
$$5 = (-5) \cdot 77 + 13 \cdot 30 \quad (7) - (6)$$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example (1 = gcd(77, 30)**)**

(6)

(1)
$$77 = 1.77 + 0.30$$

(2)
$$30 = 0.77 + 1.30$$

4=

(3)
$$47 = 1 \cdot 77 + (-1) \cdot 30 \quad (1) - (2)$$

$$(4) 17 = 1 \cdot 77 + (-2) \cdot 30 (3) - (2)$$

(5)
$$13 = (-1) \cdot 77 + 3 \cdot 30 \quad (2) - (4)$$

(7)
$$9 = (-3) \cdot 77 + 8 \cdot 30 \quad (5) - (6)$$

 $2 \cdot 77 +$

(4) - (5)

 $(-5) \cdot 30$

(8)
$$5 = (-5) \cdot 77 + 13 \cdot 30 \quad (7) - (6)$$

(9)
$$1 = (-7) \cdot 77 + 18 \cdot 30 \quad (8) - (6)$$

Theorem (Bézout's lemma)

for $a, b \in \mathbb{Z}$ not zero, there exist $u, v \in \mathbb{Z}$ with $gcd(a, b) = u \cdot a + v \cdot b$

Example ($1 = \gcd(77, 30)$ **)** (1) 77 = 1.77+0.30 (2) 30= 0.77+1.30 (1) - (2)47 = 1.77+ $(-1) \cdot 30$ 17= $1 \cdot 77 +$ (3) - (2) $(-2) \cdot 30$ $(-1) \cdot 77 +$ 13= 3 · 30 (2)-(4)(4) - (5)4 = $2 \cdot 77 +$ $(-5) \cdot 30$ $(-3) \cdot 77 +$ 9= 8 · 30 (5)-(6) $(-5) \cdot 77 +$ 5 = 13.30 (7) - (6)1 = $(-7) \cdot 77 +$ 18 · 30 (8) - (6)may stop at 1 since 1 is least possible divisor, it's trivial. u = -7 and v = 18

The divisibility order | (recall from weeks 4 and 5)

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}_{>0}$

The divisibility order

Lemma

divisibility \mid is a well-founded partial order on the positive natural numbers $\,\mathbb{N}_{\,>0}$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

indeed $1 = \gcd(77, 30) = (-7) \cdot 77 + 18 \cdot 30 = -539 + 540$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}_{>0}$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

• reflexivity: $x \mid x$ since $x \cdot 1 = x$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}_{>0}$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1 = x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y' = y$ and $y \cdot z' = z$ for some y', z'. Hence setting $x' := y' \cdot z'$, we have $x \cdot x' = x \cdot y' \cdot z' = y \cdot z' = z$, so $x \mid z$

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\mathbb{N}_{>0}$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1 = x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y' = y$ and $y \cdot z' = z$ for some y', z'. Hence setting $x' := y' \cdot z'$, we have $x \cdot x' = x \cdot y' \cdot z' = y \cdot z' = z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence x = y by anti-symmetry of <
- well-founded: if ... $x'' \mid x' \mid x$ were an infinite descending chain, then so would ... x'' < x' < x, contradicting well-foundedness of \leq

The divisibility order

Lemma

divisibility | is a well-founded partial order on the positive natural numbers $\,\mathbb{N}_{\,>0}\,$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1 = x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y' = y$ and $y \cdot z' = z$ for some y', z'. Hence setting $x' := y' \cdot z'$, we have $x \cdot x' = x \cdot y' \cdot z' = y \cdot z' = z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence x = y by anti-symmetry of <

The divisibility order

Lemma

divisibility \mid is a well-founded partial order on the positive natural numbers $\,\mathbb{N}_{\,>0}\,$

Proof.

note: if $x \mid y$ then $x + \ldots + x = y$ hence $x \leq y$ (for y positive)

- reflexivity: $x \mid x$ since $x \cdot 1 = x$
- transitivity: if $x \mid y$ and $y \mid z$, then $x \cdot y' = y$ and $y \cdot z' = z$ for some y', z'. Hence setting $x' := y' \cdot z'$, we have $x \cdot x' = x \cdot y' \cdot z' = y \cdot z' = z$, so $x \mid z$
- anti-symmetry: if $x \mid y$ and $y \mid x$, then $x \leq y$ and $y \leq x$, hence x = y by anti-symmetry of \leq
- well-founded: if ... $x'' \mid x' \mid x$ were an infinite descending chain, then so would ... x'' < x' < x, contradicting well-foundedness of <
- \Rightarrow proofs by well-founded induction on | for statements on $\mathbb{N}_{>0}$ and $\mathbb{N}_{>1} = \mathbb{N} \{0,1\}$

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is |-minimal (on $\mathbb{N}_{>1}$)

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is |-minimal

Proof.

• Assume p prime and suppose $p = x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then x = p and y = 1, so both are trivial hence p is indecomposable

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is |-minimal

Proof.

- Assume p prime and suppose $p = x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then x = p and y = 1, so both are trivial hence p is indecomposable
- Assume p indecomposable and suppose $x \mid p$ with $x \in \mathbb{N}_{>1}$, i.e. $x \cdot y = p$ for some y. By p being indecomposable, then x, y are trivial, so p = x and p is |-minimal

Definition

- p is prime if $p \in \mathbb{N}_{>1}$ and for all x, y, if $p \mid x \cdot y$ then $p \mid x$ or $p \mid y$
- p is irreducible or indecomposable if $p \in \mathbb{N}_{>1}$ and p only has trivial divisors

Lemma

for $p \in \mathbb{N}_{>1}$, we have p is prime iff p is indecomposable iff p is |-minimal

Proof.

- Assume p prime and suppose $p = x \cdot y$. By p being prime $p \mid x$ or $p \mid y$, say w.l.o.g. $p \mid x$. By $x \mid p$, then x = p and y = 1, so both are trivial hence p is indecomposable
- Assume p indecomposable and suppose $x \mid p$ with $x \in \mathbb{N}_{>1}$, i.e. $x \cdot y = p$ for some y. By p being indecomposable, then x, y are trivial, so p = x and p is |-minimal
- Assume $p \mid$ -minimal and suppose $p \mid x \cdot y$, i.e. $p \cdot d = x \cdot y$ for some d. Either $p \mid x$ or else gcd(p,x) = 1 by p being \mid -minimal. Then $1 = u \cdot p + v \cdot x$ for some u,v (Bézout): $y = y \cdot 1 = y \cdot (u \cdot p + v \cdot x) = y \cdot u \cdot p + y \cdot v \cdot x = y \cdot u \cdot p + v \cdot p \cdot d = (y \cdot u + v \cdot d) \cdot p$ hence $p \mid y$. That is, either $p \mid x$ or $p \mid y$, so p is prime

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

• we first show that $\forall x \in \mathbb{N}_{>1}$ there exists a collection of prime numbers p_l such that $x = \prod p_l$, by induction on x well-foundedly ordered by |.

recall from week 5.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

• we first show that $\forall x \in \mathbb{N}_{>1}$ there **exists** a collection of prime numbers p_l such that $x = \prod p_l$, by induction on x well-foundedly ordered by |. If x is not prime itself, then $x = y \cdot z$ for y, z non-trivial (by the lemma), hence $y = \prod q_j$ and $z = \prod r_K$ for collections of primes q_j and r_K by the IH twice. Combining both, $x = \prod q_j \cdot \prod r_K$, i.e. we may take the concatenation of q_j and r_K .

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}_{>1}$ there exists a collection of prime numbers p_l such that $x = \prod p_l$, by induction on x well-foundedly ordered by |. If x is not prime itself, then $x = y \cdot z$ for y, z non-trivial (by the lemma), hence $y = \prod q_j$ and $z = \prod r_K$ for collections of primes q_j and r_K by the IH twice. Combining both, $x = \prod q_l \cdot \prod r_K$, i.e. we may take the concatenation of q_l and r_K .
- next we show uniqueness, i.e. if $\prod p_l = \prod q_l$ then the collections of prime numbers p_l and q_l are the same up to order, by mathematical induction on #1.

Theorem

there are infinitely many prime numbers.

Theorem (Fundamental theorem of arithmetic, FTA)

every natural number greater than one can be written as a product of prime numbers, its prime factors, which are unique up to their order.

Proof.

- we first show that $\forall x \in \mathbb{N}_{>1}$ there exists a collection of prime numbers p_l such that $x = \prod p_l$, by induction on x well-foundedly ordered by |. If x is not prime itself, then $x = y \cdot z$ for y, z non-trivial (by the lemma), hence $y = \prod q_j$ and $z = \prod r_K$ for collections of primes q_j and r_K by the IH twice. Combining both, $x = \prod q_j \cdot \prod r_K$, i.e. we may take the concatenation of q_j and r_K .
- next we show uniqueness, i.e. if $\prod p_I = \prod q_J$ then the collections of prime numbers p_I and q_J are the same up to order, by mathematical induction on #I. Suppose $i \in I$. Then $p_i \mid \prod p_I = \prod q_J$, so $\exists j \in J$ such that $p_i \mid q_j$ hence $p_i = q_j$ (by the lemma twice). Therefore, $\prod p_{I-\{i\}} = \frac{\prod p_I}{p_i} = \frac{\prod q_J}{q_j} = \prod q_{J-\{j\}}$, and by the IH $p_{I-\{i\}}$ and $q_{J-\{j\}}$ are the same up to order, hence so are p_I and q_J .

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

• set $n := \prod_{i=1}^k p_i$, so that $p_i \mid n$ for each i.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

- set $n := \prod_{i=1}^k p_i$, so that $p_i \mid n$ for each i.
- by FTA n+1 has prime factorisation, with primes among p_1,\ldots,p_k by assumption
- if $p_i \mid n+1$, then also $p_i \mid (n+1)-n=1$; contradicting p_i is prime.

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

- set $n := \prod_{i=1}^k p_i$, so that $p_i \mid n$ for each i.
- by FTA n+1 has prime factorisation, with primes among p_1, \ldots, p_k by assumption

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

- set $n := \prod_{i=1}^k p_i$, so that $p_i \mid n$ for each i.
- ullet by FTA n+1 has prime factorisation, with primes among p_1,\dots,p_k by assumption
- if $p_i \mid n+1$, then also $p_i \mid (n+1)-n=1$; contradicting p_i is prime.

Remark

there are countably many primes since subset of \mathbb{N} .

Theorem

there are infinitely many prime numbers.

Proof.

for a proof by contradiction, suppose p_1, \ldots, p_k were the finite list of primes

- set $n := \prod_{i=1}^k p_i$, so that $p_i \mid n$ for each i.
- by FTA n+1 has prime factorisation, with primes among p_1,\ldots,p_k by assumption
- if $p_i \mid n+1$, then also $p_i \mid (n+1)-n=1$; contradicting p_i is prime.

Remark

there are countably many primes since subset of $\mathbb N$.

Remark

FTA links numbers wrt addition (+,-) to numbers wrt multiplication (\cdot,\div) . Connections between both hard in general, cf. Goldbach's conjecture: if n > 2, then $n = p_i + p_i$.

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Example

• $77 = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^1$ exponents e = (0, 0, 0, 1, 1) and $28 = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^0$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Example

• $77 = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^1$ exponents e = (0, 0, 0, 1, 1) and $28 = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^0$ • $77 \cdot 28 = 2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0} = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^2 \cdot 11^1 = 2156$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Example

- $77 = 2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents e = (0, 0, 0, 1, 1) and $28 = 2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $\bullet \ 77 \cdot 28 = 2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0} = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^2 \cdot 11^1 = 2156$
- $77 \div 28 = 2^{0 \div 2} \cdot 3^{0 \div 0} \cdot 5^{0 \div 0} \cdot 7^{1 \div 1} \cdot 11^{1 \div 0} = 2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{0} \cdot 11^{1} = 11$ $x \div y$ cut-off division $(= \frac{x}{y})$ iff $y \mid x$, $x \div y$ cut-off subtraction (= x - y) iff $y \le x$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Example

- $77 = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^1$ exponents e = (0, 0, 0, 1, 1) and $28 = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^0$
- $77 \cdot 28 = 2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0} = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^2 \cdot 11^1 = 2156$
- $77 \div 28 = 2^{0-2} \cdot 3^{0-0} \cdot 5^{0-0} \cdot 7^{1-1} \cdot 11^{1-0} = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^0 \cdot 11^1 = 11$ $x \div y$ cut-off division (= $\frac{x}{y}$ iff $y \mid x$), $x \div y$ cut-off subtraction (= x - y iff $y \le x$)
- $\bullet \ \gcd(77,28) = 2^{\min(0,2)} \cdot 3^{\min(0,0)} \cdot 5^{\min(0,0)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^0 = 7$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Example

- $77 = 2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1}$ exponents e = (0, 0, 0, 1, 1) and $28 = 2^{2} \cdot 3^{0} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}$
- $\bullet \ 77 \cdot 28 = 2^{0+2} \cdot 3^{0+0} \cdot 5^{0+0} \cdot 7^{1+1} \cdot 11^{1+0} = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^2 \cdot 11^1 = 2156$
- $77 \div 28 = 2^{0 \div 2} \cdot 3^{0 \div 0} \cdot 5^{0 \div 0} \cdot 7^{1 \div 1} \cdot 11^{1 \div 0} = 2^{0} \cdot 3^{0} \cdot 5^{0} \cdot 7^{0} \cdot 11^{1} = 11$ $x \div y$ cut-off division (= $\frac{x}{y}$ iff $y \mid x$), $x \div y$ cut-off subtraction (= x - y iff $y \le x$)
- $\bullet \ \gcd(77,28) = 2^{\min(0,2)} \cdot 3^{\min(0,0)} \cdot 5^{\min(0,0)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} = 2^0 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^0 = 7$
- $lcm(77,28) = 2^{max(0,2)} \cdot 3^{max(0,0)} \cdot 5^{max(0,0)} \cdot 7^{max(1,1)} \cdot 11^{max(1,0)} = 2^2 \cdot 3^0 \cdot 5^0 \cdot 7^1 \cdot 11^1 = 308$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Corollary

$$p_n^e \cdot p_n^f = p_n^{e+f}, \ p_n^e \div p_n^f = p_n^{e+f}, \ \gcd(p_n^e, p_n^f) = p_n^{\min(e, f)}, \ \text{and} \ \operatorname{lcm}(p_n^e, p_n^f) = p_n^{\max(e, f)}$$

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Corollary

$$p_n^e \cdot p_n^f = p_n^{e+f}, p_n^e \div p_n^f = p_n^{e+f}, \gcd(p_n^e, p_n^f) = p_n^{\min(e,f)}, and \operatorname{lcm}(p_n^e, p_n^f) = p_n^{\max(e,f)}$$

Corollary

for $a,b \in \mathbb{Z}$ not zero, $\mathsf{lcm}(a,b) = \frac{|a| \cdot |b|}{\gcd(a,b)}$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} .

Operations on numbers via exponents of prime factors

Corollary (to FTA)

any $n \in \mathbb{N}_{>0}$ can be uniquely written as $p_k^e := \prod_{i=1}^k p_i^{e_i}$ given a long enough initial segment p_k of the prime numbers in ascending order, and collection e_k of exponents

Corollary

$$p_n^e \cdot p_n^f = p_n^{e+f}$$
, $p_n^e \div p_n^f = p_n^{e+f}$, $gcd(p_n^e, p_n^f) = p_n^{min(e,f)}$, and $lcm(p_n^e, p_n^f) = p_n^{max(e,f)}$

Corollary

for $a,b \in \mathbb{Z}$ not zero, $\mathsf{lcm}(a,b) = \frac{|a| \cdot |b|}{\mathsf{gcd}(a,b)}$

Proof.

writing $|a| = p_n^e$ and $|b| = p_n^f$ for n large enough, by the previous corollary: $\operatorname{lcm}(a,b) = \operatorname{lcm}(p_n^e, p_n^f) = p_n^{\max(e,f)} = p_n^{e+f-\min(e,f)} = \frac{(p_n^e) \cdot (p_n^f)}{\gcd(p_n^e, p_n^f)} = \frac{|a| \cdot |b|}{\gcd(a,b)}$ using $\max(x,y) = x + y - \min(x,y)$ for natural numbers x,y.

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . caveat: not known whether one-way functions exist

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard;

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

10

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline, omitting some conditions

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

1 choose large primes p,q. set $n:=p\cdot q$ and $\phi:=(p-1)\cdot (q-1)$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- 1 choose large primes p,q set $n:=p\cdot q$ and $\phi:=(p-1)\cdot (q-1)$
- choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e, n), private key := (d)

10

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- **1** choose large primes p,q. set $n := p \cdot q$ and $\phi := (p-1) \cdot (q-1)$
- **2** choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e,n), private key := (d)
- **g** encrypt message m into cypher text $c := m^e \pmod{n}$

10

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- **1** choose large primes p,q. set $n := p \cdot q$ and $\phi := (p-1) \cdot (q-1)$
- **2** choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e,n), private key := (d)
- \blacksquare encrypt message m into cypher text $c := m^e \pmod{n}$
- decrypt cypher text c into original message $m \equiv c^d \pmod{n}$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- **1** choose large primes p,q. set $n:=p\cdot q$ and $\phi:=(p-1)\cdot (q-1)$
- **2** choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e,n), private key := (d)
- \blacksquare encrypt message m into cypher text $c := m^e \pmod{n}$
- 4 decrypt cypher text c into original message $m \equiv c^d \pmod{n}$

correct:
$$c^d \equiv (m^e)^d \equiv m^{e \cdot d} \equiv m^{1+k \cdot (p-1) \cdot (q-1)} \equiv m \cdot (m^{(p-1) \cdot (q-1)})^k \stackrel{\textit{Euler}}{\equiv} m \cdot 1 \equiv m \pmod{n}$$

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- **1** choose large primes p,q. set $n := p \cdot q$ and $\phi := (p-1) \cdot (q-1)$
- **2** choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e,n), private key := (d)
- \blacksquare encrypt message m into cypher text $c := m^e \pmod{n}$
- 4 decrypt cypher text c into original message $m \equiv c^d \pmod{n}$

correct: $c^d \equiv (m^e)^d \equiv m^{e \cdot d} \equiv m^{1+k \cdot (p-1) \cdot (q-1)} \equiv m \cdot (m^{(p-1) \cdot (q-1)})^k \stackrel{\textit{Euler}}{\equiv} m \cdot 1 \equiv m \pmod{n}$ secure: to decrypt c given (e, n), need (d) so $\phi = (p-1) \cdot (q-1)$ given $p \cdot q$; factoring!

10

Number theory (factorisation, modulo) application: RSA

Cryptography

may be based on one-way functions f, easy to compute f, hard to compute f^{-1} . RSA: $p \cdot q$ easy to compute, factoring hard; not hard on quantum computers (Shor)

RSA outline

- **1** choose large primes p,q. set $n := p \cdot q$ and $\phi := (p-1) \cdot (q-1)$
- **2** choose e,d such that $e \cdot d \equiv 1 \pmod{\phi}$; public key := (e,n), private key := (d)
- \blacksquare encrypt message m into cypher text $c := m^e \pmod{n}$
- 4 decrypt cypher text c into original message $m \equiv c^d \pmod{n}$

correct: $c^d \equiv (m^e)^d \equiv m^{e \cdot d} \equiv m^{1+k \cdot (p-1) \cdot (q-1)} \equiv m \cdot (m^{(p-1) \cdot (q-1)})^k \stackrel{\textit{Euler}}{\equiv} m \cdot 1 \equiv m \pmod{n}$ secure: to decrypt c given (e, n), need (d) so $\phi = (p-1) \cdot (q-1)$ given $p \cdot q$; factoring!

RSA ingredients developed on following slides:

modulo, Euler (RSA case), fast exponentiation, Chinese remainder (speed-up)

Modulo

Definition (modulo some positive natural number n**)**

• integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same
- congruence modulo *n* is **equivalence** relation

Modulo

Definition (modulo some positive natural number n**)**

- integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same
- congruence modulo *n* is equivalence relation
- congruence modulo n is +,--congruence: if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $a \cdot c \equiv b \cdot d \pmod{n}$

Modulo

Definition (modulo some positive natural number n**)**

- integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same
- congruence modulo *n* is equivalence relation
- congruence modulo n is +,--congruence: if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $a \cdot c \equiv b \cdot d \pmod{n}$
- equivalence class of a is congruence or residue class: $\overline{a} := \{a + z \cdot n \mid z \in \mathbb{Z}\}$

Modulo

Definition (modulo some positive natural number n**)**

- integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same
- congruence modulo *n* is equivalence relation
- congruence modulo n is +,--congruence: if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $a \cdot c \equiv b \cdot d \pmod{n}$
- equivalence class of a is congruence or residue class: $\overline{a} := \{a + z \cdot n \mid z \in \mathbb{Z}\}$
- $\mathbb{Z}/n\mathbb{Z}$ is the set of all congruence classes modulo n

Modulo

Definition (modulo some positive natural number n)

- integers a, b are congruent modulo n, denoted by $a \equiv b \pmod{n}$ if remainders $a \mod n$ and $b \mod n$ after division by n are the same
- congruence modulo *n* is equivalence relation
- congruence modulo n is +,--congruence: if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $a \cdot c \equiv b \cdot d \pmod{n}$
- equivalence class of a is congruence or residue class: $\overline{a} := \{a + z \cdot n \mid z \in \mathbb{Z}\}$
- $\mathbb{Z}/n\mathbb{Z}$ is the set of all congruence classes modulo n

Remark

As system of representatives we usually employ the smallest non-negative remainders $\{0,1,2,\ldots,n-1\}$ or the absolutely-smallest remainders

$$\begin{cases} \{-n/2+1,\ldots,-1,0,1,\ldots,n/2\} & \text{if } n \text{ is even} \\ \{-(n-1)/2,\ldots,-1,0,1,\ldots,(n-1)/2\} & \text{if } n \text{ is odd.} \end{cases}$$

Modulo (continued)

Example

We have
$$\mathbb{Z}/5\,\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\}=\{\overline{-2},\overline{-1},\overline{0},\overline{1},\overline{2}\};$$
 moreover $\overline{0}=\{0,5,10,15,\ldots\}=\overline{5},$ and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4}\cdot\overline{4}\cdot\overline{3}=\overline{4}\cdot\overline{4}\cdot\overline{3}=\overline{1}\cdot\overline{3}=\overline{3}.$

Modulo (continued)

Example

We have $\mathbb{Z}/5\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\}=\{\overline{-2},\overline{-1},\overline{0},\overline{1},\overline{2}\};$ moreover $\overline{0}=\{0,5,10,15,\ldots\}=\overline{5},$ and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4}\cdot\overline{4}\cdot\overline{3}=\overline{4}\cdot\overline{4}\cdot\overline{3}=\overline{1}\cdot\overline{3}=\overline{3}.$

Lemma

The functions

$$+: \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} , (\overline{a}, \overline{b}) \mapsto \overline{a} + \overline{b} := \overline{a + b} ,$$
$$\cdot: \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} , (\overline{a}, \overline{b}) \mapsto \overline{a} \cdot \overline{b} := \overline{a \cdot b} ,$$

are well-defined

Modulo (continued)

Example

We have
$$\mathbb{Z}/5\,\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\}=\{\overline{-2},\overline{-1},\overline{0},\overline{1},\overline{2}\};$$
 moreover $\overline{0}=\{0,5,10,15,\ldots\}=\overline{5},$ and $\overline{2}+\overline{4}=\overline{6}=\overline{1}$ and $\overline{4}\cdot\overline{4}\cdot\overline{3}=\overline{4\cdot4}\cdot\overline{3}=\overline{1}\cdot\overline{3}=\overline{3}.$

Lemma

The functions

$$+: \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, (\overline{a}, \overline{b}) \mapsto \overline{a} + \overline{b} := \overline{a + b},$$
$$\cdot: \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, (\overline{a}, \overline{b}) \mapsto \overline{a} \cdot \overline{b} := \overline{a \cdot b},$$

are well-defined

Example

In many programming languages there is a data type for integers corresponding to $\mathbb{Z}/2^{2^n}\mathbb{Z}$ for some $n \geq 3$. For example unsigned int in C corresponds to n = 5 resp. n = 6. For n = 5, i.e. a 32-bits architecture, the sum of $2^{2^5} - 1 = 2^{32} - 1$ and 1 is 0^{12} .

Inverses modulo

Definition

A congruence class \overline{a} modulo n is invertible, if there is a congruence class \overline{b} modulo n such that $\overline{a} \cdot \overline{b} \equiv \overline{1} \pmod{n}$, i.e. if $a \cdot b - 1 = k \cdot n$ for some k.

Inverses modulo

Definition

A congruence class \overline{a} modulo n is invertible, if there is a congruence class \overline{b} modulo n such that $\overline{a} \cdot \overline{b} \equiv \overline{1} \pmod{n}$, i.e. if $a \cdot b - 1 = k \cdot n$ for some k.

Lemma

 \overline{a} modulo n is invertible for non-zero a iff $\gcd(a,n)=1$; in that case, we can compute using Bézout's lemma, integers u,v such that $u \cdot a + v \cdot n = 1$ and $\overline{a}^{-1} = \overline{u}$

13

13

Inverses modulo

Definition

A congruence class \overline{a} modulo n is invertible, if there is a congruence class \overline{b} modulo n such that $\overline{a} \cdot \overline{b} \equiv \overline{1} \pmod{n}$, i.e. if $a \cdot b - 1 = k \cdot n$ for some k.

Lemma

 \overline{a} modulo n is invertible for non-zero a iff $\gcd(a,n)=1$; in that case, we can compute using Bézout's lemma, integers u,v such that $u\cdot a+v\cdot n=1$ and $\overline{a}^{-1}=\overline{u}$

Proof.

if $\gcd(a,n)=1$ and $u\cdot a+v\cdot n=1$, then $\overline{1}=\overline{u}\cdot\overline{a}+\overline{v}\cdot\overline{n}=\overline{u}\cdot\overline{a}$. vice versa, if \overline{a} invertible, then $\overline{a}\cdot\overline{b}=\overline{1}$ for some b, hence $\overline{a\cdot b-1}=\overline{0}$; and therefore $n\mid (a\cdot b-1)$. thus $\gcd(a,n)=1$, as $\gcd(a,n)$ divides n hence $a\cdot b-1$, and a hence $a\cdot b$

Corollary (cancellation by multiplication with \overline{a}^{-1})

if 0 < a < p and $a \cdot b \equiv a \cdot c \pmod{p}$ with p prime, then $b \equiv c \pmod{p}$

Inverses modulo

Definition

A congruence class \overline{a} modulo n is invertible, if there is a congruence class \overline{b} modulo n such that $\overline{a} \cdot \overline{b} \equiv \overline{1} \pmod{n}$, i.e. if $a \cdot b - 1 = k \cdot n$ for some k.

Lemma

 \overline{a} modulo n is invertible for non-zero a iff $\gcd(a,n)=1$; in that case, we can compute using Bézout's lemma, integers u,v such that $u\cdot a+v\cdot n=1$ and $\overline{a}^{-1}=\overline{u}$

Proof.

if $\gcd(a,n)=1$ and $u\cdot a+v\cdot n=1$, then $\overline{1}=\overline{u}\cdot \overline{a}+\overline{v}\cdot \overline{n}=\overline{u}\cdot \overline{a}$. vice versa, if \overline{a} invertible, then $\overline{a}\cdot \overline{b}=\overline{1}$ for some b, hence $\overline{a\cdot b-1}=\overline{0}$; and therefore $n\mid (a\cdot b-1)$. thus $\gcd(a,n)=1$, as $\gcd(a,n)$ divides n hence $a\cdot b-1$, and a hence $a\cdot b$

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1 \pmod{p}$

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1 \pmod{p}$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots (p-1)}$ from

$$\overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{a^{p-1}} = \overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a} = \overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{1}$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

14

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1 \pmod{p}$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots (p-1)}$ from

$$\overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{a^{p-1}} = \overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a} = \overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{1}$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

Corollary (Euler's theorem, RSA case)

for all primes p,q, and integers a with $\gcd(a,p\cdot q)=1$, $a^{(p-1)\cdot (q-1)}\equiv 1\pmod{p\cdot q}$

Proof.

By FTA and $p, q \mid a^{(p-1)\cdot(q-1)} - 1$, from FLT twice, with a^{p-1} , q resp. a^{q-1} , p.

Theorem (Fermat's little theorem, FLT)

for prime p, and integer a with $p \nmid a$, we have $a^{p-1} \equiv 1 \pmod{p}$

Proof.

by cancellation of $\overline{1 \cdot 2 \cdots (p-1)}$ from

$$\overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{a^{p-1}} = \overline{1 \cdot a} \cdot \overline{2 \cdot a} \cdots \overline{(p-1) \cdot a} = \overline{1 \cdot 2 \cdots (p-1)} \cdot \overline{1}$$

where we use cancellation again to show $\overline{1 \cdot a}, \overline{2 \cdot a}, \ldots, \overline{(p-1) \cdot a}$ are all distinct and also from $\overline{0}$, so that they must be a permutation of the congruence classes $\overline{1}, \overline{2}, \ldots, \overline{(p-1)}$, to conclude their products are the same (double counting).

Corollary (Euler's theorem, RSA case)

for all primes p, q, and integers a with $gcd(a, p \cdot q) = 1$, $a^{(p-1)\cdot (q-1)} \equiv 1 \pmod{p \cdot q}$

Fast exponentiation

Example

We compute: $3^9 = 3^{(1001)_2} = 3^{2^3} \cdot 3^{2^0} = 3^8 \cdot 3^1 = ((3^2)^2)^2 \cdot 3 = 19683$. The computation uses 4 multiplications, of which 3 are for squaring.

Fast exponentiation

Example

We compute: $3^9 = 3^{(1001)_2} = 3^{2^3} \cdot 3^{2^0} = 3^8 \cdot 3^1 = ((3^2)^2)^2 \cdot 3 = 19683$. The computation uses 4 multiplications, of which 3 are for squaring.

Theorem (exponentiation by squaring)

Let a be an integer and let n be a positive integer with binary representation $b_k b_{k-1} \cdots b_0$ where $b_k = 1$; in symbols $(b_k b_{k-1} \cdots b_0)_2 = n$. We can then compute the power a^n by squaring (and possibly multiplying) k-times:

Set
$$x = a$$
.

For i from k-1 down to 0 repeat:

Set
$$x = x^2$$
.

If
$$b_i = 1$$
, set $x = x * a$.

15

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for k = 0 n = 1 and the algorithm yields $a^1 = a$
- For k > 0 we write

$$n = \sum_{i=0}^{k} b_i 2^i = m \cdot 2 + b_0$$
 with $m = \sum_{i=1}^{k} b_i 2^{i-1} = \sum_{i=0}^{k-1} b_{i+1} 2^i$

By the induction hypothesis, the first k-1 loops yield the value a^m ; therefore, the last time (i=0) yields

$$(a^m)^2 \cdot a^{b_0} = a^n$$

16

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for k = 0 n = 1 and the algorithm yields $a^1 = a$
- For k > 0 we write

$$n = \sum_{i=0}^{k} b_i 2^i = m \cdot 2 + b_0$$
 with $m = \sum_{i=1}^{k} b_i 2^{i-1} = \sum_{i=0}^{k-1} b_{i+1} 2^i$

By the induction hypothesis, the first k-1 loops yield the value a^m ; therefore, the last time (i=0) yields

$$(a^m)^2 \cdot a^{b_0} = a^n$$

Fast exponentation (continued)

Proof.

- By mathematical induction on k; for k = 0 n = 1 and the algorithm yields $a^1 = a$
- For k > 0 we write

$$n = \sum_{i=0}^{k} b_i 2^i = m \cdot 2 + b_0$$
 with $m = \sum_{i=1}^{k} b_i 2^{i-1} = \sum_{i=0}^{k-1} b_{i+1} 2^i$

By the induction hypothesis, the first k-1 loops yield the value a^m ; therefore, the last time (i=0) yields

$$(a^m)^2 \cdot a^{b_0} = a^n$$

Remark

during exponentiation modulo some number n, no numbers >n need to be used.

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

17

2

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)**

a	b	0	1	2	3	4	
	0	0					$1\mapsto (1,1)$
	1		1				
	2						

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5)

b a	0	1	2	3	4
0	0				
1		1			
2			2		

$$2\mapsto (2,2)$$

17

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)**

a b	0	1	2	3	4
0	0			3	
1		1			
2			2		

$$3\mapsto (0,3)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)**

b	0	1	2	3	4	
0	0			3		
1		1			4	
2			2			

$$4\mapsto (1,4)$$

.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)**

b a	0	1	2	3	4
0	0			3	
1		1			4
2	5		2		

$$5\mapsto (2,0)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)**

a b	0	1	2	3	4
0	0	6		3	
1		1			4
2	5		2		

$$6\mapsto (0,1)$$

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)** $7\mapsto (1,2)$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Exam	Example ($p = 3, q = 5$)									
a	0	1	2	3	4					
0	0	6		3		$8\mapsto (2,3)$				
1		1	7		4					
2	5		2	8						

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5**)** b $9 \mapsto (0,4)$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Exam	Example ($p = 3, q = 5$)										
a b	0	1	2	3	4						
0	0	6		3	9	$10\mapsto (1,0)$					
1	10	1	7		4						
2	5		2	8							

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5) b 0 1 2 3 4 0 0 6 3 9 1 10 1 7 4 2 5 11 2 8

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Exam	Example ($p = 3, q = 5$)									
a	0	1	2	3	4					
0	0	6	12	3	9	$12\mapsto (0,2)$				
1	10	1	7		4					
2	5	11	2	8						

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 5) b 0 1 3 4 0 12 6 3 9 $13 \mapsto (1,3)$ 10 1 7 13 4 5 11 2 8

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Exam	Example ($p = 3, q = 5$)										
a b	0	1	2	3	4						
0	0	6	12	3	9	$14 \mapsto (2,4)$					
1	10	1	7	13	4						
2	5	11	2	8	14						

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 3**)**

ab	0	1	2
0	0		
1			
2			

$$0\mapsto (0,0)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \mod p, x \mod q)$$

Example (p = 3, q = 3**)**

a	b	0	1	2
()	0		
1	L		1	
2	2			

$$1\mapsto (1,1)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 3**)**

a b	0	1	2
0	0		
1		1	
2			2

$$2\mapsto (2,2)$$

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Example (p = 3, q = 3**)**

a b	0	1	2
0	0		
1		1	
2			2

$$3 \mapsto (0,0)$$
 $gcd(p,q) = 3 \neq 1$, crt not a bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \mod p, x \mod q)$$

Proof.

sufficient to prove injectivity.

17

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Proof.

sufficient to prove injectivity. suppose $0 \le x, x' . if <math>crt(x) = crt(x')$, then $x \equiv x' \pmod{p}$ and $x \equiv x' \pmod{q}$, hence $p, q \mid x - x'$. Thus

$$p \cdot q = \frac{p \cdot q}{1} = \frac{p \cdot q}{\gcd(p,q)} = \operatorname{lcm}(p,q) \mid x - x'$$

that is, solutions are $p \cdot q$ apart, so x - x' = 0 and x = x'.

Chinese remainder theorem, bijection

Theorem (Chinese Remainder, bijection)

if gcd(p,q) = 1, then the following function crt from numbers $0 \le x to pairs <math>(a,b)$ with $0 \le a < p$ and $0 \le b < q$, is a bijection:

$$x \mapsto (x \bmod p, x \bmod q)$$

Proof.

sufficient to prove injectivity. suppose $0 \le x, x' . if <math>crt(x) = crt(x')$, then $x \equiv x' \pmod{p}$ and $x \equiv x' \pmod{q}$, hence $p, q \mid x - x'$. Thus

$$p \cdot q = \frac{p \cdot q}{1} = \frac{p \cdot q}{\gcd(p,q)} = \operatorname{lcm}(p,q) \mid x - x'$$

that is, solutions are $p \cdot q$ apart, so x - x' = 0 and x = x'.

7

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary integers. The congruence system

$$x \equiv a \pmod{p}$$

$$x \equiv b \pmod{q}$$

then has the unique solution $x \equiv vqa + upb \pmod{pq}$ where the integers u and v such that up + vq = 1 can be computed using Bézout's lemma.

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary integers. The congruence system

$$x \equiv a \pmod{p}$$

$$x \equiv b \pmod{q}$$

then has the unique solution $x \equiv vqa + upb \pmod{pq}$ where the integers u and v such that up + vq = 1 can be computed using Bézout's lemma.

Proof.

- (existence) we show $x = v \cdot q \cdot a + u \cdot p \cdot b$ for up + vq = 1 satisfies equations: $x \equiv v \cdot q \cdot a + u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv (1 u \cdot p) \cdot a \equiv a u \cdot p \cdot a \equiv a \pmod{p}$ and similarly for $x \equiv b \pmod{q}$
- (uniqueness)

18

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary integers. The congruence system

$$x \equiv a \pmod{p}$$

$$x \equiv b \pmod{q}$$

then has the unique solution $x \equiv vqa + upb \pmod{pq}$ where the integers u and v such that up + vq = 1 can be computed using Bézout's lemma.

Proof.

- (existence) we show $x = v \cdot q \cdot a + u \cdot p \cdot b$ for up + vq = 1 satisfies equations: $x \equiv v \cdot q \cdot a + u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv (1 u \cdot p) \cdot a \equiv a u \cdot p \cdot a \equiv a \pmod{p}$ and similarly for $x \equiv b \pmod{q}$
- (uniqueness) as before: if both x, x' are solutions to the two equations, then $p, q \mid (x x')$, hence $lcm(p, q) = \frac{p \cdot q}{\gcd(p, q)} = p \cdot q \mid (x x')$. That is, solutions are $p \cdot q$ apart, hence unique in $\{0, ..., p \cdot q 1\}$.

Theorem (Chinese remainder theorem, Bézout)

Let p and q be positive integers such that gcd(p,q) = 1, and let a and b be arbitrary integers. The congruence system

$$x \equiv a \pmod{p}$$

$$x \equiv b \pmod{q}$$

then has the unique solution $x \equiv vqa + upb \pmod{pq}$ where the integers u and v such that up + vq = 1 can be computed using Bézout's lemma.

Proof.

- (existence) we show $x = v \cdot q \cdot a + u \cdot p \cdot b$ for up + vq = 1 satisfies equations: $x \equiv v \cdot q \cdot a + u \cdot p \cdot b \equiv v \cdot q \cdot a \equiv (1 u \cdot p) \cdot a \equiv a u \cdot p \cdot a \equiv a \pmod{p}$ and similarly for $x \equiv b \pmod{q}$
- (uniqueness) as before: if both x,x' are solutions to the two equations, then $p,q\mid (x-x')$, hence $\mathrm{lcm}(p,q)=\frac{p\cdot q}{\gcd(p,q)}=p\cdot q\mid (x-x')$. That is, solutions are $p\cdot q$ apart, hence unique in $\{0,...,p\cdot q-1\}$.

Example

The following congruence system has the unique solution $x \equiv 16 \pmod{35}$

$$x \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Example

The following congruence system has the unique solution $x \equiv 16 \pmod{35}$

$$x \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

We compute integers u and v, such that $u \cdot 5 + v \cdot 7 = \gcd(5,7)$.

Hence u = 3, v = -2 and $gcd(5,7) = 3 \cdot 5 - 2 \cdot 7 = 1$, and therefore

$$\underbrace{-2}_{V} \cdot \underbrace{7}_{q} \cdot \underbrace{1}_{a} + \underbrace{3}_{u} \cdot \underbrace{5}_{p} \cdot \underbrace{2}_{b} = 16$$

By the theorem, the solution $x \equiv 16 \pmod{35}$ is unique

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$\begin{array}{ccc} x & \equiv & a \pmod{p} \\ x & \equiv & b \pmod{q} \end{array} \iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod q) \pmod{p \cdot q}$$

0.0

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$x \equiv a \pmod{p}$$

 $x \equiv b \pmod{q}$ $\iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod q) \pmod{p \cdot q}$

Proof.

$$(p' \cdot (p' \cdot (b-a)) \bmod q) + k \cdot p \cdot q \equiv a \pmod p$$

$$x \equiv a + p \cdot p' \cdot (b-a) + k \cdot p \cdot q \equiv a + b - a \equiv b \pmod q$$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$x \equiv a \pmod{p}$$

 $x \equiv b \pmod{q}$ $\iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod{q}) \pmod{p \cdot q}$

Proof.

- $= x \equiv a + p \cdot ((p' \cdot (b a)) \bmod q) + k \cdot p \cdot q \equiv a \pmod p$ $x \equiv a + p \cdot p' \cdot (b a) + k \cdot p \cdot q \equiv a + b a \equiv b \pmod q$
- \Rightarrow previous item shows rhs is a solution. now show it is unique modulo $p \cdot q$. $0 \le x, x' being solutions entails <math>x \equiv x' \pmod{p}$ and $x \equiv x' \pmod{q}$, hence $p, q \mid x x'$. Thus, $p \cdot q = \frac{p \cdot q}{\gcd(p,q)} = \operatorname{lcm}(p,q) \mid x x'$, so x x' = 0 and x = x'.

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$x \equiv a \pmod{p}$$

 $x \equiv b \pmod{q}$ $\iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod{q}) \pmod{p \cdot q}$

Example

Let p=3, q=5 (see above). Then p'=2 ($3\cdot 2\equiv 1\pmod 5$). E.g. for a=1 and b=2, we obtain $x=1+3\cdot (2\cdot (2-1)\mod 5)=7$, and 7 is indeed the number we find at coordinates (a,b)=(1,2) in the table on slide 17. For another example, at coordinate (2,1) in the table $x=2+3\cdot (2\cdot (1-2)\mod 5)=2+3\cdot (-2\mod 5)=2+3\cdot 3=11$.

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$\begin{array}{ccc} x & \equiv & a \pmod{p} \\ x & \equiv & b \pmod{q} \end{array} \iff x \equiv a + p \cdot ((p' \cdot (b - a)) \bmod{q}) \pmod{p \cdot q}$$

Application to RSA

Speed up computation of $c^d \mod (p \cdot q)$ for gcd(p,q) = 1?

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$\begin{array}{ccc} x & \equiv & a \pmod{p} \\ x & \equiv & b \pmod{q} \end{array} \iff x \equiv a + p \cdot ((p' \cdot (b - a)) \bmod{q}) \pmod{p \cdot q}$$

Application to RSA

Speed up computation of $c^d \mod (p \cdot q)$ for $\gcd(p,q) = 1$?

1 compute
$$a := c^{d \mod (p-1)} \mod p$$
; by FLT $c^d \equiv a \pmod p$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q)=1 and let p' be inverse of p modulo q, i.e. $p\cdot p'\equiv 1\pmod q$. Then

$$x \equiv a \pmod{p}$$

 $x \equiv b \pmod{q}$ $\iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod{q}) \pmod{p \cdot q}$

Application to RSA

Speed up computation of $c^d \mod (p \cdot q)$ for gcd(p,q) = 1?

- **1** compute $a := c^{d \mod (p-1)} \mod p$; by FLT $c^d \equiv a \pmod p$
- **2** compute $b := c^{d \mod (q-1)} \mod q$; by **FLT** $c^d \equiv b \pmod q$

Chinese remainder, RSA

Theorem (Chinese remainder, RSA)

Let gcd(p,q) = 1 and let p' be inverse of p modulo q, i.e. $p \cdot p' \equiv 1 \pmod{q}$. Then

$$\begin{array}{rcl} x & \equiv & a \pmod{p} \\ x & \equiv & b \pmod{q} \end{array} \iff x \equiv a + p \cdot ((p' \cdot (b - a)) \mod{q}) \pmod{p \cdot q}$$

Application to RSA

Speed up computation of $c^d \mod (p \cdot q)$ for gcd(p,q) = 1?

- **1** compute $a := c^{d \mod (p-1)} \mod p$; by FLT $c^d \equiv a \pmod p$
- lacktriangle compute $b := c^{d \mod (q-1)} \mod q$; by FLT $c^d \equiv b \pmod q$
- **3** compute $m := a + p \cdot ((p' \cdot (b a)) \mod q) \mod (p \cdot q)$; by CRT $m \equiv c^d \pmod{p \cdot q}$.