Lastname:		
Firstname:		
Matriculation Number		

Exercise	Points	Score
Program Analysis	12	
Programming	14	
Type-Classes and Modules	10	
Recursion and Efficiency	9	
Σ	45	

- You have 90 minutes time to solve the exercises.
- The exam consists of 4 exercises, for a total of 45 points (so there is 1 point per 2 minutes).
- $\bullet\,$ The available points per exercise are written in the margin.
- Don't remove the staple (Heftklammer) from the exam.
- Don't write your solution in red color.

Exercise 1: Program Analysis Consider the following Haskell code:	12
<pre>part_lists [] = []</pre>	
<pre>part_lists (ys @ (x : xs)) = ys : part_lists xs</pre>	
<pre>function = foldr (:)</pre>	
In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth 3 points, giving no answer counts 1 point, and marking multiple or a wrong statement results in 0 points. (a) The evaluation of part_lists [1,2,3] results in:	(3)
□ [[],[3],[2,3],[1,2,3]]	(-)
□ [[3],[2,3],[1,2,3]]	
none of the above	(2)
(b) The evaluation of map take 3 . take 2 . part_lists \$ [4] results in:	(3)
\Box [[4,5,6], [5,6,7]] \Box [[4,5], [5,6], [6,7]]	
\Box a type-error	
□ non-termination	
□ none of the above	
(c) Write down the most general type of function	(3)
(d) An equivalent definition of function is:	(3)
□ reverse	
□ (++)	
□ \ xs ys -> ys ++ xs	
□ \ xs ys -> reverse xs ++ ys	
\square \ xs ys -> xs ++ reverse ys	

Exercise 2: Programming Consider a list where persons are stored in combination with their favorite function on numbers.	14
<pre>fun_list :: [(String, Integer -> Integer)]</pre>	
<pre>fun_list = [("nena", negate), ("Ida", id), ("MAX", max), ("egon", error "noge"),]</pre>	
(a) Does the definition of fun_list compile? If not, which pair(s) must be removed so that it compiles.	(2)
(b) Write a function eval_fun :: String -> Integer -> Integer which takes a name of a person and	(3)
a number and evaluates the stored function of that person from fun_list. You can assume that for the provided name, there will be exactly one pair in the list. For example, eval_fun "nena" 5 = -5.	

Write a function sort_ignore_case :: [(String,a)] -> [(String,a)] which sorts a list of pairs y their first component, but where the upper-case and lower-case letters in the strings are identiced. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although I' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful. • The sorted list must contain the same pairs as the input list.		
y their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although I' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful		
y their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although I' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful		
w their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although [' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful		
their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although the control of		
w their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although [' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful		
w their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although [' < 'e'. • You can use any function you want, in particular sortBy, compare and to_lower might be helpful		
their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although the component of the co		
their first component, but where the upper-case and lower-case letters in the strings are identical. For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although the control of		
	⊄t ed. ['	heir first component, but where the upper-case and lower-case letters in the strings are identi- For instance, sort_ignore_case fun_list = [("egon",), ("Ida",),] although < 'e'.
	_	

10

(3)

(3)

Exercise 3: Type-Classes and Modules

Consider the following Haskell module for complex numbers which are represented by pairs consisting of the radius and the angle of the complex number.

(a) Two complex numbers (r_1, φ_1) and (r_2, φ_2) are equal if and only if $r_1 = r_2 = 0$ or both $r_1 = r_2$ and φ_1 and φ_2 represent the same angle (modulo 2π).

Does the **deriving** Eq implementation of equality on type Complex correctly implement equality on complex numbers if one assumes that all complex numbers have been constructed via **create_polar**? Provide a yes/no answer and if the answer is "no", also provide a corrected definition of **create_polar** such that **deriving** Eq is a correct implementation for equality.

\ /	Extend the program so that Complex becomes an instance of Show where a complex number (r, φ) should be represented by the string $r * e^{\varphi}i$. (Here, * e^ and i are concrete strings!)

- (c) Add a module definition for the complex numbers.
 - The name of the module should be Complex_Polar.
 - Access should be given to the type Complex, to create_polar, and to the equality and show functions for complex numbers.
 - Access should be forbidden to all other functions, and in particular to the constructor Polar.
 - Provide all required Haskell keywords, i.e., if one copies your definition in front of the existing implementation, then the resulting code should compile.

	ercise 4: Recursion and Efficiency sider the following Haskell code:	9		
f x	$x \ge 3 = f(x - 2) + 5 * f(x - 3)$ otherwise = 7			
(a)	(a) Specify which of the following properties f are satisfied.Each correct answer is worth one point, each wrong answer reduces one point. If the overall score of this part would be negative, then it is set to 0.			
	f uses nested recursion. \square yes \square nof uses linear recursion. \square yes \square nof uses guarded recursion. \square yes \square no			
(b)	The current definition of f has exponential complexity. Provide an equivalent definition of f that requires only linearly many recursive calls.	(6)		
	 Of course, you may specify auxiliary functions. You only need to consider non-negative inputs.			