
VO Functional Programming
LVA 703024

Exam 2
Version A

February 26, 2020

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Program Analysis 12

Programming 14

Type-Classes and Modules 10

Recursion and Efficiency 9∑
45

• You have 90 minutes time to solve the exercises.

• The exam consists of 4 exercises, for a total of 45 points (so there is 1 point per 2 minutes).

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

page 1 of 6



VO Functional Programming Exam 2 – A February 26, 2020

Exercise 1: Program Analysis 12
Consider the following Haskell code:

part_lists [] = []

part_lists (ys @ (x : xs)) = ys : part_lists xs

function = foldr (:)

In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth
3 points, giving no answer counts 1 point, and marking multiple or a wrong statement results in 0 points.

(a) (3)The evaluation of part_lists [1,2,3] results in:

� [[],[3],[2,3],[1,2,3]]

� [[3],[2,3],[1,2,3]]

� [[1,2,3],[2,3],[3],[]]

� [[1,2,3],[2,3],[3]]

� none of the above

(b) (3)The evaluation of map take 3 . take 2 . part_lists $ [4..] results in:

� [[4,5,6], [5,6,7]]

� [[4,5], [5,6], [6,7]]

� a type-error

� non-termination

� none of the above

(c) (3)Write down the most general type of function

(d) (3)An equivalent definition of function is:

� reverse

� (++)

� \ xs ys -> ys ++ xs

� \ xs ys -> reverse xs ++ ys

� \ xs ys -> xs ++ reverse ys

page 2 of 6



VO Functional Programming Exam 2 – A February 26, 2020

Exercise 2: Programming 14
Consider a list where persons are stored in combination with their favorite function on numbers.

fun_list :: [(String, Integer -> Integer)]

fun_list = [("nena", negate), ("Ida", id), ("MAX", max), ("egon", error "noge"), ...]

(a) (2)Does the definition of fun_list compile? If not, which pair(s) must be removed so that it compiles.

(b) (3)Write a function eval_fun :: String -> Integer -> Integer which takes a name of a person and
a number and evaluates the stored function of that person from fun_list. You can assume that for
the provided name, there will be exactly one pair in the list.

For example, eval_fun "nena" 5 = -5.

page 3 of 6



VO Functional Programming Exam 2 – A February 26, 2020

(c) (4)Implement a function to_lower :: Char -> Char which takes a character c and returns either the
lower-case version of c if c ∈ {'A', . . . , 'Z'}, or c itself otherwise. Of course, here it is not allowed to
use the predefined Haskell function toLower.

(d) (5)Write a function sort_ignore_case :: [(String,a)] -> [(String,a)] which sorts a list of pairs
by their first component, but where the upper-case and lower-case letters in the strings are identi-
fied. For instance, sort_ignore_case fun_list = [("egon", ...), ("Ida", ...), ...] although
'I' < 'e'.

• You can use any function you want, in particular sortBy, compare and to_lower might be helpful.

• The sorted list must contain the same pairs as the input list.

page 4 of 6



VO Functional Programming Exam 2 – A February 26, 2020

Exercise 3: Type-Classes and Modules 10
Consider the following Haskell module for complex numbers which are represented by pairs consisting of the
radius and the angle of the complex number.

type Radius = Double

type Angle = Double

data Complex = Polar Radius Angle deriving Eq

normalize_angle :: Angle -> Angle

normalize_angle phi

| phi < 0 = normalize_angle (phi + 2 * pi)

| phi > 2 * pi = normalize_angle (phi - 2 * pi)

| otherwise = phi

create_polar :: Radius -> Angle -> Complex

create_polar r phi = Polar r (normalize_angle phi)

(a) (4)Two complex numbers (r1, ϕ1) and (r2, ϕ2) are equal if and only if r1 = r2 = 0 or both r1 = r2 and ϕ1

and ϕ2 represent the same angle (modulo 2π).

Does the deriving Eq implementation of equality on type Complex correctly implement equality on
complex numbers if one assumes that all complex numbers have been constructed via create_polar?

Provide a yes/no answer and if the answer is ”no”, also provide a corrected definition of create_polar
such that deriving Eq is a correct implementation for equality.

(b) (3)Extend the program so that Complex becomes an instance of Show where a complex number (r, ϕ)
should be represented by the string r * e^ϕi. (Here, * e^ and i are concrete strings!)

(c) (3)Add a module definition for the complex numbers.

• The name of the module should be Complex_Polar.

• Access should be given to the type Complex, to create_polar, and to the equality and show
functions for complex numbers.

• Access should be forbidden to all other functions, and in particular to the constructor Polar.

• Provide all required Haskell keywords, i.e., if one copies your definition in front of the existing
implementation, then the resulting code should compile.

page 5 of 6



VO Functional Programming Exam 2 – A February 26, 2020

Exercise 4: Recursion and Efficiency 9
Consider the following Haskell code:

f x

| x >= 3 = f (x - 2) + 5 * f (x - 3)

| otherwise = 7

(a) (3)Specify which of the following properties f are satisfied.

Each correct answer is worth one point, each wrong answer reduces one point. If the overall score of
this part would be negative, then it is set to 0.

f uses nested recursion. � yes � no

f uses linear recursion. � yes � no

f uses guarded recursion. � yes � no

(b) (6)The current definition of f has exponential complexity. Provide an equivalent definition of f that
requires only linearly many recursive calls.

• Of course, you may specify auxiliary functions.

• You only need to consider non-negative inputs.

page 6 of 6


