
Functional Programming WS 2019/2020 LVA 703024+703025

Exercises 6 Deadline: November 13, 2019, 6am

• Please write all your Haskell functions from this exercise sheet into a single .hs-file and upload it in OLAT.

• You can use a template .hs-file that is provided on the proseminar page.

• The file should compile with ghci.

• Once the file has been uploaded, it cannot be changed or resubmitted!

Exercise 6.1 Type-Classes 4 p.

1. Complete the arithmetic implementation of rational numbers from the lecture (Part 3, slide 35). Which
methods are necessary to create a valid Num instance and which ones are optional? (See the Haskell
documentation: https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html)

You should also modify the existing implementation in such a way that the representation is always
normalized, i.e., the denominator is always positive and common fractions are cancelled. Here the function
for computing the greatest common divisor – gcd :: Integral a => a -> a -> a – might be useful.
(2 points)

2. Finish the sqrt version of the lecture (Part 3, slide 24) by adding suitable type signatures. Test your Rat
implementation with it by evaluating sqrt 2 :: Rat. Note that in the template file, sqrt is renamed
into mySqrt in order to avoid name-conflicts with the Prelude version of sqrt. (1 point)

3. The evaluation of sqrt 2 :: Rat should fail. Why does it fail? Implement the missing class instances.
Test your method again using sqrt 2 :: Rat. (1 point)

Exercise 6.2 Maybe And Tuples 2 p.

In the international current exchange system, all currencies will be exchanged through U.S. dollars, if two coun-
tries do not have a special treaty. We have a type data Cash = Currency Integer Double deriving (Show, Eq)
for currency exchange. It should contain an Integer for the total amount of cash in one currency and its
exchange rate to U.S. dollar (Double). The value of Currency m rate in U.S. dollar is:

V alueUSD = m ∗ rate (1)

The following exercise is based on generic datatypes for pairs and triples defined as follows: (you can ignore the
deriving-statement which is just important for running the tests)
data Pair a b = Pair_C a b deriving (Show, Eq)
data Triple a b c = Triple_C a b c deriving (Show, Eq)

1. Implement a function valid_cash :: Cash -> Cash -> Maybe (Triple Cash Integer Double) to check
if an exchange request is valid. The function returns Nothing if the transaction is not valid, otherwise it
returns (just) a triple in the transaction format containing the budget cash::Cash, desired amount of
cash::Integer and the exchange rate::Double in the targeted currency.

The first argument of valid_cash is the budget cash::Cash for exchanging in the original currency. The
second argument is the desired cash::Cash of the targeted currency after the currency exchange. The
transaction is valid under following conditions:

• The budget cash should have greater value (in U.S. dollars) than the desired cash for exchange.



• All arguments in the constructor Currency should be positive

• The desired money should be at least 100 in the targeted currency.

(1 point)

2. Implement a function exchange :: Maybe (Triple Cash Integer Double) -> Maybe (Pair Cash Cash)
that exchanges for the desired cash. The function takes the output of valid_cash as input and returns
the exchanged cash and the remaining budget in their corresponding currencies. You should round the
resulting amount of exchanged cash to Integer.

Remarks:

• The prelude function round :: (RealFrac a, Integral b) => a -> b might be useful.

• Patterns can be arbitrarily nested as in fun_name (Just (Pair_C x y)) = x + y.

Test your function with:
exchange_currency:: Cash -> Cash -> Maybe (Pair Cash Cash)
exchange_currency a b = exchange (valid_cash a b)

(1 point)

Exercise 6.3 Type-Checking 4 p.

For each of the three functions given bellow, determine the result of the type-inference algorithm (slides 27–31
of part 3). Based on this inferred type, determine which of the given type declarations are valid. You should
solve this exercise without GHCi! You can find the types of all built-in functions that are used in this
exercise on slides 19–23 of part 3.

1. func_1 x y = div x y + x (1 point)

• func_1 :: Integer -> Integer -> Integer

• func_1 :: Float -> Float -> Float

• func_1 :: Integral a => a -> a -> a

• func_1 :: Num a => a -> a -> a

2. func_2 x y z = if x then y == z else y /= z (1 point)

• func_2 :: Eq a => a -> a -> a -> a

• func_2 :: Eq a => Bool -> a -> a -> Bool

• func_2 :: Bool -> Bool -> Bool -> Bool

• func_2 :: Ord a => Bool -> a -> a -> Bool

3. Give a textual description on how the typing algorithm can be extended to guarded equations (in the
simple case without where). (1 point)

4. func_3 x y z (1 point)
| x == z = (y, z)
| y < 0 = (y + z, z)
| otherwise = (y - z, z)

• func_3 :: Float -> Float -> Float -> (Float, Float)

• func_3 :: Eq a => a -> a -> a -> (a, a)

• func_3 :: (Eq a, Ord b, Num b) => a -> b -> b -> (b, b)

• func_3 :: (Ord a, Num a) => a -> a -> a -> (a, a)


