Name:	_
Matriculation Number:	_
Points:	_
This exam consists of 2 exercises, for a total of 22 points (so there is roughly 1 point per 2 minutes). The available points per exercise are written in the margin.	
Exercise 1: Multiple Choice	12
In each multiple choice question, you get	
 3 points for 3 correct answers, 1 point for 2 correct answers, 0 points, otherwise. 	
Consider the following Haskell function.	
<pre>foo x y z null x = y null z = y otherwise = foo (tail x) ([head x] ++ y ++ [head z]) (tail z)</pre>	
(a) Mark all valid evaluations. □ foo [1] [2] [3] = [1,2,3] □ foo [1,3,4] [2] [3,4] = [4,3,2,3,4] □ foo [1,0] [2] [3,4] = [0,1,2,3,4]	(3
(b) Mark all valid type declarations of foo. □ foo :: (Num a) => [a] -> [a] -> [b] □ foo :: String -> String -> String □ foo :: (Fractional d) => [d] -> [d] -> [d] -> [d]	(3
<pre>(c) Mark all valid type declarations of foo. □ foo :: [Integer, Integer, Integer] -> [Integer] □ foo :: [Integer] -> ([Integer] -> [Integer]) -> [Integer] □ foo :: [Integer] -> ([Integer] -> ([Integer]))</pre>	(3
(d) Mark all declarations that compile without errors. □ bar x = [1+2+3] ++ x □ com x y = if x == y then 1 + (com x) ((+) 1 y) else 0 □ data Foo b a = Bar String Foo Char [a] [c]	(3

lume with three constructors corresponding to a tablespoon, a teaspoon and a cup.
cric which converts volumes into their value in liters. Give both the type definition nations. Assume the FDA definitions (one teaspoon is $5ml$, one tablespoon is $3 \pm 0.24l$).
stantiation such that Volume becomes an instance of Ord, ordered by their reprecan assume that the function metric from the previous exercise exists.