Superconducting Quantum Magnetomechanics

> MIP Seminar Innsbruck, 27.11.2019

Christian Schneider Supervisor: Gerhard Kirchmair

Picture by D. Jordan and M. Juan

Dr Quantum – Double Slit Experiment | What The Bleep Do We know!?: Down the Rabbit Hole (2005)

Quantum mechanics

1 Electron (1930) \rightarrow Carbon**60** (1999) \rightarrow Biomolecules (**2000 atoms**, 2019) \rightarrow ???

How big can a quantum system be?

Mechanical systems in the quantum regime

Our system: cantilever

- Is it possible to excite it in a quantum state?
- Classical to quantum transition
- Applications in sensors and transducers

But how to get it to a quantum state?

PRL 114, 143602 (2015) PHYSICAL REVIEW LETTERS

week ending 10 APRIL 2015

Strong Single-Photon Coupling in Superconducting Quantum Magnetomechanics

Guillem Via,^{1,2} Gerhard Kirchmair,^{1,3} and Oriol Romero-Isart^{1,2} ¹Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria ²Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria ³Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria (Received 19 December 2014; published 7 April 2015)

<u>Idea</u>: Couple strongly a **well controlled superconducting circuit** to a mechanical system with **strong magnetic coupling**

My PhD: From paper to lab

Superconducting circuits

- Most sensitive magnetic field sensor we have
- Wide range of applications

Wikipedia/ NIMH /Picture of an MFI SystemPublic Domainkruemmel / CC-BY-SA-3.0

Superconducting qubits

DC Setup

DC Setup + Cantilever

- SQUIDs working
- Excellent noise performance
- Until now, no verified cantilever detection

Microwave setup

Sometimes you have to walk around

Microwave setup

D. Zoepfl, P.R. Muppalla, CMF. Schneider, S. Kasemann, S. Partel, G. Kirchmair, AIP Adv. 7, 085118 (2017)

Detection

Results

63 µs

 $au_{interaction}$

D. Zoepfl, M. Juan, C. Schneider, G. Kirchmair, Publication in preparation

Current work & Outlook

High Quality SQUID resonators

- Reduce loss
- Compatible with high magnetic fields

Vibration Isolation

- Mechanical decoupling
- Cryogenic compatible

Towards quantum state engineering of macroscopic objects

Thank you

