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A: Static B: Moving C: Counter diabatic

Figure 1. The counter diabatic waiter. A waiter’s goal
is to deliver a tray with a glass of water from the bar to a
costumer without spilling. In the beginning and the end of
the task the system should look like situation A. An adiabatic
waiter can always be in situation A, but with a desire to be
more efficient and speed up the protocol, a naive waiter will
find himself in the undesirable situation B somewhere during
the task. By tilting the tray (situation C), an example of
counter-diabatic driving, situation B can be avoided and the
desired tasks can be achieved much faster.

he slowly moves along the shortest path (geodesic) con-
necting the bar and the table keeping the tray vertically
at all times. This will work but will require a lot of time
and thus the efficiency of such “adiabatic waiter” will be
very low. An efficient waiter has to serve more customers
by going faster and this requires a different tactic. When
accelerating to reach a finite speed, a pseudo-force will
act on the drinks, which will cause the drinks to spill or
even tip over. This can be avoided by acting on the drinks
with an equal and opposite force and that’s exactly what
waiters do. Moreover, the same tilt can counter a drag
force caused by the air if the waiter runs very fast. In
fact, by tilting the tray while moving the waiter induces
a CD force. Despite the fact that the system of the tray,
the glass and water is complex and chaotic it is clear
from our everyday experience that this CD protocol can
be extremely efficient. Let us highlight several important
points, which we can learn from this intuitive example.
We will come back to these points later, when we discuss
various physical examples:

• In order to implement an efficient CD protocol one
has to introduce new degrees of freedom (like a tilt),
which do not show up in the initial and final state
as well as in the adiabatic path.

• The system does not generally follow an instan-
taneous ground state: at intermediate times the
waiter tilts the tray and moves it fast, which cor-
responds to a highly excited state of the system in
the lab frame.

• The CD protocol corresponds to adding local terms
to the Hamiltonian of the system like the gravita-
tional field. This protocol is only sensitive to the
velocity and acceleration of the waiter.

As we will show these observations underlie cru-
cial ideas behind engineering CD protocols in complex
systems such as locality and gauge equivalence. Us-
ing these ideas as a guiding principle, we develop a
simple variational approach allowing one to find local
and robust approximate counter-adiabatic Hamiltonians.
These counter-terms allow one to achieve truly spectacu-
lar results in suppressing dissipation or targeting ground
states of gapped or gapless many-particle systems with
a very high fidelity at a very fast speeds. An important
advantage of the variational method is that it allows one
to find efficient CD protocols without the need of diag-
onalizing the Hamiltonian, in particular, in the thermo-
dynamic limit. Moreover one can check the accuracy of
the variational ansatz by analyzing the stability of the
protocol with respect to adding additional terms.

LOCAL COUNTER-DIABATIC DRIVING.

CD driving in quantum and classical systems

Let’s have a closer look at how transitions between
eigenstates actually arise and how one can suppress them.
Consider a state |ψ⟩, evolving under the Hamiltonian
H0 (λ(t)), which is time dependent through the parame-
ter λ(t). In general, λ can be a multicomponent vector
parameter (for example in the case of a waiter λ can
stand for his x and y coordinates), but in this work we
will focus on the single-component case to avoid extra
complications. If the parameter changes in time then
for a moving observer in the instantaneous eigenbasis of
H0, the laws of physics are modified. This is of course
very well known for the case of an accelerated or a rotat-
ing frame, but in fact it applies to all types of motion.
Specifically, the Hamiltonian picks up an extra contribu-
tion and becomes

Heff
0 = H̃0 − λ̇Ãλ, (1)

here Ãλ is the adiabatic gauge potential in the mov-
ing frame. It is geometric in origin and related to the
infinitesimal transformations of the instantaneous basis
states in the quantum case and to the infinitesimal canon-
ical transformations of conjugate variables (like coordi-
nates and momenta) in the classical case (see methods
and Ref. [17] for details).
In the moving frame the Hamiltonian H̃0 is diagonal

(stationary), so all non-adiabatic effects must be due to
the second term. The idea of the CD driving is to evolve
the system with the Hamiltonian

HCD(t) = H0 + λ̇Aλ

such that in the moving frame Heff
CD(t) = H̃0 is station-

ary and no transitions occur. Note that by construction
in the zero velocity limit |λ̇| → 0 the CD Hamiltonian

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

Graph Partitioning

wikipedia.org
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Traveling salesman problem

Start &  
end

Distance  22000 km≈
Duration: 3 months

Budget ?
Places:  30≈



G = (V,E)
We ask: What is a partition of the set V into two subsets of  
equal size N/2 such that the number of edges connecting  
the two subsets is minimized?
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A. Lucas, Frontiers in Physics 2, 00005 (2014)
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Two subsets have the same size.
Connection between two sets is minimal.

5

Graph Partitioning

Finding ground state = Minimizing costs = optimal solution to problem
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NP-hard 

Non-deterministic Polynomial time

No classical algorithm can solve these problems efficiently

Problem:

Exponentially increasing computation time

Bu

30 places

N places

Possible solution: Adiabatic quantum computation?
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Possible solution: Adiabatic quantum computing?

Basic computational unit: 1 bit
1 0

8 bits = 1 byte

1. Motivation  Lechner Group

Classical computer A
N
D
R
E
A
S

01000001
01001110
01000100
01010010
01000101
01000001
01010011

“Zuse 3”, br.de
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Quantum bit = qubit

1 0+

2
|ψ⟩ =

Uni Innsbruck

1. Motivation  Lechner Group

Possible solution: Adiabatic quantum computing?

Superposition of two states

Experiments: Quantum computer

burks.de

Qubit: spin , , ,
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Evolution Hamiltonian: (0 ≤ t ≤ T )

Quantum annealing

HD(t) HP(t)
“Driver term” “Problem Hamiltonian”

H(t) = A(t)
N

∑
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biσx
i + B(t)
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hiσz
i +
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Jijσz
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j

H(t) = (1 − t/T )HD + (t/T )HP

Initial state:

Excited states:

Ground state:

1)

2)

3)

σi = {+1
−1

Ising spin chain:
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Example: 
N=8 logical qubits

Problem 1: Long sweep times 
to find ground state

Quantum annealing

HD(t) HP(t)
“Driver term” “Problem Hamiltonian”
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DWave

DWave

H(t) = A(t)
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Ising spin chain:
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Adiabatic Theorem

Transitionless quantum driving

Scaling:

T ∝ eaN1st order QPT:

2nd order QPT: T ∝ Nα

Δ ∝ e−aN

Δ ∝ N−α

Hauke et al. Entanglement in adiabatic quantum optimization

fundamental side, i.e., the question whether quantum annealing
itself is advantageous over classical algorithms, as well as in view
of the unavoidable decoherence present in actual realizations.
Although the persistence of entanglement under decoherence has
recently been demonstrated in quantum annealing devices [31],
the role of entanglement—and in particular the relation between
entanglement and the efficiency of obtaining the correct ground
state—is far from clear.

The purpose of this paper is twofold: (i) We propose an
experimentally feasible implementation based on trapped ions
for a variety of famous NP-complete problems. We show how
controlled noise can be engineered in such setups. This, in com-
bination with large intrinsic coherence times and precise con-
trol, enables a systematic study of how decoherence influences
entanglement and efficiency in AQO protocols. (ii) We perform
a theoretical analysis of the role of entanglement in AQO. We
numerically study its interrelation with the success probability,
and we analytically show that the entanglement entropy provides
an upper bound for the success probability.

A key question that becomes accessible in the proposed
trapped-ion setup is how entanglement, decoherence, and non-
adiabaticity on the one side connect to the efficiency on the other
side. Our findings, obtained from exact numerical calculations,
suggest that entanglement in the final state can reveal informa-
tion about the efficiency of the protocol. We derive a universal
upper bound that allows for an efficient estimation of the suc-
cess probability from the final-state entanglement. Moreover, we
find that the maximal entanglement during the sweep is rather
uncorrelated with the success probability. Note that the goal of
this paper is not to suggest a scalable quantum-annealing device
that could compete with system sizes of a D-wave machine [30],

FIGURE 1 | (A) In the adiabatic quantum optimization protocol, the system

(depicted: four spins represented by their Bloch spheres) is prepared in a

known ground state of the simple Hamiltonian Hinit (orange arrows pointing

to the left). The system is then transferred to the final Hamiltonian Hfinal with

the ground state, given by the green arrows, that is the solution of the

optimization problem. (B) If the transformation is performed adiabatically and

shielded from decoherence effects, the system remains in the instantaneous

ground state (thick blue) protected by the gap !. (C) Evolution of the state

vectors of four spins (indicated by different colors) on the Bloch sphere for a

typical choice of interactions Jij . For slow annealing (ta = 512/J, bottom), the

protocol does reach the final ground state at the poles of the Bloch sphere,

while it fails to do so for fast annealing (ta = 64/J, top).

but rather a well-controlled implementation that allows one to
study the fundamentals of AQO.

The basic idea behind AQO is to utilize quantum adiabatic-
ity for solving hard optimization problems that can be encoded
in couplings Jij and weights hzi of a classical Ising Hamiltonian
[17–20]

Hfinal =
∑

i ̸= j

Jijσ
z
i σ

z
j +

∑

i

hzi σ
z
i , (1)

where σνi , i = 1 . . .N, denote Pauli matrices. The interaction
matrix Jij and the magnetic fields hzi are chosen such that the
ground state ofHfinal is the optimal solution of the original prob-
lem. To arrive at the final ground state, AQO employs an adi-
abatic sweep starting from a simple to prepare ground state of
some Hinit (e.g., Hinit = hx

∑

i σ
x
i with all spins initially polar-

ized along the x direction). The Hamiltonian is then deformed
adiabatically such that H(t = ta) = Hfinal after the annealing
time ta. This protocol can be described by the time dependent
Hamiltonian

H(t) = A(t)Hinit + [1− A(t)]Hfinal , (2)

where A(t) is ramped from initially A(t = 0) = 1 to A(t = ta) =
0. If the ramp is sufficiently slow, according to the adiabatic the-
orem, the system will remain at all times in the ground state and
the state at t = ta is the solution of the optimization problem.
This procedure is sketched in Figure 1. It is in spirit very sim-
ilar to adiabatic state preparation, where one seeks to reach the
ground state of a quantum many-body Hamiltonian via a ramp
as Equation (2). First steps in this direction have already been

Frontiers in Physics | www.frontiersin.org 2 April 2015 | Volume 3 | Article 21

T ∝
|⟨1 |dH/dt |0⟩ |

Δ2

Problem 2: Exponentially closing minimal gap/increasing computation time!

t = tc

“A physical system remains in its instantaneous eigenstate if a 
given perturbation is acting on it slowly enough and if there 
is a gap between the eigenvalue and the rest of the 
Hamiltonian's spectrum.” Adiabatic theorem (Born and Fock, 
1928). 

13

Zener, C, (1932)

AH and W. Lechner, PRA 100 03205 (2019)

Time to solution:
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Parity constraints

H(t) = A(t)
N

∑
i

biσ x
i + B(t)

N

∑
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i +
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∑
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i σz
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Lattice gauge model (LHZ)
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23 14

- Physical qubits available in the lab

- Constraints problem-independent

Readout line

constraints

H(t) = A(t)
K

∑
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biσ x
i + B(t)

K

∑
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i +
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∑
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Clσz
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z
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z
l,w



Quantum annealing
Speed limit: Adiabatic theorem

Counter-diabatic driving

AH and Wolfgang Lechner 

New. J. Phys. 21 043025 (2019)

M. Demirplak and S.A. Rice

J.Phys.Chem.A 2003, 107

AH and Wolfgang Lechner 
PRA 100 032110 (2019)

Yuki Susa et al PRA 98 042326 (2018)
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Problem 2Problem 1
“Long sweep times” “Exponentially closing gap”

Inhomogeneous Driving

Future Goal: efficient non-adiabatic quantum computing
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A: Static B: Moving C: Counter diabatic

Figure 1. The counter diabatic waiter. A waiter’s goal
is to deliver a tray with a glass of water from the bar to a
costumer without spilling. In the beginning and the end of
the task the system should look like situation A. An adiabatic
waiter can always be in situation A, but with a desire to be
more efficient and speed up the protocol, a naive waiter will
find himself in the undesirable situation B somewhere during
the task. By tilting the tray (situation C), an example of
counter-diabatic driving, situation B can be avoided and the
desired tasks can be achieved much faster.

he slowly moves along the shortest path (geodesic) con-
necting the bar and the table keeping the tray vertically
at all times. This will work but will require a lot of time
and thus the efficiency of such “adiabatic waiter” will be
very low. An efficient waiter has to serve more customers
by going faster and this requires a different tactic. When
accelerating to reach a finite speed, a pseudo-force will
act on the drinks, which will cause the drinks to spill or
even tip over. This can be avoided by acting on the drinks
with an equal and opposite force and that’s exactly what
waiters do. Moreover, the same tilt can counter a drag
force caused by the air if the waiter runs very fast. In
fact, by tilting the tray while moving the waiter induces
a CD force. Despite the fact that the system of the tray,
the glass and water is complex and chaotic it is clear
from our everyday experience that this CD protocol can
be extremely efficient. Let us highlight several important
points, which we can learn from this intuitive example.
We will come back to these points later, when we discuss
various physical examples:

• In order to implement an efficient CD protocol one
has to introduce new degrees of freedom (like a tilt),
which do not show up in the initial and final state
as well as in the adiabatic path.

• The system does not generally follow an instan-
taneous ground state: at intermediate times the
waiter tilts the tray and moves it fast, which cor-
responds to a highly excited state of the system in
the lab frame.

• The CD protocol corresponds to adding local terms
to the Hamiltonian of the system like the gravita-
tional field. This protocol is only sensitive to the
velocity and acceleration of the waiter.

As we will show these observations underlie cru-
cial ideas behind engineering CD protocols in complex
systems such as locality and gauge equivalence. Us-
ing these ideas as a guiding principle, we develop a
simple variational approach allowing one to find local
and robust approximate counter-adiabatic Hamiltonians.
These counter-terms allow one to achieve truly spectacu-
lar results in suppressing dissipation or targeting ground
states of gapped or gapless many-particle systems with
a very high fidelity at a very fast speeds. An important
advantage of the variational method is that it allows one
to find efficient CD protocols without the need of diag-
onalizing the Hamiltonian, in particular, in the thermo-
dynamic limit. Moreover one can check the accuracy of
the variational ansatz by analyzing the stability of the
protocol with respect to adding additional terms.

LOCAL COUNTER-DIABATIC DRIVING.

CD driving in quantum and classical systems

Let’s have a closer look at how transitions between
eigenstates actually arise and how one can suppress them.
Consider a state |ψ⟩, evolving under the Hamiltonian
H0 (λ(t)), which is time dependent through the parame-
ter λ(t). In general, λ can be a multicomponent vector
parameter (for example in the case of a waiter λ can
stand for his x and y coordinates), but in this work we
will focus on the single-component case to avoid extra
complications. If the parameter changes in time then
for a moving observer in the instantaneous eigenbasis of
H0, the laws of physics are modified. This is of course
very well known for the case of an accelerated or a rotat-
ing frame, but in fact it applies to all types of motion.
Specifically, the Hamiltonian picks up an extra contribu-
tion and becomes

Heff
0 = H̃0 − λ̇Ãλ, (1)

here Ãλ is the adiabatic gauge potential in the mov-
ing frame. It is geometric in origin and related to the
infinitesimal transformations of the instantaneous basis
states in the quantum case and to the infinitesimal canon-
ical transformations of conjugate variables (like coordi-
nates and momenta) in the classical case (see methods
and Ref. [17] for details).
In the moving frame the Hamiltonian H̃0 is diagonal

(stationary), so all non-adiabatic effects must be due to
the second term. The idea of the CD driving is to evolve
the system with the Hamiltonian

HCD(t) = H0 + λ̇Aλ

such that in the moving frame Heff
CD(t) = H̃0 is station-

ary and no transitions occur. Note that by construction
in the zero velocity limit |λ̇| → 0 the CD Hamiltonian

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

Adiabatic Quantum  
Computation

Non-adiabatic Driving
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waiter can always be in situation A, but with a desire to be
more efficient and speed up the protocol, a naive waiter will
find himself in the undesirable situation B somewhere during
the task. By tilting the tray (situation C), an example of
counter-diabatic driving, situation B can be avoided and the
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• The CD protocol corresponds to adding local terms
to the Hamiltonian of the system like the gravita-
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As we will show these observations underlie cru-
cial ideas behind engineering CD protocols in complex
systems such as locality and gauge equivalence. Us-
ing these ideas as a guiding principle, we develop a
simple variational approach allowing one to find local
and robust approximate counter-adiabatic Hamiltonians.
These counter-terms allow one to achieve truly spectacu-
lar results in suppressing dissipation or targeting ground
states of gapped or gapless many-particle systems with
a very high fidelity at a very fast speeds. An important
advantage of the variational method is that it allows one
to find efficient CD protocols without the need of diag-
onalizing the Hamiltonian, in particular, in the thermo-
dynamic limit. Moreover one can check the accuracy of
the variational ansatz by analyzing the stability of the
protocol with respect to adding additional terms.
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CD driving in quantum and classical systems

Let’s have a closer look at how transitions between
eigenstates actually arise and how one can suppress them.
Consider a state |ψ⟩, evolving under the Hamiltonian
H0 (λ(t)), which is time dependent through the parame-
ter λ(t). In general, λ can be a multicomponent vector
parameter (for example in the case of a waiter λ can
stand for his x and y coordinates), but in this work we
will focus on the single-component case to avoid extra
complications. If the parameter changes in time then
for a moving observer in the instantaneous eigenbasis of
H0, the laws of physics are modified. This is of course
very well known for the case of an accelerated or a rotat-
ing frame, but in fact it applies to all types of motion.
Specifically, the Hamiltonian picks up an extra contribu-
tion and becomes

Heff
0 = H̃0 − λ̇Ãλ, (1)

here Ãλ is the adiabatic gauge potential in the mov-
ing frame. It is geometric in origin and related to the
infinitesimal transformations of the instantaneous basis
states in the quantum case and to the infinitesimal canon-
ical transformations of conjugate variables (like coordi-
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the system with the Hamiltonian

HCD(t) = H0 + λ̇Aλ

such that in the moving frame Heff
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ary and no transitions occur. Note that by construction
in the zero velocity limit |λ̇| → 0 the CD Hamiltonian

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Basic idea

Analysis:

Goals

• Fast protocols for quantum annealing

• High ground state fidelity


1.4 Derivation: gauge potential:

Therefore, we are free to choose any function f(q̨, t) that satisfies the Laplace equation

Ò2
f = 0. (1.7)

The gauge transformation is related to Eichsymmetrie.

1.4 Derivation: gauge potential:

In the moving frame the original state |ÂÍ becomes

˜|ÂÍ = U
†(⁄) |ÂÍ (1.8)

which can be thought of as rotation by an angle „ (for rotation around the z-axis) and
so we get

i~dẪ

dt
= i~d(U † |ÂÍ)

dt
= i~dU

†

dt
|ÂÍ + i~U

† d |ÂÍ
dt

= i~d„

dt

ˆU
†

ˆ„

---Ẫ
f

+ U
†
HU

---Ẫ
f

= (H̃ ≠ „̇Ã⁄)
---Ẫ

f
(1.9)

as the Hamiltonian in the moving frame basis, that is,

H̃m = H̃ ≠ „̇Ã⁄ (1.10)

where
Ã„ = ≠i~(ˆ„U

†)U = ≠i~[ˆ„(U †
U) ≠ U

†
ˆ„U ] = i~U

†
ˆ„U (1.11)

is the adiabatic gauge potential with respect to the parameter „ in the moving frame.
Equation (1.6) can be inverted into the instantaneous basis by doing the inverse unitary
transformation of the form H = UH̃U

†, so that we get

Hm = H ≠ „̇A„. (1.12)

The gauge potential plays the role of a derivative, such that

A„ = i~ˆ„. (1.13)

1.4.1 Gauge potential in Quantum Hamiltonian Systems:

Analogous to canonical transformations in classical mechanics which reflect the freedom of
choosing canoical variables, these transformations correspond to unitary transformations
in quantum mechanics and reflect the freedom of choosing basis states.
The wave function |ÂÍ can always be written in their eigenbasis as

|ÂÍ =
ÿ

n

Ân |nÍ (1.14)

5

Moving frame:

Hamiltonian in moving frame:
Schrödinger Eq.

diagonal  
Hamiltonian

H(t) = ∑
n

|n⟩En⟨n | + iℏ ∑
m≠n

∑
n

|m⟩⟨m |∂tH0 |n⟩⟨n |
Em − En

H0(t) HCD(t)

Problem: A priori knowledge of the system’s eigenstates

H̃m = H̃ − ·λÃλ

adiabatic gauge  
potential
responsible for 
transitions
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Counter-diabatic Hamiltonian: H(t) = H0(t) + ·λAλ
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Approximate counter-diabatic driving

Looking for approximate solution for  

Make ansatz which we have accessible in the lab  

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

H̃m | ̃i = i~@t | ̃i = i~@t(U† | i) = i~@tU† | i+ i~U†
@t | i = i~@t� @�U † | i+ U

†
H | i

= @t� (i~@�U†
U) | ̃i+ U

†
HU | ̃i = (H̃ � �̇Ã�) | ̃i

HCD(t) = H(t) + �̇(t)A�(t) (1)

H̃m = H̃ � �̇Ã� (2)

[i@�H � [A�, H], H] = 0 (3)

G�(A⇤
�) = @�H0 + i[A⇤

�, H0] (4)

S(A⇤
�) = Tr[G2

�(A⇤
�)] (5)

A⇤
� (6)

�S(A⇤
�)

�A⇤
�

= 0 (7)

D
2(A⇤

�) = Tr[(G�(A�)�G�(A⇤
�))

2] (8)

Differentiating H̃(�) = U
†(�)H(�)U(�) with respect to �, we obtain

@�H̃ = U
†
@�HU +

i

~ [Ã�, H̃]

H̃(�) = U
†(�)H(�)U(�) (9)

H0(t) =

NpX

k=1

hk�
x
k +

NpX

k=1

Jk�
z
k �

NcX

l=1

Cl�
z
l,n�

z
l,e�

z
l,s�

z
l,w (10)LHZ:

H̃m | ̃i = i~@t | ̃i = i~@t(U† | i) = i~@tU† | i+ i~U†
@t | i = i~@t� @�U † | i+ U

†
H | i

= @t� (i~@�U†
U) | ̃i+ U

†
HU | ̃i = (H̃ � �̇Ã�) | ̃i

HCD(t) = H(t) + �̇(t)A�(t) (1)

H̃m = H̃ � �̇Ã� (2)

[i@�H � [A�, H], H] = 0 (3)

G�(A⇤
�) = @�H0 + i[A⇤

�, H0] (4)

S(A⇤
�) = Tr[G2

�(A⇤
�)] (5)

A⇤
� (6)

�S(A⇤
�)

�A⇤
�

= 0 (7)

D
2(A⇤

�) = Tr[(G�(A�)�G�(A⇤
�))

2] (8)

Differentiating H̃(�) = U
†(�)H(�)U(�) with respect to �, we obtain

@�H̃ = U
†
@�HU +

i

~ [Ã�, H̃]

H̃(�) = U
†(�)H(�)U(�) (9)

H0(t) =

NpX

k=1

hk�
x
k +

NpX

k=1

Jk�
z
k �

NcX

l=1

Cl�
z
l,n�

z
l,e�

z
l,s�

z
l,w (10)

A� (11)

Ansatz:

Eq.(8) run over all Np = N(N +1)/2− 2 physical qubits

where N is the number of logical spins in the original

model and hk as well as J̃ij → Jk are the strengths of

controllable local fields that act on physical qubits. In

the third sum, Cl are the strengths of 4-body constraints

constructed by closed loops of logical spins emerging

due to the increased number of degrees of freedom from

N logical to Np physical qubits. To account for this,

Nc = Np − 2N + 3 four-body constraints among nearest

neighbors on a square lattice are introduced. This

notation includes Na = N − 2 auxiliary physical qubits

in the bottom row of the LHZ architecture to obtain

4-body constraints on the whole square lattice. The

indices (l, n), (l, w), (l, s) and (l, e) denote the northern,

western, southern and eastern physical qubit of the

constraint l, respectively (more details in Ref.[65]).

For the sweeps in this work, we choose a general time-

dependent protocol λ(t) for all local fields hk(t), Jk(t)
and constraints Cl(t) of Eq.(8) that - in the philosophy

of counter-diabatic driving - behaves like an adiabatic

protocol in the beginning as well as end of the sweep and

accelerates during intermediate times and reads

λ(t) = λ0 + (λf − λ0) sin
2

#
π

2
sin2

#
πt

2τ

$$
. (9)

Here, τ is the sweep time and λ0 and λf the corre-

sponding values for initial and final time, respectively.

This function λ(t) has vanishing first and second or-

der derivatives at the beginning and end of the sweep,

respectively, to attain smoothness of the function, i.e.

λ̇(t = 0) = λ̈(t = 0) = λ̇(t = τ) = λ̈(t = τ) = 0 and

where

λ̇(t) = (λf − λ0)
π2

4τ
sin

%π
τ
t

&
sin

%
π sin2

% π

2τ
t

&&
(10)

is the first time derivative of the protocol λ(t).
In Hamiltonian (8), the time-dependent protocols for the

strengths of the local fields and constraints, respectively,

can thus be written according to Eq.(9) with initial and

final values hk,0 = 1, hk,f = 0, Jk,0 = 0, Jk,f = Jk,

Ck,0 = 0 and Cl,f = Cl (i.e. λ0 = hk,0 and λf = hk,f for

hk(t), λ0 = Jk,0 and λf = Jk,f for Jk(t), λ0 = Cl,0 and

λf = Cl,f for Cl(t)).

As a local and experimentally feasible ansatz for the

adiabatic gauge potential Aλ of the LHZ Hamiltonian

(8), we choose

A∗
λ =

Np"

i=1

αiσ
y
i (11)

where αi is a time-dependent function to be determined.

The additional local magnetic field (σy
) is introduced for

each physical qubit. This ansatz is imaginary; thus it

breaks instantaneous time-reversal symmetry and adds a

new degree of freedom to the system.

The operator (5) in LHZ reads

G(A∗
λ) =

Np"

k=1

(ḣk − 2αkJk)σ
x
k + (J̇k + 2αkhk)σ

z
k

−
Nc"

l=1

Ċlσ
z
l,nσ

z
l,wσ

z
l,sσ

z
l,e

+ 2Cl(αl,nσ
x
l,nσ

z
l,wσ

z
l,sσ

z
l,e + αl,wσ

z
l,nσ

x
l,wσ

z
l,sσ

z
l,e

+ αl,sσ
z
l,nσ

z
l,wσ

x
l,sσ

z
l,e + αl,eσ

z
l,nσ

z
l,wσ

z
l,sσ

x
l,e), (12)

where the dot stands for the time derivative. We compute

the Hilbert-Schmidt norm by building the square of the

Hermitian operator (12), that is

Tr[G2
λ(A∗

λ)]

2Np
=

Np"

k=1

(ḣk − 2αkJk)
2 + (J̇k + 2αkhk)

2

+

Nc"

l=1

(Ċl)
2 + 4C2

l (α
2
l,n + α2

l,w + α2
l,s + α2

l,e), (13)

where 2Np is the dimension of the Hilbert space.

The goal is to find an expression for αk with minimal ac-

tion in Eq.(6) corresponding to a minimum in operator

distance D
2(A∗

λ) between exact and approximate adia-

batic gauge potential. The optimal approximate solution

for the adiabatic gauge potential A∗
λ is found by comput-

ing the derivative of the action with respect to αk and

applying Eq.(7). For the optimal solution we obtain

αk =
1

2

ḣkJk − J̇khk

J
2
k + h

2
k +

!
n C

2
k,n

, (14)

where the sum in the denominator runs over all nearest

neighbor constraints Ck,n of the k-th physical qubit.

Note that this solution for the adiabatic gauge potential

is exact for any constraint strength Cl equal to zero, as it

is just the counter-diabatic solution for Np independent

two-level systems [48, 50]. The adiabtic gauge potential

A∗
λ also vanishes, if either hk = 0 or Jk = 0 for all physi-

cal qubits, implying that the leading contribution to Aλ

actually comes from the 4-body interaction terms. For

completeness, we can include 4-body interaction terms in

our ansatz (see Appendix). The experimental implemen-

tation of the resulting 4-body terms is challenging and

we will focus on the local solutions in this work.

The resulting local CD Hamiltonian in the lattice

gauge model has the form

HCD,LHZ(t) =

Np"

k=1

hk(t)σ
x
k +

Np"

k=1

Jk(t)σ
z
k

+

Np"

k=1

Yk(λf , t)σ
y
k −

Nc"

l=1

Cl(t)σ
z
l,nσ

z
l,wσ

z
l,sσ

z
l,e (15)

where

Yk(λf , t) = αk(t) · λ̇(t) =
1

2

ḣk(t)Jk(t)− J̇k(t)hk(t)

J
2
k (t) + h

2
k(t) +

!
n C

2
k,n(t)

· λ̇(t)

(16)

find optimal expression
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Analytical variational optimization
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Problem: Just works well for ordered quantum systems

AH and W. Lechner, 2019, New. J. Phys. 21 043025

Quantum annealing + analytical variation

Additional iterative variation of control parameter

Solution: Hybrid quantum-classical iterative variation

analytical variation

iterative variation

3. Non-diabatic Driving

2

A: Static B: Moving C: Counter diabatic

Figure 1. The counter diabatic waiter. A waiter’s goal
is to deliver a tray with a glass of water from the bar to a
costumer without spilling. In the beginning and the end of
the task the system should look like situation A. An adiabatic
waiter can always be in situation A, but with a desire to be
more efficient and speed up the protocol, a naive waiter will
find himself in the undesirable situation B somewhere during
the task. By tilting the tray (situation C), an example of
counter-diabatic driving, situation B can be avoided and the
desired tasks can be achieved much faster.

he slowly moves along the shortest path (geodesic) con-
necting the bar and the table keeping the tray vertically
at all times. This will work but will require a lot of time
and thus the efficiency of such “adiabatic waiter” will be
very low. An efficient waiter has to serve more customers
by going faster and this requires a different tactic. When
accelerating to reach a finite speed, a pseudo-force will
act on the drinks, which will cause the drinks to spill or
even tip over. This can be avoided by acting on the drinks
with an equal and opposite force and that’s exactly what
waiters do. Moreover, the same tilt can counter a drag
force caused by the air if the waiter runs very fast. In
fact, by tilting the tray while moving the waiter induces
a CD force. Despite the fact that the system of the tray,
the glass and water is complex and chaotic it is clear
from our everyday experience that this CD protocol can
be extremely efficient. Let us highlight several important
points, which we can learn from this intuitive example.
We will come back to these points later, when we discuss
various physical examples:

• In order to implement an efficient CD protocol one
has to introduce new degrees of freedom (like a tilt),
which do not show up in the initial and final state
as well as in the adiabatic path.

• The system does not generally follow an instan-
taneous ground state: at intermediate times the
waiter tilts the tray and moves it fast, which cor-
responds to a highly excited state of the system in
the lab frame.

• The CD protocol corresponds to adding local terms
to the Hamiltonian of the system like the gravita-
tional field. This protocol is only sensitive to the
velocity and acceleration of the waiter.

As we will show these observations underlie cru-
cial ideas behind engineering CD protocols in complex
systems such as locality and gauge equivalence. Us-
ing these ideas as a guiding principle, we develop a
simple variational approach allowing one to find local
and robust approximate counter-adiabatic Hamiltonians.
These counter-terms allow one to achieve truly spectacu-
lar results in suppressing dissipation or targeting ground
states of gapped or gapless many-particle systems with
a very high fidelity at a very fast speeds. An important
advantage of the variational method is that it allows one
to find efficient CD protocols without the need of diag-
onalizing the Hamiltonian, in particular, in the thermo-
dynamic limit. Moreover one can check the accuracy of
the variational ansatz by analyzing the stability of the
protocol with respect to adding additional terms.

LOCAL COUNTER-DIABATIC DRIVING.

CD driving in quantum and classical systems

Let’s have a closer look at how transitions between
eigenstates actually arise and how one can suppress them.
Consider a state |ψ⟩, evolving under the Hamiltonian
H0 (λ(t)), which is time dependent through the parame-
ter λ(t). In general, λ can be a multicomponent vector
parameter (for example in the case of a waiter λ can
stand for his x and y coordinates), but in this work we
will focus on the single-component case to avoid extra
complications. If the parameter changes in time then
for a moving observer in the instantaneous eigenbasis of
H0, the laws of physics are modified. This is of course
very well known for the case of an accelerated or a rotat-
ing frame, but in fact it applies to all types of motion.
Specifically, the Hamiltonian picks up an extra contribu-
tion and becomes

Heff
0 = H̃0 − λ̇Ãλ, (1)

here Ãλ is the adiabatic gauge potential in the mov-
ing frame. It is geometric in origin and related to the
infinitesimal transformations of the instantaneous basis
states in the quantum case and to the infinitesimal canon-
ical transformations of conjugate variables (like coordi-
nates and momenta) in the classical case (see methods
and Ref. [17] for details).
In the moving frame the Hamiltonian H̃0 is diagonal

(stationary), so all non-adiabatic effects must be due to
the second term. The idea of the CD driving is to evolve
the system with the Hamiltonian

HCD(t) = H0 + λ̇Aλ

such that in the moving frame Heff
CD(t) = H̃0 is station-

ary and no transitions occur. Note that by construction
in the zero velocity limit |λ̇| → 0 the CD Hamiltonian

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

AH and W. Lechner, 2019, New. J. Phys. 21 043025

H(t) = H0(t) + ·λAλ
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Costs: “No free lunch”

Numerical Results:

Success Fidelity:
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HCD,LHZ(t) =
Np
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We have  
• … further developed a method to improve quantum annealing by counter-

diabatic driving and inhomogeneous driving for lattice gauge quantum 
computing


• … applied this method to the field of quantum thermodynamics

• … filed a patent with this idea (applicable to all Hamiltonians)

Conclusion:

Working medium
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AH, V. Mukherjee,  W. Niedenzu and W. Lechner, to be published



Outlook:
We want to
• … implement counter-diabatic driving to open quantum systems


• … implement this idea in an experiment (ongoing collaboration with group 

of Rainer Blatt)


• … implement the counter-diabatic for artificial intelligence (ongoing work 

with group of Hans Briegel)

Conclusion and Outlook  Lechner Group

Environment

Analyzer

PS agent

Quantum

Optimizer
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action

reward

current gate 
sequence
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Quantum Chemistry

Picture: E. Meijer, University of Amsterdam. 

Adiabatic Quantum Computing: R. Babbush et. al.,  
                                              Sci. Rep. 4, 6603 (2014). 

Protein folding

Adiabatic Quantum computing: A. Perdomo-Ortiz et. al.,  
                                              Sci. Rep. 2, 571 (2012). 

e.g. beta-lactoglobolin (milk protein) 
Picture: Peter Bolhuis

I. Coluzza, et.al. Biophys. J. (2007).

Other scientific optimization problems:
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Quantum annealing
Speed limit: Adiabatic theorem

Counter-diabatic driving
M. Demirplak and S.A. Rice

J.Phys.Chem.A 2003, 107

Yuki Susa et al PRA 98 042326 (2018)
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Yuki Susa et al PRA 98 042326 (2018)

First-order quantum phase transition in p-spin model

LHZ has disordered and ordered part

Quantum phase transitions in p-spin model

Exponential closing of minimal gap

Inhomogeneous Driving:

p-spin Hamiltonian
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p-spin Hamiltonian
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Inhomogeneous Driving:

p-spin Hamiltonian
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p-spin Hamiltonian
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Calculation of constraint energies:

Inhomogeneous Driving:

p-spin Hamiltonian
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Shuffling of spin configurations in LHZ
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standard quantum annealing

Driver term

the protocol H(s) = (1 � f(s))HI + f(s)HP where f(s)
is a smooth function in the normalized time s = t/tf

with f(s = 0) = 0 and f(s = 1) = 1 and tf the running
time of the sweep. In switching from HI to HP , the sys-
tem undergoes a quantum phase transition which limits
its efficiency. For an Ising spin glass one would expect
a second-order phase transition at critical time s

⇤ with
polynomial closing gap. However, it was recently shown
that additional exponentially closing gaps are present for
s > s

⇤ [30].
An alternative to the spin glass encoding of optimiza-

tion problems has been recently introduced by Lechner,
Hauke, and Zoller (LHZ) [31]. In this model, physical
qubits describe the relative configuration of two logical
spins taking the values +1 for parallel (i.e. "", ##) and �1
for antiparallel ("#, #") alignment. The time-dependent
Hamiltonian in LHZ reads

HLHZ(s) = HI(s) + HP (s) (1)

HI(s) = �

NpX

k=1

hk(s)�
x
k (2)

HP (s) = �

NpX

k=1

Jk(s)�
z
k �

NcX

l=1

Cl(s)�
z
l,n�

z
l,w�

z
l,s�

z
l,e

(3)

where �
x
k and �

z
k are the x- and z-Pauli matrices for the

physical qubit at site k and the strengths of all local fields
hk, Jk and constraints Cl, respectively, depend on time.
Here, HI(s) is the driver term and HP (s) the encoded
problem Hamiltonian to be solved.
The strengths of the controllable local magnetic fields
hk and Jk in Equations (2) and (3) are applied to all
Np = Nl(Nl � 1)/2 physical qubits where Nl is the num-
ber of logical spins in the original model. The third sum
runs over Nc = Np � Nl + 1 4-body constraints among
nearest neighbor qubits on a square lattice and Cl is the
strength of a 4-body constraint at plaquette l. The in-
troduction of these 4-body constraints accounts for the
increased number of degrees of freedom from Nl logical to
Np physical qubits. This notation excludes Na = Nl � 2
auxiliary physical qubits in the bottom row of the LHZ
architecture to obtain 4-body constraints on the whole
square lattice. The indices (l, n), (l, w), (l, s) and (l, e)
denote the northern, western, southern and eastern phys-
ical qubit of the constraint l, respectively (more details
in Ref. [31]). Given that the constraints are the domi-
nante energy scale, the model is thus similar to the p-spin
model.

B. Inhomogeneous transverse field

The p-spin model [38] with standard homogeneously
driven tranverse field undergoes a first-order quantum
phase transition in the zero-temperature phase diagram.
Thus, in LHZ – with its similarity to the p-spin model

for p = 4 – a first-order QPT is also expected during a
quantum annealing sweep. As the minimal energy gap of
Hamiltonian (1) between the ground state and first ex-
cited state decreases exponentially with increasing sys-
tem size N at the critical point (i.e. / e

�aN
, a > 0),

the computation time tf grows exponentially (i.e. tf /

|h1|dH/dt|0i|/�2 with � the minimal energy gap and |0i

and |1i the instantaneous ground state and first excited
state, respectively) with system size according to the adi-
abatic theorem and Landau-Zener’s formula.

Spatio-temporal inhomogeneous driving [32, 33] of the
transverse field introduces an additional parameter and
thus an additional dimension in the phase diagram. This
allows one to avoid first-order phase transitions by con-
necting HI and HP via a continuous path around the crit-
ical point. This is achieved by switching off the strength
of the transverse field inhomogeneously. With the goal to
apply this to LHZ in mind, we modify our Hamiltonian
(1) as

HLHZ(s, r) = sHP (s) �

NpX

k=1

hk(s, r)�
x
k (4)

where hk(s, r) is the strength of the inhomogeneously
driven transverse field. In this work, we choose a pro-
tocol for the strength of the transverse field that reads

hk(s, r) =

8
><

>:

1 if s < sk+1,

Np(1 � s
r) � (Np � k � 1) if sk+1  s  sk,

0 if s > sk,

sk = (1 � (Np � k)/Np)
1/r

,

sk+1 = (1 � (Np � k � 1)/Np)
1/r

. (5)

This protocol first switches off the transverse field of the
qubits in the first row and the auxiliary qubits at last
(see Figure S1 in the Appendix).

The protocol hk(s, r) is chosen as a continu-
ous piecewise-differentiable function to avoid diverging
derivatives of the Hamiltonian (4). Here, we have in-
cluded a new parameter r which enters in an additional
time-dependent function ⌧ = s

r with 0  ⌧  1. In this
spatio-temporal formulation, s and ⌧ are both controlled
as a function of time with s = ⌧ = 0 at time t = 0 and
s = ⌧ = 1 at time t = tf , the total sweep time.

C. Inhomogeneously driven LHZ

In the following, we derive the free energy of Hamilto-
nian Eq. (4) with an inhomogeneous driving field. This
derivation follows the Suzuki-Trotter decomposition used
in Ref. [39, 40]. The partition function of Hamiltonian
Eq. (4) reads

ZLHZ = tr
h
e
��HLHZ(s,r)

i
. (6)

Idea: Inhomogeneous driving of Transverse Field
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Free energy of LHZbe written as

f(m, s, ⌧, C, J) = 3sCm
4 +

⇥
�⌧s(4Cm

3 + J)

�(1 � ⌧)
p

s2(4Cm3 + J)2 + 1
i

(15)

where C and J are the strengths of the constraints and
longitudinal magnetic fields, respectively.
The critical coefficients mc, sc, ⌧c of the free energy term
Eq. (15) are obtained by a Landau-type expansion of the
free energy term with the condition that the first three
derivatives vanish [41], i.e. we have to solve the system
of equations

@

@m
f(m, s, ⌧, C, J)

����
m=mc

= 0, (16a)

@
2

@m2
f(m, s, ⌧, C, J)

����
m=mc

= 0, (16b)

@
3

@m3
f(m, s, ⌧, C, J)

����
m=mc

= 0 (16c)

with respect to its critical coefficients mc, sc and ⌧c.
Note, that the critical coefficients are a function of the
constraint strength C and the distribution of J . The
values of the critical coefficients for a uniform distribution
of the strength of the longitudinal magnetic field J with
values between �1 and 1 and constraint strength C = 2J
are

mc ⇡ 0.679795, sc ⇡ 0.219232, ⌧c ⇡ 0.38911. (17)

We can obtain these critical coefficients with our thermo-
dynamical free energy term Eq. (15) (or with finite-size
free energy term Eq. (13) by increasing the number of
physical qubits Np) and which can be seen in Figure 3.
Here, we have plotted the free energy term of Eq. (15)
with respect to the magnetization m for different points
(s, ⌧) in the two-dimensional phase diagram. On the first-
order transition line (points (a), (b) and (d)), we see a
degenerated minimum of the free energy. At the cross-
ing of the first-order transition line starting from (c) and
going to (e), we see that the value for the magnetization
that minimizes the free energy changes discontinuously
from the paramagnetic solution m = mp = 0.0 to the
ferromagnetic solution m = mf ⇡ 0.9 and which depicts
a quantum phase transition of first order.

III. NUMERICAL RESULTS

Let us now apply the results to a quantum anneal-
ing protocol. For quantum annealing, an important
measure of the efficiency is the ground state fidelity
F (tf ) = h (tf )|�0(tf )i with | (tf )i the state of our sys-
tem and |�0(tf )i the ground state of our final Hamilto-
nian at time t = tf . Another important measure is the
minimal energy gap �Emin of the corresponding energy
eigenspectra.

Figure 3. Critical coefficients. The evolution of the crit-
ical coefficients ⌧c and sc of Eq. (13) for increasing number
of physical qubits from Np = 25 (blue plus) to Np = 499500
(turquoise plus at (a)) is shown. In the thermodynamic limit,
we reach the critical coefficients of Eq. (17) of the thermody-
namic free energy term Eq. (15) at (a). The subplots (a)-(e)
show the free energy with respect to the magnetization m for
different values of s and ⌧ of Eq. (15).

Figure 4 shows the statistics of the squared final
ground state fidelities F

2(tf ) for sweeps with different
running times tf for an ensemble of 100 randomly uni-
formly distributed instances of interactions Jk for homo-
geneous (1) and inhomogeneous Eq. (4) driving, respec-
tively. The system size is Np = 6 plus two auxiliary
physical qubits and strengths of the constraints are each
C = 2 J for all three constraints and 10 J is the value of
the strength of the auxiliary local fields in the bottom
row of LHZ. The free parameter in the inhomogeneously
driven transverse field is r = 0.5. One can see that inho-
mogeneous driving of the transverse field can enhance the
performance of traditional quantum annealing consider-
ably. Furthermore, the ratio of the squared final ground
state fidelities of inhomogeneous to homogeneous driving
improves with increasing system size as shown in Figure
4(b).

A free parameter in the protocol is the choice of the

Two-dimensional phase diagram:
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where C and J are the strengths of the constraints and
longitudinal magnetic fields, respectively.
The critical coefficients mc, sc, ⌧c of the free energy term
Eq. (15) are obtained by a Landau-type expansion of the
free energy term with the condition that the first three
derivatives vanish [41], i.e. we have to solve the system
of equations
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with respect to its critical coefficients mc, sc and ⌧c.
Note, that the critical coefficients are a function of the
constraint strength C and the distribution of J . The
values of the critical coefficients for a uniform distribution
of the strength of the longitudinal magnetic field J with
values between �1 and 1 and constraint strength C = 2J
are

mc ⇡ 0.679795, sc ⇡ 0.219232, ⌧c ⇡ 0.38911. (17)

We can obtain these critical coefficients with our thermo-
dynamical free energy term Eq. (15) (or with finite-size
free energy term Eq. (13) by increasing the number of
physical qubits Np) and which can be seen in Figure 3.
Here, we have plotted the free energy term of Eq. (15)
with respect to the magnetization m for different points
(s, ⌧) in the two-dimensional phase diagram. On the first-
order transition line (points (a), (b) and (d)), we see a
degenerated minimum of the free energy. At the cross-
ing of the first-order transition line starting from (c) and
going to (e), we see that the value for the magnetization
that minimizes the free energy changes discontinuously
from the paramagnetic solution m = mp = 0.0 to the
ferromagnetic solution m = mf ⇡ 0.9 and which depicts
a quantum phase transition of first order.

III. NUMERICAL RESULTS

Let us now apply the results to a quantum anneal-
ing protocol. For quantum annealing, an important
measure of the efficiency is the ground state fidelity
F (tf ) = h (tf )|�0(tf )i with | (tf )i the state of our sys-
tem and |�0(tf )i the ground state of our final Hamilto-
nian at time t = tf . Another important measure is the
minimal energy gap �Emin of the corresponding energy
eigenspectra.

Figure 3. Critical coefficients. The evolution of the crit-
ical coefficients ⌧c and sc of Eq. (13) for increasing number
of physical qubits from Np = 25 (blue plus) to Np = 499500
(turquoise plus at (a)) is shown. In the thermodynamic limit,
we reach the critical coefficients of Eq. (17) of the thermody-
namic free energy term Eq. (15) at (a). The subplots (a)-(e)
show the free energy with respect to the magnetization m for
different values of s and ⌧ of Eq. (15).

Figure 4 shows the statistics of the squared final
ground state fidelities F

2(tf ) for sweeps with different
running times tf for an ensemble of 100 randomly uni-
formly distributed instances of interactions Jk for homo-
geneous (1) and inhomogeneous Eq. (4) driving, respec-
tively. The system size is Np = 6 plus two auxiliary
physical qubits and strengths of the constraints are each
C = 2 J for all three constraints and 10 J is the value of
the strength of the auxiliary local fields in the bottom
row of LHZ. The free parameter in the inhomogeneously
driven transverse field is r = 0.5. One can see that inho-
mogeneous driving of the transverse field can enhance the
performance of traditional quantum annealing consider-
ably. Furthermore, the ratio of the squared final ground
state fidelities of inhomogeneous to homogeneous driving
improves with increasing system size as shown in Figure
4(b).

A free parameter in the protocol is the choice of the
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Inhomogeneous driving extends phase diagram

0.0 0.2 0.4 0.6 0.8 1.0
sc

0.0

0.2

0.4

0.6

0.8

1.0

⌧ c

standard annealing

r=2.0

r=0.5

the protocol H(s) = (1 � f(s))HI + f(s)HP where f(s)
is a smooth function in the normalized time s = t/tf

with f(s = 0) = 0 and f(s = 1) = 1 and tf the running
time of the sweep. In switching from HI to HP , the sys-
tem undergoes a quantum phase transition which limits
its efficiency. For an Ising spin glass one would expect
a second-order phase transition at critical time s

⇤ with
polynomial closing gap. However, it was recently shown
that additional exponentially closing gaps are present for
s > s

⇤ [30].
An alternative to the spin glass encoding of optimiza-

tion problems has been recently introduced by Lechner,
Hauke, and Zoller (LHZ) [31]. In this model, physical
qubits describe the relative configuration of two logical
spins taking the values +1 for parallel (i.e. "", ##) and �1
for antiparallel ("#, #") alignment. The time-dependent
Hamiltonian in LHZ reads

HLHZ(s) = HI(s) + HP (s) (1)

HI(s) = �

NpX

k=1

hk(s)�
x
k (2)

HP (s) = �

NpX

k=1

Jk(s)�
z
k �

NcX

l=1

Cl(s)�
z
l,n�

z
l,w�

z
l,s�

z
l,e

(3)

where �
x
k and �

z
k are the x- and z-Pauli matrices for the

physical qubit at site k and the strengths of all local fields
hk, Jk and constraints Cl, respectively, depend on time.
Here, HI(s) is the driver term and HP (s) the encoded
problem Hamiltonian to be solved.
The strengths of the controllable local magnetic fields
hk and Jk in Equations (2) and (3) are applied to all
Np = Nl(Nl � 1)/2 physical qubits where Nl is the num-
ber of logical spins in the original model. The third sum
runs over Nc = Np � Nl + 1 4-body constraints among
nearest neighbor qubits on a square lattice and Cl is the
strength of a 4-body constraint at plaquette l. The in-
troduction of these 4-body constraints accounts for the
increased number of degrees of freedom from Nl logical to
Np physical qubits. This notation excludes Na = Nl � 2
auxiliary physical qubits in the bottom row of the LHZ
architecture to obtain 4-body constraints on the whole
square lattice. The indices (l, n), (l, w), (l, s) and (l, e)
denote the northern, western, southern and eastern phys-
ical qubit of the constraint l, respectively (more details
in Ref. [31]). Given that the constraints are the domi-
nante energy scale, the model is thus similar to the p-spin
model.

B. Inhomogeneous transverse field

The p-spin model [38] with standard homogeneously
driven tranverse field undergoes a first-order quantum
phase transition in the zero-temperature phase diagram.
Thus, in LHZ – with its similarity to the p-spin model

for p = 4 – a first-order QPT is also expected during a
quantum annealing sweep. As the minimal energy gap of
Hamiltonian (1) between the ground state and first ex-
cited state decreases exponentially with increasing sys-
tem size N at the critical point (i.e. / e

�aN
, a > 0),

the computation time tf grows exponentially (i.e. tf /

|h1|dH/dt|0i|/�2 with � the minimal energy gap and |0i

and |1i the instantaneous ground state and first excited
state, respectively) with system size according to the adi-
abatic theorem and Landau-Zener’s formula.

Spatio-temporal inhomogeneous driving [32, 33] of the
transverse field introduces an additional parameter and
thus an additional dimension in the phase diagram. This
allows one to avoid first-order phase transitions by con-
necting HI and HP via a continuous path around the crit-
ical point. This is achieved by switching off the strength
of the transverse field inhomogeneously. With the goal to
apply this to LHZ in mind, we modify our Hamiltonian
(1) as

HLHZ(s, r) = sHP (s) �

NpX

k=1

hk(s, r)�
x
k (4)

where hk(s, r) is the strength of the inhomogeneously
driven transverse field. In this work, we choose a pro-
tocol for the strength of the transverse field that reads

hk(s, r) =

8
><

>:

1 if s < sk+1,

Np(1 � s
r) � (Np � k � 1) if sk+1  s  sk,

0 if s > sk,

sk = (1 � (Np � k)/Np)
1/r

,

sk+1 = (1 � (Np � k � 1)/Np)
1/r

. (5)

This protocol first switches off the transverse field of the
qubits in the first row and the auxiliary qubits at last
(see Figure S1 in the Appendix).

The protocol hk(s, r) is chosen as a continu-
ous piecewise-differentiable function to avoid diverging
derivatives of the Hamiltonian (4). Here, we have in-
cluded a new parameter r which enters in an additional
time-dependent function ⌧ = s

r with 0  ⌧  1. In this
spatio-temporal formulation, s and ⌧ are both controlled
as a function of time with s = ⌧ = 0 at time t = 0 and
s = ⌧ = 1 at time t = tf , the total sweep time.

C. Inhomogeneously driven LHZ

In the following, we derive the free energy of Hamilto-
nian Eq. (4) with an inhomogeneous driving field. This
derivation follows the Suzuki-Trotter decomposition used
in Ref. [39, 40]. The partition function of Hamiltonian
Eq. (4) reads

ZLHZ = tr
h
e
��HLHZ(s,r)

i
. (6)
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Free energy of LHZbe written as

f(m, s, ⌧, C, J) = 3sCm
4 +

⇥
�⌧s(4Cm

3 + J)

�(1 � ⌧)
p

s2(4Cm3 + J)2 + 1
i

(15)

where C and J are the strengths of the constraints and
longitudinal magnetic fields, respectively.
The critical coefficients mc, sc, ⌧c of the free energy term
Eq. (15) are obtained by a Landau-type expansion of the
free energy term with the condition that the first three
derivatives vanish [41], i.e. we have to solve the system
of equations
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@m
f(m, s, ⌧, C, J)

����
m=mc

= 0, (16a)

@
2

@m2
f(m, s, ⌧, C, J)
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m=mc

= 0, (16b)

@
3

@m3
f(m, s, ⌧, C, J)

����
m=mc

= 0 (16c)

with respect to its critical coefficients mc, sc and ⌧c.
Note, that the critical coefficients are a function of the
constraint strength C and the distribution of J . The
values of the critical coefficients for a uniform distribution
of the strength of the longitudinal magnetic field J with
values between �1 and 1 and constraint strength C = 2J
are

mc ⇡ 0.679795, sc ⇡ 0.219232, ⌧c ⇡ 0.38911. (17)

We can obtain these critical coefficients with our thermo-
dynamical free energy term Eq. (15) (or with finite-size
free energy term Eq. (13) by increasing the number of
physical qubits Np) and which can be seen in Figure 3.
Here, we have plotted the free energy term of Eq. (15)
with respect to the magnetization m for different points
(s, ⌧) in the two-dimensional phase diagram. On the first-
order transition line (points (a), (b) and (d)), we see a
degenerated minimum of the free energy. At the cross-
ing of the first-order transition line starting from (c) and
going to (e), we see that the value for the magnetization
that minimizes the free energy changes discontinuously
from the paramagnetic solution m = mp = 0.0 to the
ferromagnetic solution m = mf ⇡ 0.9 and which depicts
a quantum phase transition of first order.

III. NUMERICAL RESULTS

Let us now apply the results to a quantum anneal-
ing protocol. For quantum annealing, an important
measure of the efficiency is the ground state fidelity
F (tf ) = h (tf )|�0(tf )i with | (tf )i the state of our sys-
tem and |�0(tf )i the ground state of our final Hamilto-
nian at time t = tf . Another important measure is the
minimal energy gap �Emin of the corresponding energy
eigenspectra.

Figure 3. Critical coefficients. The evolution of the crit-
ical coefficients ⌧c and sc of Eq. (13) for increasing number
of physical qubits from Np = 25 (blue plus) to Np = 499500
(turquoise plus at (a)) is shown. In the thermodynamic limit,
we reach the critical coefficients of Eq. (17) of the thermody-
namic free energy term Eq. (15) at (a). The subplots (a)-(e)
show the free energy with respect to the magnetization m for
different values of s and ⌧ of Eq. (15).

Figure 4 shows the statistics of the squared final
ground state fidelities F

2(tf ) for sweeps with different
running times tf for an ensemble of 100 randomly uni-
formly distributed instances of interactions Jk for homo-
geneous (1) and inhomogeneous Eq. (4) driving, respec-
tively. The system size is Np = 6 plus two auxiliary
physical qubits and strengths of the constraints are each
C = 2 J for all three constraints and 10 J is the value of
the strength of the auxiliary local fields in the bottom
row of LHZ. The free parameter in the inhomogeneously
driven transverse field is r = 0.5. One can see that inho-
mogeneous driving of the transverse field can enhance the
performance of traditional quantum annealing consider-
ably. Furthermore, the ratio of the squared final ground
state fidelities of inhomogeneous to homogeneous driving
improves with increasing system size as shown in Figure
4(b).

A free parameter in the protocol is the choice of the
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where C and J are the strengths of the constraints and
longitudinal magnetic fields, respectively.
The critical coefficients mc, sc, ⌧c of the free energy term
Eq. (15) are obtained by a Landau-type expansion of the
free energy term with the condition that the first three
derivatives vanish [41], i.e. we have to solve the system
of equations

@

@m
f(m, s, ⌧, C, J)

����
m=mc

= 0, (16a)

@
2

@m2
f(m, s, ⌧, C, J)

����
m=mc

= 0, (16b)

@
3

@m3
f(m, s, ⌧, C, J)

����
m=mc

= 0 (16c)

with respect to its critical coefficients mc, sc and ⌧c.
Note, that the critical coefficients are a function of the
constraint strength C and the distribution of J . The
values of the critical coefficients for a uniform distribution
of the strength of the longitudinal magnetic field J with
values between �1 and 1 and constraint strength C = 2J
are

mc ⇡ 0.679795, sc ⇡ 0.219232, ⌧c ⇡ 0.38911. (17)

We can obtain these critical coefficients with our thermo-
dynamical free energy term Eq. (15) (or with finite-size
free energy term Eq. (13) by increasing the number of
physical qubits Np) and which can be seen in Figure 3.
Here, we have plotted the free energy term of Eq. (15)
with respect to the magnetization m for different points
(s, ⌧) in the two-dimensional phase diagram. On the first-
order transition line (points (a), (b) and (d)), we see a
degenerated minimum of the free energy. At the cross-
ing of the first-order transition line starting from (c) and
going to (e), we see that the value for the magnetization
that minimizes the free energy changes discontinuously
from the paramagnetic solution m = mp = 0.0 to the
ferromagnetic solution m = mf ⇡ 0.9 and which depicts
a quantum phase transition of first order.

III. NUMERICAL RESULTS

Let us now apply the results to a quantum anneal-
ing protocol. For quantum annealing, an important
measure of the efficiency is the ground state fidelity
F (tf ) = h (tf )|�0(tf )i with | (tf )i the state of our sys-
tem and |�0(tf )i the ground state of our final Hamilto-
nian at time t = tf . Another important measure is the
minimal energy gap �Emin of the corresponding energy
eigenspectra.

Figure 3. Critical coefficients. The evolution of the crit-
ical coefficients ⌧c and sc of Eq. (13) for increasing number
of physical qubits from Np = 25 (blue plus) to Np = 499500
(turquoise plus at (a)) is shown. In the thermodynamic limit,
we reach the critical coefficients of Eq. (17) of the thermody-
namic free energy term Eq. (15) at (a). The subplots (a)-(e)
show the free energy with respect to the magnetization m for
different values of s and ⌧ of Eq. (15).

Figure 4 shows the statistics of the squared final
ground state fidelities F

2(tf ) for sweeps with different
running times tf for an ensemble of 100 randomly uni-
formly distributed instances of interactions Jk for homo-
geneous (1) and inhomogeneous Eq. (4) driving, respec-
tively. The system size is Np = 6 plus two auxiliary
physical qubits and strengths of the constraints are each
C = 2 J for all three constraints and 10 J is the value of
the strength of the auxiliary local fields in the bottom
row of LHZ. The free parameter in the inhomogeneously
driven transverse field is r = 0.5. One can see that inho-
mogeneous driving of the transverse field can enhance the
performance of traditional quantum annealing consider-
ably. Furthermore, the ratio of the squared final ground
state fidelities of inhomogeneous to homogeneous driving
improves with increasing system size as shown in Figure
4(b).

A free parameter in the protocol is the choice of the

Critical coefficients of LHZ
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the protocol H(s) = (1 � f(s))HI + f(s)HP where f(s)
is a smooth function in the normalized time s = t/tf

with f(s = 0) = 0 and f(s = 1) = 1 and tf the running
time of the sweep. In switching from HI to HP , the sys-
tem undergoes a quantum phase transition which limits
its efficiency. For an Ising spin glass one would expect
a second-order phase transition at critical time s

⇤ with
polynomial closing gap. However, it was recently shown
that additional exponentially closing gaps are present for
s > s

⇤ [30].
An alternative to the spin glass encoding of optimiza-

tion problems has been recently introduced by Lechner,
Hauke, and Zoller (LHZ) [31]. In this model, physical
qubits describe the relative configuration of two logical
spins taking the values +1 for parallel (i.e. "", ##) and �1
for antiparallel ("#, #") alignment. The time-dependent
Hamiltonian in LHZ reads

HLHZ(s) = HI(s) + HP (s) (1)

HI(s) = �

NpX

k=1

hk(s)�
x
k (2)

HP (s) = �

NpX

k=1

Jk(s)�
z
k �

NcX

l=1

Cl(s)�
z
l,n�

z
l,w�

z
l,s�

z
l,e

(3)

where �
x
k and �

z
k are the x- and z-Pauli matrices for the

physical qubit at site k and the strengths of all local fields
hk, Jk and constraints Cl, respectively, depend on time.
Here, HI(s) is the driver term and HP (s) the encoded
problem Hamiltonian to be solved.
The strengths of the controllable local magnetic fields
hk and Jk in Equations (2) and (3) are applied to all
Np = Nl(Nl � 1)/2 physical qubits where Nl is the num-
ber of logical spins in the original model. The third sum
runs over Nc = Np � Nl + 1 4-body constraints among
nearest neighbor qubits on a square lattice and Cl is the
strength of a 4-body constraint at plaquette l. The in-
troduction of these 4-body constraints accounts for the
increased number of degrees of freedom from Nl logical to
Np physical qubits. This notation excludes Na = Nl � 2
auxiliary physical qubits in the bottom row of the LHZ
architecture to obtain 4-body constraints on the whole
square lattice. The indices (l, n), (l, w), (l, s) and (l, e)
denote the northern, western, southern and eastern phys-
ical qubit of the constraint l, respectively (more details
in Ref. [31]). Given that the constraints are the domi-
nante energy scale, the model is thus similar to the p-spin
model.

B. Inhomogeneous transverse field

The p-spin model [38] with standard homogeneously
driven tranverse field undergoes a first-order quantum
phase transition in the zero-temperature phase diagram.
Thus, in LHZ – with its similarity to the p-spin model

for p = 4 – a first-order QPT is also expected during a
quantum annealing sweep. As the minimal energy gap of
Hamiltonian (1) between the ground state and first ex-
cited state decreases exponentially with increasing sys-
tem size N at the critical point (i.e. / e

�aN
, a > 0),

the computation time tf grows exponentially (i.e. tf /

|h1|dH/dt|0i|/�2 with � the minimal energy gap and |0i

and |1i the instantaneous ground state and first excited
state, respectively) with system size according to the adi-
abatic theorem and Landau-Zener’s formula.

Spatio-temporal inhomogeneous driving [32, 33] of the
transverse field introduces an additional parameter and
thus an additional dimension in the phase diagram. This
allows one to avoid first-order phase transitions by con-
necting HI and HP via a continuous path around the crit-
ical point. This is achieved by switching off the strength
of the transverse field inhomogeneously. With the goal to
apply this to LHZ in mind, we modify our Hamiltonian
(1) as

HLHZ(s, r) = sHP (s) �

NpX

k=1

hk(s, r)�
x
k (4)

where hk(s, r) is the strength of the inhomogeneously
driven transverse field. In this work, we choose a pro-
tocol for the strength of the transverse field that reads

hk(s, r) =

8
><

>:

1 if s < sk+1,

Np(1 � s
r) � (Np � k � 1) if sk+1  s  sk,

0 if s > sk,

sk = (1 � (Np � k)/Np)
1/r

,

sk+1 = (1 � (Np � k � 1)/Np)
1/r

. (5)

This protocol first switches off the transverse field of the
qubits in the first row and the auxiliary qubits at last
(see Figure S1 in the Appendix).

The protocol hk(s, r) is chosen as a continu-
ous piecewise-differentiable function to avoid diverging
derivatives of the Hamiltonian (4). Here, we have in-
cluded a new parameter r which enters in an additional
time-dependent function ⌧ = s

r with 0  ⌧  1. In this
spatio-temporal formulation, s and ⌧ are both controlled
as a function of time with s = ⌧ = 0 at time t = 0 and
s = ⌧ = 1 at time t = tf , the total sweep time.

C. Inhomogeneously driven LHZ

In the following, we derive the free energy of Hamilto-
nian Eq. (4) with an inhomogeneous driving field. This
derivation follows the Suzuki-Trotter decomposition used
in Ref. [39, 40]. The partition function of Hamiltonian
Eq. (4) reads

ZLHZ = tr
h
e
��HLHZ(s,r)

i
. (6)

Inhomogeneous Driving:

p-spin Hamiltonian

HP = �N

 
1

N

NX

i=1

�
z

i

!p

(14)

HP = �N

 
1

N

NX

i=1

�
z

i

!p

+
NX

i=1

hi�
z

i
(15)

HLHZ,P =

NpX

k=1

Jk�
z

k
�

NcX

l=1

Cl�
z

l,n
�
z

l,e
�
z

l,s
�
z

l,w
(16)

E4(m) = �C

⇣
Np �

p
1 + 8Np + 2

⌘
m

4
(17)

E3(m) = �C

⇣p
0.25 + 2Np � 1.5

⌘
m

3
(18)

⌧ = s
r

(19)

r
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