

Enhancing adiabatic quantum computation with non-adiabatic methods

Andreas Hartmann Quantum optimization group 11.12.2019 σ_i

 σ_i

Motivation

Graph Partitioning

 σ_i

Adiabatic Quantum Computation

Solving optimization problems

wikipedia.org

Non-adiabatic Driving

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

 σ_i

Motivation

Graph Partitioning

Adiabatic Quantum Computation

$\begin{array}{c} \sigma_{i} \\ \sigma_{i} \\$

Solving optimization problems

wikipedia.org

Non-adiabatic Driving

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

Traveling salesman problem

Graph Partitioning

G = (V, E)

We ask: What is a partition of the set V into two subsets of equal size N/2 such that the number of edges connecting the two subsets is minimized?

Strategy: Cost-function = Energy

Finding **ground** state = **Minimizing** costs = **optimal solution** to problem

1. Motivation

No <u>classical</u> algorithm can solve these problems efficiently

Possible solution: Adiabatic <u>quantum</u> computation?

Outline

 σ_i

 σ_i

Motivation

Graph Partitioning

 σ_i

 σ_i

 σ_i

 σ_i

 σ_i

 σ_i

Adiabatic Quantum Computation

Solving optimization problems

wikipedia.org

Non-adiabatic Driving

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

1. Motivation

Possible solution: Adiabatic quantum computing?

Classical computer

Basic computational unit: 1 bit

8 bits = 1 byte

- **A** 01000001
- **N** 01001110
- **D** 01000100
- **R** 01010010
- **E** 01000101
- **A** 01000001
- **S** 01010011

Possible solution: Adiabatic quantum computing?

Experiments:

Uni Innsbruck

Quantum computer

Quantum bit = qubit

Superposition of two states

burks.de

Quantum annealing

Quantum annealing

Example:

11

N=8 logical qubits

to find ground state

Problem 1: Long sweep times

Evolution Hamiltonian: $H(t) = (1 - t/T)H_{D} + (t/T)H_{P}$ (0 < t < T)

Success fidelity:

Quantum annealing

Ising spin chain:

$$H(t) = A(t)\sum_{i}^{N} b_{i}\sigma_{i}^{x} + B(t)\left[\sum_{i}^{N} h_{i}\sigma_{i}^{z} + \sum_{i}^{N}\sum_{j}^{i} J_{ij}\sigma_{i}^{z}\sigma_{j}^{z}\right]$$

DWave

DWave

E,

Transitionless quantum driving

Adiabatic Theorem

"A physical system remains in its instantaneous eigenstate if a given **perturbation** is **acting on it slowly enough** and if there is a **gap** between the eigenvalue and the rest of the Hamiltonian's spectrum." Adiabatic theorem (Born and Fock, 1928).

Problem 2: Exponentially closing minimal gap/increasing computation time!

AH and W. Lechner, PRA 100 03205 (2019)

Future Goal: efficient non-adiabatic quantum computing

Outline

 σ_i

 σ_i

Motivation

Graph Partitioning

 σ_i

 σ_i

 σ_i

 σ_i

 σ_i

 σ_i

Adiabatic Quantum Computation

Solving optimization problems

Non-adiabatic Driving

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Possible speedup?

3. Non-diabatic Driving

Basic idea

Goals

- Fast protocols for quantum annealing
- High ground state fidelity

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Analysis:

С

Moving frame: $| \tilde{\psi}
angle = U^{\dagger}(\lambda) \, | \psi
angle$

ounter-diabatic Hamiltonian:
$$H(t) = H_0(t) + \dot{\lambda}A_{\lambda}$$

$$H(t) = \sum_{n} |n\rangle E_{n} \langle n| + i\hbar \sum_{m \neq n} \sum_{n} \frac{|m\rangle \langle m| \partial_{t} H_{0} |n\rangle \langle n|}{E_{m} - E_{n}}$$
$$\frac{H_{0}(t)}{H_{0}(t)} = \frac{H_{0}(t)}{H_{0}(t)}$$

Problem: A priori knowledge of the system's eigenstates

Hamiltonian in moving frame:

$$\tilde{H}_m = \underbrace{\tilde{H}}_{-} \dot{\lambda} \underbrace{\tilde{A}_{\lambda}}_{\lambda}$$

diagonal Hamiltonian adiabatic gauge potential responsible for transitions

Approximate counter-diabatic driving

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

Looking for **approximate** solution for \mathcal{A}_{λ}

Make **ansatz** which we have accessible in the lab

HZ:
$$H_0(t) = \sum_{k=1}^{N_p} h_k \sigma_k^x + \sum_{k=1}^{N_p} J_k \sigma_k^z - \sum_{l=1}^{N_c} C_l \sigma_{l,n}^z \sigma_{l,e}^z \sigma_{l,s}^z \sigma_{l,w}^z$$

Analytical variational optimization

3. Non-diabatic Driving

Problem: Just works well for ordered quantum systems

Solution: Hybrid quantum-classical iterative variation

AH and W. Lechner, 2019, New. J. Phys. 21 043025

D. Sels, A. Polkovnikov, PNAS, 114 3909 (2017)

AH and W. Lechner, 2019, New. J. Phys. 21 043025

Numerical Results:

<u>Costs:</u> "No free lunch"

Conclusion:

We have

- ... further developed a method to improve quantum annealing by counterdiabatic driving and inhomogeneous driving for lattice gauge quantum computing
- ... applied this method to the field of quantum thermodynamics
- ... filed a patent with this idea (applicable to all Hamiltonians)

AH, V. Mukherjee, W. Niedenzu and W. Lechner, to be published

Outlook:

We want to

- ... implement counter-diabatic driving to open quantum systems
- ... implement this idea in an experiment (ongoing collaboration with group of Rainer Blatt)
- ... implement the counter-diabatic for artificial intelligence (ongoing work with group of Hans Briegel)

My References:

- [1] AH and W. Lechner, 2019, New. J. Phys. 21 043025
- [2] AH and W. Lechner, PRA **100** 03205 (2019)
- [3] AH, V. Mukherjee, W. Niedenzu, and W. Lechner, "Many body quantum heat
- engines with Shortcuts to adiabaticity", to be published

My Patents:

[1] AH and W. Lechner, 2019, "Method of computing a solution to a computational problem using a quantum system and apparatus for computing solutions to computational problems", under review

Appendix

Other scientific optimization problems:

Protein folding

e.g. beta-lactoglobolin (milk protein) Picture: Peter Bolhuis

- I. Coluzza, et.al. Biophys. J. (2007).

Adiabatic Quantum computing: A. Perdomo-Ortiz et. al., Sci. Rep. 2, 571 (2012).

Quantum Chemistry

Picture: E. Meijer, University of Amsterdam.

Adiabatic Quantum Computing:	R. Babbush et. al.,
	Sci. Rep. 4, 6603 (2014).

Quantum phase transitions in p-spin model

Yuki Susa et al PRA 98 042326 (2018)

First-order quantum **phase transition** in p-spin model **Exponential closing** of minimal gap

$$H_P = -N\left(\frac{1}{N}\sum_{i=1}^N \sigma_i^z\right)^p$$

LHZ has disordered and ordered part

$$H_{LHZ,P} = \sum_{k=1}^{N_p} J_k \sigma_k^z - \sum_{l=1}^{N_c} C_l \sigma_{l,n}^z \sigma_{l,e}^z \sigma_{l,s}^z \sigma_{l,w}^z$$

p=4
$$E_4(m) = -C\left(N_p - \sqrt{1 + 8N_p} + 2\right)m^4$$

p=3 $E_3(m) = -C\left(\sqrt{0.25 + 2N_p} - 1.5\right)m^3$

Calculation of constraint energies:

p=4:
$$E_4(m) = -C\left(N_p - \sqrt{1 + 8N_p} + 2\right)m^4$$

p=3:
$$E_3(m) = -C\left(\sqrt{0.25 + 2N_p} - 1.5\right)m^3$$

Shuffling of spin configurations in LHZ

28

Idea: Inhomogeneous driving of Transverse Field

<u>Two-dimensional</u> phase diagram:

$$\mathcal{H}_{LHZ}(s,r) = s\mathcal{H}_P(s) - \sum_{k=1}^{N_p} h_k(s,r)\sigma_k^x$$

Free energy of LHZ
$$f(m,s,\tau,C,J) = 3sCm^4 + \left[-\tau s(4Cm^3 + J)\right]$$

$$-(1-\tau)\sqrt{s^2(4Cm^3+J)^2+1}$$

Critical coefficients of LHZ

 $> m_c \approx 0.679795, \ s_c \approx 0.219232, \ \tau_c \approx 0.38911$

Inhomogeneous driving **extends** phase diagram

Two-dimensional phase diagram:

$$\mathcal{H}_{\text{LHZ}}(s,r) = s\mathcal{H}_P(s) - \sum_{k=1}^{N_p} h_k(s,r)\sigma_k^x$$

Free energy of LHZ

$$f(m, s, \tau, C, J) = 3sCm^4 + \left[-\tau s(4Cm^3 + J) - (1 - \tau)\sqrt{s^2(4Cm^3 + J)^2 + 1}\right]$$

Critical coefficients of LHZ

 $> m_c \approx 0.679795, \ s_c \approx 0.219232, \ \tau_c \approx 0.38911$

Inhomogeneous driving **extends** phase diagram

Find **path** to avoid 1st-order QPTs

In **each closed loop**, the number of **spin-down** has to be an **even** number or 0.

Physical qubits #0 = 0, 2 or 4 -0 ... = fixed