## Quasi-Confined Colloidal Liquids - Structure and Dynamics

#### Lukas Schrack

Supervisor: Thomas Franosch

Bio and Nano Physics Universität Innsbruck

MIP PhD Seminar, 11.12.2019





Der Wissenschaftsfonds.



## Soft Matter

The hard physics of soft matter

H. Löwen, M. Watzlawek, C. N. Likos, M. Schmidt, A. Jusufi, J. Dzubiella, C. von Ferber, E. Allahyarov, A. Thünemann, I. D'Amico<sup>+</sup>

Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany + present address: Department of Physics, University of Missouri, Columbia, MO 65211, USA





#### macroscopic ( $\gtrsim 100 \, \mu m$ )

mechanical properties intermediate between solids and liquids
 easily deformable on macroscopic scale





## Colloids

solid particles embedded in a molecular liquid



#### $\Rightarrow$ Brownian motion



Quasi-Confined Colloidal Liquids - Structure and Dynamics

## Brownian Motion<sup>1</sup>



#### Brownian motion of milk fat droplets

nnsbruck

<sup>1</sup>Stephen Curry (https://www.youtube.com/watch?v=ernnQJwaKTs) [CC BY]

Quasi-Confined Colloidal Liquids - Structure and Dynamics

## **Brownian Motion**

- micro-sized pollen in water
- erratic and agitated motion not connected to life





A. Einstein (1905)



collisions with solvent molecules, independent increments

- mean displacement  $\langle \mathbf{r}(t) \rangle = 0$  vanishes
- mean square displacement  $\langle \mathbf{r}(t)^2 \rangle = 6Dt$  related to diffusion coefficient

 $\Rightarrow$  statistical interpretation of diffusion

<sup>&</sup>lt;sup>1</sup>Wellcome Library, London [CC BY 4.0]



Quasi-Confined Colloidal Liquids - Structure and Dynamics

## Model System





- 3D system
- monodisperse hard spheres
  with diameter *σ*
- impenetrable, no overlap
- packing fraction  $\varphi = \pi n \sigma^3 / 6$



## (Quasi-)Confinement

confined fluids prevalent in nature and industrial applications:

Microfluidics<sup>1</sup>



Biophysics<sup>2</sup>





<sup>&</sup>lt;sup>2</sup>C. Bächer, L. Schrack and S. Gekle, Clustering of microscopic particles in constricted blood flow, Phys. Rev. Fluids 2, 013102 (2017)



FILLE

Der Wissenschaftsfonds

<sup>&</sup>lt;sup>1</sup>M. Schlenk, E. Hofmann, S. Seibt, S. Rosenfeldt, L. Schrack et al., Parallel and perpendicular alignment of anisotropic particles in free liquid micro-jets and emerging micro-droplets, Langmuir 34, 16 (2018)

## Liquid State Theory

 radial distribution function (RDF) g(r): probability of finding particle at distance r from reference particle



- $g(r < \sigma) = 0 \Rightarrow$  no particle overlap
- ▶  $g(r \rightarrow \infty) = 1 \Rightarrow$  no long-range order (ideal gas limit)
- peaks roughly in intervals of  $\sigma$  with decreasing intensity
- first peak  $\Rightarrow$  first coordination sphere



ELLIE

Der Wissenschaftsfond

## Stucture of Quasi-Confined Liquids

- adapting established theory for RDF to quasi-confined liquids<sup>1</sup>
  S<sub>0</sub>(q): structure parallel to confinement
- Fourier transform (area density  $n_0$ ):  $S_0(q) = 1 + \frac{n}{L}h_0(q)$



#### $\Rightarrow$ non-monotonic behavior as a function of confinement length

C. Petersen, L. Schrack and T. Franosch, Static properties of quasi-confined hard-sphere fluids, J. Stat. Mech. 083216 (2019)
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [350]
 [

ELLIE

## Dynamics of Colloids

describe density dynamics

► cage effect: internal forces from cages of neighboring particles ⇒ non-linear feedback





FUIF

Der Wissenschaftsfonds

## **Glass Transition**

'The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition.' P. W. Anderson<sup>1</sup>



Nobel Prize 1977 for theoretical investigations of the electronic structure of magnetic and disordered systems

<sup>&</sup>lt;sup>1</sup> P. Anderson, Through the Glass Lightly, Science 267, 1615 (1995)

## Mode-Coupling Theory (MCT)

▶ first-principle theory without phenomenological assumptions ⇒ static quantities as input



 density dynamics described by self-intermediate scattering function (ISF)

$$S^{(s)}(q,t) = \langle \underbrace{\rho^{(s)}(\mathbf{q},t)^*}_{\text{density mode}} \rho^{(s)}(\mathbf{q},0) \rangle$$

► ISF characteristic function of random displacement ⇔ full probability distribution

### $\Rightarrow$ elaborating MCT for (quasi-)confined colloidal liquids<sup>1</sup>

ELLIE

<sup>&</sup>lt;sup>1</sup>L. Schrack and T. Franosch, Mode-coupling theory of the glass transition for colloidal liquids in slit geometry (under review)

**Dynamics** 



solving integro-differential equation over 12 orders of magnitude
 ⇒ efficient numerical algorithm

short time: rattling within cage



## Phase Diagram<sup>1</sup>

glass-form factor to distinguish between liquid and glassy state



non-monotonic behavior ⇒ reentrant phenomena
 commensurate vs. incommensurate packing

#### comparison with simulations

 $^{1}$ L. Schrack, C. Petersen and T. Franosch, Dynamic properties of quasi-confined colloidal hard-sphere liquids near the glass transition (in preparation)





FUIF

Der Wissenschaftsfond



# Excursus: Anti-Correlations of Dense Colloidal Suspensions<sup>1</sup>

 long-time behavior of velocity-autocorreation function (VACF) of dense colloidal suspensions



negative algebraic power-law decay instead of exponential decay

<sup>&</sup>lt;sup>1</sup>S. Mandal, L. Schrack, H. Löwen, M. Sperl, T. Franosch, Persistent Anti-Correlations in Brownian Dynamics Simulations of Dense Colloidal Suspensions Revealed by Noise Suppression, PRL 123, 168001 (2019)



## Conclusions and Outlook

Der Wissenschaftsfonds

- quasi-confinement: extremely small periodic boundary conditions in one direction
- elaborate liquid state theory for static and mode-coupling theory for dynamic properties of quasi-confined colloidal liquids
- non-monotonic behavior as a function of confinement length
- comparison with simulations
- analyze further transport properties, e.g. mean-square displacement



## Conclusions and Outlook



 quasi-confinement: extremely small periodic boundary conditions in one direction

- elaborate liquid state theory for static and mode-coupling theory for dynamic properties of quasi-confined colloidal liquids
- non-monotonic behavior as a function of confinement length
- comparison with simulations
- analyze further transport properties, e.g. mean-square displacement

## Thank you for your attention.

