

## Exploring collective phenomena in

## ultracold Bose-Einstein condensates

### made of magnetic atoms



**Daniel Petter** 



Dipolar Quantum Gases group Supervised by Univ.-Prof. Francesca Ferlaino

8. Jan. 2020, MIP Seminar



How do two magnets interact?





Youtube: Science Bits

#### INTRODUCTION - MAGNETISM





#### INTRODUCTION - MAGNETISM





#### **INTRODUCTION - MAGNETISM**



actinium

thorium

232.0

protactinium

231.0

uranium

238.0

neptunium

plutonium

americium

curium

berkelium

californium

einsteinium

fermium

mendelevium

nobelium

lawrencium

| 1              |           |             |               |              |            |                   |                        |            |              |             |             |                |                |                |                |                | 18      |   |
|----------------|-----------|-------------|---------------|--------------|------------|-------------------|------------------------|------------|--------------|-------------|-------------|----------------|----------------|----------------|----------------|----------------|---------|---|
| 1              |           |             |               |              |            |                   |                        |            |              |             |             |                |                |                |                |                | 2       | ] |
| н              |           |             |               |              |            |                   |                        |            |              |             |             |                |                |                |                |                | He      |   |
| hydrogen       | 2         |             |               |              |            |                   |                        |            |              |             |             | 12             | 14             | 15             | 16             | 17             | helium  |   |
| [1.007; 1.009] | 2         | 1           |               |              |            |                   |                        |            |              |             |             | 13             | 14             | 15             | 10             | 17             | 4.003   | - |
| 3              |           |             |               |              |            |                   |                        |            |              |             |             | D D            | Ô              |                | Å              | 9              | 10      |   |
| LI             | Be        |             |               |              |            |                   |                        |            |              |             |             | B              | C              | N              | O              | <b>F</b>       | Ne      |   |
| [6.938; 6.997] | 9.012     |             |               |              |            |                   |                        |            |              |             |             | [10.80; 10.83] | [12.00; 12.02] | [14.00; 14.01] | [15.99; 16.00] | 19.00          | 20.18   |   |
| 11             | 12        | 1           |               |              |            |                   |                        |            |              |             |             | 13             | 14             | 15             | 16             | 17             | 18      | 1 |
| Na             | Ma        |             |               |              |            |                   |                        |            |              |             |             | Δι             | Si             | Р              | S              | CI             | Δr      |   |
| sodium         | magnesium |             |               | _            |            | _                 |                        |            |              |             |             | aluminium      | silicon        | phosphorus     | sulfur         | chlorine       | argon   |   |
| 22.99          | 24.31     | 3           | 4             | 5            | 6          | 7                 | 8                      | 9          | 10           | 11          | 12          | 26.98          | [28.08; 28.09] | 30.97          | [32.05; 32.08] | [35.44; 35.46] | 39.95   | _ |
| 19             | 20        | 21          | 22            | 23           | 24         | 25                | 26                     | 27         | 28           | 29          | 30          | 31             | 32             | 33             | 34             | 35             | 36      |   |
| Κ              | Ca        | Sc          | Ti            | V            | Cr         | Mn                | Fe                     | Co         | Ni           | Cu          | Zn          | Ga             | Ge             | As             | Se             | Br             | Kr      |   |
| potassium      | calcium   | scandium    | titanium      | vanadium     | chromium   | manganese         | iron                   | cobalt     | nickel       | copper      | zinc        | gallium        | germanium      | arsenic        | selenium       | bromine        | krypton |   |
| 38.10          | 38        | 30          | 47.87         | <u> </u>     | 12.00      | 13                | 11                     | 45         | 46           | 47          | 18          | AQ             | 50             | 51             | 52             | 53             | 54      | 1 |
| Dh             | °.        | v           | 7-            | NIL          | Mo         | Ta                | D                      | Dh         | Da           | ۸~          | 60          | 40             | 6.             | Ch.            | Ta             |                | V.      |   |
| <b>KD</b>      | SI        | Vttrium     | Zirconium     | niohium      | molyhdenum | I C<br>technetium | <b>KU</b><br>ruthenium | rhodium    | PU           | Ag          | cadmium     | indium         | JII            | 3D<br>antimony | tellurium      | iodine         | xenon   |   |
| 85.47          | 87.62     | 88.91       | 91.22         | 92.91        | 95.96(2)   | teennedam         | 101.1                  | 102.9      | 106.4        | 107.9       | 112.4       | 114.8          | 118.7          | 121.8          | 127.6          | 126.9          | 131.3   |   |
| 55             | 56        | 57-71       | 72            | 73           | 74         | 75                | 76                     | 77         | 78           | 79          | 80          | 81             | 82             | 83             | 84             | 85             | 86      | 1 |
| Cs             | Ba        | lanthanoids | Hf            | Та           | W          | Re                | Os                     | lr         | Pt           | Au          | Hq          | TI             | Pb             | Bi             | Po             | At             | Rn      |   |
| caesium        | barium    |             | hafnium       | tantalum     | tungsten   | rhenium           | osmium                 | iridium    | platinum     | gold        | mercury     | thallium       | lead           | bismuth        | polonium       | astatine       | radon   |   |
| 132.9          | 137.3     |             | 178.5         | 180.9        | 183.8      | 186.2             | 190.2                  | 192.2      | 195.1        | 197.0       | 200.6       | [204.3; 204.4] | 207.2          | 209.0          |                | Ļ              |         |   |
| 87             | 88        | 89-103      | 104           | 105          | 106        | 107               | 108                    | 109        | 110          | 111         | 112         |                | 114            |                | 116            |                |         |   |
| Fr             | Ra        | actinoids   | Rf            | Db           | Sg         | Bh                | Hs                     | Mt         | Ds           | Rg          | Cn          |                | FI             |                | LV             |                |         |   |
| francium       | radium    |             | rutherfordium | dubnium      | seaborgium | bohrium           | hassium                | meitnerium | darmstadtium | roentgenium | copernicium |                | flerovium      |                | livermorium    |                |         |   |
|                |           |             |               |              |            |                   |                        |            |              |             |             |                |                |                |                | l.             |         |   |
|                |           |             |               |              |            |                   |                        |            |              | arhium      |             |                |                |                |                |                |         |   |
|                |           | 57          | 58            | 59           | 60         | 61                | 62                     | 63         | 64           | 65          | ervi        | um             | 68             | 69             | 70             | 71             |         |   |
|                |           | La          | Ce            | Pr           | Nd         | Pm                | Sm                     | Eu         | Gd           | Tb          |             | по             | Er             | Tm             | Yb             | Lu             |         |   |
|                |           | lanthanum   | cerium        | praseodymium | neodymium  | promethium        | samarium               | europium   | gadolinium   | terbium     | dysprosium  | holmium        | erbium         | thulium        | ytterbium      | lutetium       |         |   |
|                |           | 138.9       | 140.1         | 140.9        | 144.2      |                   | 150.4                  | 152.0      | 157.3        | 158.9       | 102.0       | 104.9          | 107.3          | 108.9          | 1/3.1          | 1/5.0          |         |   |
|                |           | 89          | 90            | 91           | 92         | 93                | 94                     | 95         | 96           | 97          | 98          | 99             | 100            | 101            | 102            | 103            |         |   |
|                |           | Ac          | Th            | Pa           | U          | Np                | Pu                     | Am         | Cm           | Bk          | Cf          | Es             | Fm             | Md             | No             | Lr             |         |   |

www.erbium.at

ENTERING THE QUANTUM WORLD WITH MAGNETIC ERBIUM ATOMS



www.erkium.at

| 1       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       -0       0       -0       -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1 \mu_B$          |                    |                    |                            |                             |                       |                        |                   |                         |                           |                        |                     |                          |                           |                     |                          |                            | 18               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------------|-----------------------------|-----------------------|------------------------|-------------------|-------------------------|---------------------------|------------------------|---------------------|--------------------------|---------------------------|---------------------|--------------------------|----------------------------|------------------|
| Normalized biological | 1<br>H<br>hydrogen | ~0 u               | lo.                |                            |                             |                       |                        |                   |                         |                           |                        |                     |                          |                           |                     | ~                        | 0 μ <sub>B</sub>           | 2<br>He          |
| 3       4       5       6       7       8       9       10         10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       11       12       10       10       10       10       10       11       12       10       10       10       10       11       12       10       10       10       10       11       12       10       11       12       10       10       10       10       10       10       10       11       12       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 </th <th>[1.007; 1.009]</th> <th>2</th> <th>D</th> <th></th> <th></th> <th>= Bc</th> <th>ose-Ei</th> <th>nstei</th> <th>n con</th> <th>dens</th> <th>ed</th> <th></th> <th>13</th> <th>14</th> <th>15</th> <th>16</th> <th>17</th> <th>4.003</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1.007; 1.009]     | 2                  | D                  |                            |                             | = Bc                  | ose-Ei                 | nstei             | n con                   | dens                      | ed                     |                     | 13                       | 14                        | 15                  | 16                       | 17                         | 4.003            |
| Life Warm         Bell         Carbon         No         O         F         Ne         Ne           11         12           Na         Mg         Mg         Si         1         12         1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                  | 4                  |                    |                            |                             |                       |                        |                   |                         |                           |                        |                     | 5                        | 6                         | 7                   | 8                        | 9                          | 10               |
| μηθειθια         Column<br>(1)         10         10         10         11         12         13         14         15         16         17         18           Man<br>2009         mognesim<br>(2001)         3         4         5         6         9         7         8         9         10         11         12         13         14         15         16         17         18           Man<br>2009         mognesim<br>(2001)         3         4         5         6         9         7         8         9         10         11         12         13         14         15         16         17         18           Mode         assa         3         4         5         6         27         28         29         30         31         32         33         34         35         36           19         20         21         22         23         24         43         44         45         46         47         48         49         50         55         52         53         54           80         37         38         39         40         41         42         43         44         45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Li                 | Be                 |                    |                            |                             |                       |                        |                   |                         |                           |                        |                     | B                        | C                         | N                   | 0                        | F                          | Ne               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [6.938; 6.997]     | 9.012              | [10.80; 1          |                            |                             |                       |                        |                   |                         |                           |                        |                     |                          | [12.00; 12.02]            | [14.00; 14.01]      | [15.99; 16.00]           | 19.00                      | 20.18            |
| Ng<br>sodum<br>22.86         Mg<br>may<br>signal         Sich<br>suffur<br>series         F         Sich<br>suffur<br>pale; zion         Sich<br>prospino<br>suffur<br>pale; zion         P         Sich<br>suffur<br>pale; zion         Sich<br>suffur<br>pale; zion         P         Sich<br>suffur<br>pale; zion         Sich<br>prospino<br>suffur<br>pale; zion         P         Sich<br>suffur<br>pale; zion         Cl<br>suffur<br>pale; zion         Arr<br>prospino<br>suffur<br>pale; zion           19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         85         Se<br>selecian           19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         85         85           101         47.27         78         78         65         65.47         48         49         50         51         52         53         54           Rb         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                 | 12                 |                    |                            |                             |                       |                        |                   |                         |                           |                        |                     | 13                       | 14                        | 15                  | 16                       | 17                         | 18               |
| solution<br>(289)         magnetisium<br>(289)         3         4         5         6         7         8         9         10         11         12         alumning<br>(280)         plotophous<br>(280)         sulture<br>(280)         child<br>(280)         alumning<br>(280)         alum                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Na                 | Mg                 |                    |                            |                             | 6 u₀                  |                        |                   |                         |                           |                        |                     | AI                       | Si                        | Р                   | S                        | CI                         | Ar               |
| 19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         Br           K         Ca         Scandum         scandur         scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sodium<br>22.99    | magnesium<br>24.31 | 3                  | 4                          | 5                           | 6                     | 7                      | 8                 | 9                       | 10                        | 11                     | 12                  | aluminium<br>26.98       | silicon<br>[28.08; 28.09] | phosphorus<br>30.97 | sulfur<br>[32.05; 32.08] | chlorine<br>[35.44; 35.46] | argon<br>39.95   |
| K         Ca<br>polesum<br>state         Sc<br>cardum<br>state         Ti<br>itanium<br>search<br>state         V         Cr<br>chronium<br>sagenese<br>state         Mn<br>sagenese<br>state         Fe<br>ton<br>state         Co<br>coper<br>state         Zn<br>coper<br>state         Ga<br>state                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                 | 20                 | 21                 | 22                         | 23                          | 24                    | 25                     | 26                | 27                      | 28                        | 29                     | 30                  | 31                       | 32                        | 33                  | 34                       | 35                         | 36               |
| 310       40.06       44.46       47.87       50.94       82.00       64.44       56.85       68.86       66.367       66.872       72.253       74.827       79.86(3)       79.00       88.89         37       38       39       40       41       42       43       44       45       46       47       48.8       49       50       51       52       53       54         Rb       Y       Zr       Nb       Nb       Nb       Nb       Tc       Ru       Rh       Pd       Agg       Cd       antimony       tituinitian       tin       sinitian       tin       sinitian       tin       tin <thtin< th="">       tin       tin</thtin<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K<br>potassium     | Ca<br>calcium      | Sc<br>scandium     | Ti<br>titanium             | V<br>vanadium               | Cr<br>chromium        | Mn<br>manganese        | Fe                | Co<br>cobalt            | Ni<br>nickel              | Cu                     | Zn<br>zinc          | Ga<br>gallium            | Ge<br>germanium           | As<br>arsenic       | Se<br>selenium           | Br<br>bromine              | Kr<br>krypton    |
| 3/2       3/3       4/3       4/4       4/3       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4       4/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.10              | 40.08              | 44.96              | 47.87                      | 50.94                       | 52.00                 | 54.94                  | 55.85             | 58.93                   | 58.69                     | 63.55                  | 65.38(2)            | 69.72                    | 72.63                     | 74.92               | 78.96(3)                 | 79.90                      | 83.80            |
| Nationalization         Sint standium<br>serve         Year of the serve<br>serve         Zin serve<br>serve         Numerican<br>serve         <                                                                                                                                                                                                                                                                                                                                                                               | Dh                 | 30<br>Cr           | 39<br>V            | 40<br>7r                   | 41<br>Nh                    | 42<br>Mo              | 43<br><b>To</b>        | 44<br>D.1         | 40<br>Dh                | 40<br>Dd                  | 47<br><b>A</b> a       | 40<br>Cd            | 49<br>Im                 | 00<br>6 m                 | SI<br>Ch            | 52<br><b>T</b> o         | 53                         | 54<br><b>V</b> o |
| 85.47         87.2         98.21         91.22         92.91         95.96(2)         101.1         102.9         108.4         107.9         112.4         114.8         118.7         12.8         127.8         128.9         131.3           55         56         57.71         72         73         74         75         76         77         78         79         80         81         82         83         84         85         86           Cessum<br>137.9         137.9         80         81         82         83         84         85         86           687         68         89-103         104         105         106         107         108         109         110         111         112         114         114         114         116         115         116         116         117         108         109         110         111         112         114         114         116         115         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116         116 <th>rubidium</th> <th>strontium</th> <th>yttrium</th> <th>zirconium</th> <th>niobium</th> <th>molybdenum</th> <th>technetium</th> <th>ruthenium</th> <th>rhodium</th> <th>palladium</th> <th>silver</th> <th>cadmium</th> <th>indium</th> <th>tin</th> <th>antimony</th> <th>tellurium</th> <th>iodine</th> <th>xenon</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rubidium           | strontium          | yttrium            | zirconium                  | niobium                     | molybdenum            | technetium             | ruthenium         | rhodium                 | palladium                 | silver                 | cadmium             | indium                   | tin                       | antimony            | tellurium                | iodine                     | xenon            |
| 55       56       57-71       72       73       74       75       76       77       78       79       80       81       92       83       84       85       86         Cesum       Barium       Ianthanoids       Hafnium       Tantalum       Wingsten       Replay       Os       Ir       Pt       Mu       Gos       81       92       83       84       85       86         87       88       89-103       104       105       106       107       108       109       110       111       112       114       U       116       Lv       issent       radon         87       88       89-103       104       105       106       107       108       109       110       111       112       114       Lv       116       Lv       issent       Rd       actinoids       Rf       Rd       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85.47              | 87.62              | 88.91              | 91.22                      | 92.91                       | 95.96(2)              |                        | 101.1             | 102.9                   | 106.4                     | 107.9                  | 112.4               | 114.8                    | 118.7                     | 121.8               | 127.6                    | 126.9                      | 131.3            |
| Casesium<br>barium<br>132.9         tanthanoids<br>infinition<br>137.3         Hit<br>hafnium<br>178.5         Hit<br>hafnium<br>180.9         W<br>tugsten<br>183.8         W<br>tugsten<br>183.8         W<br>tugsten<br>183.8         O<br>the<br>infinition<br>182.2         P t<br>platium<br>192.2         Au<br>gold<br>197.0         Hit<br>gold<br>197.0         Hit<br>werupy<br>200.8         Hit<br>head<br>207.2         Bit<br>bead<br>207.2         Bit<br>bead<br>207.2         PO<br>bestimith<br>200.0         Att<br>method<br>207.2         Kn<br>polonium<br>207.2         PO<br>bestimith<br>207.2         Att<br>polonium<br>207.2         PO<br>bestimith<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         PO<br>bestimith<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         PO<br>bestimith<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2         Kn<br>polonium<br>207.2         Att<br>polonium<br>207.2                                                                                                                                                                                   | 55                 | 56                 | 57-71              | 72                         | 73                          | 74                    | 75<br>D                | 76                | 77                      | 78                        | 79                     | 80                  | 81                       | 82<br>DI-                 | 83                  | 84<br>D                  | 85                         | 86<br>Dag        |
| 132.9         197.3         182.4         182.4         182.4         182.4         182.4         182.4         182.4         182.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4         200.4 <t< th=""><th>CS</th><th>Ba</th><th>lanthanoids</th><th>H1<br/>bafnium</th><th>la<br/>tantalum</th><th>tungsten</th><th>Re</th><th>OS</th><th>iridium</th><th>Pt</th><th>Au</th><th>Hg</th><th>thallium</th><th>PD</th><th>BI</th><th>PO</th><th>At</th><th>Rn</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS                 | Ba                 | lanthanoids        | H1<br>bafnium              | la<br>tantalum              | tungsten              | Re                     | OS                | iridium                 | Pt                        | Au                     | Hg                  | thallium                 | PD                        | BI                  | PO                       | At                         | Rn               |
| 87<br>Fr       88<br>radium       89-103<br>actinoids       104<br>Rf       105<br>Db<br>dubnium       106<br>Sg<br>seaborgium       107<br>Bh<br>bohrium       108<br>Hs<br>hassium       109<br>Mt<br>metherium       110<br>Ds<br>darmstadium       111<br>Rg<br>roentgenium       112<br>Cn<br>copernicum       114<br>Fl<br>Cn<br>copernicum       114<br>Fl<br>ferovium       116<br>Lv<br>ivermorium         V       V       V       Sg<br>seaborgium       106       107       108       109       110       111       112       Cn<br>copernicum       114       Fl<br>flerovium       116       Lv<br>ivermorium         V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132.9              | 137.3              |                    | 178.5                      | 180.9                       | 183.8                 | 186.2                  | 190.2             | 192.2                   | 195.1                     | 197.0                  | 200.6               | [204.3; 204.4]           | 207.2                     | 209.0               | polonium                 | ustuarie                   | Tudon            |
| Fr<br>franciumRa<br>radiumactinoidsRf<br>rutherfordiumDb<br>dubniumSg<br>seaborgiumBh<br>bohriumHs<br>hassiumMt<br>metheriumDs<br>darmstadtiumRg<br>roentgeniumCn<br>coperniciumFI<br>teroviumLv<br>livermorium75859606162636465666768697071La<br>lanthanumCeium<br>raseodymiumPr<br>praseodymiumNd<br>neodymiumPm<br>promethiumSm<br>isoEu<br>ueropiumGd6465666768697071La<br>lanthanumCeium<br>raseodymiumPr<br>praseodymiumNd<br>portentiumPm<br>promethiumSm<br>isoEu<br>ueropiumGd6465666768697071La<br>lanthanumCeium<br>raseodymiumPr<br>praseodymium9394959697989910010110210389<br>actiniumPha<br>rusiumPa<br>rusiumNp<br>rusiumPu<br>plutoniumAm<br>americumCm<br>americumBk<br>californiumFm<br>californiumMd<br>resideniumNo<br>rusiumLr<br>laverencium89<br>actinium90<br>rusium91<br>rusium92939495<br>rusium96<br>curiumPf<br>Bk<br>californiumBk<br>californiumFm<br>rusiumMd<br>rusiumNo<br>rusium89<br>rusium90<br>rusium91<br>rusiumNp<br>rusiumNp<br>rusiumPu<br>rusium <t< th=""><th>87</th><th>88</th><th>89-103</th><th>104</th><th>105</th><th>106</th><th>107</th><th>108</th><th>109</th><th>110</th><th>111</th><th>112</th><th></th><th>114</th><th></th><th>116</th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                 | 88                 | 89-103             | 104                        | 105                         | 106                   | 107                    | 108               | 109                     | 110                       | 111                    | 112                 |                          | 114                       |                     | 116                      |                            |                  |
| 57         58         59         60         61         62         63         64         65         Dy<br>terbium         66         67         68         69         70         71         Lu           138.9         140.1         120.9         144.2         160.4         152.0         157.3         158.9         159.9         60         67         68         69         70         71         Lu           138.9         140.1         140.9         144.2         160.4         152.0         157.3         158.9         160         67         68         69         70         71         Lu           89         90         91         92         93         94         95         96         97         98         99         100         101         102         103           Ac         Th         protactinium         231.0         238.0         104         plutonium         americium         curium         Bk         67         Bk         Esinteinium         fermium         nobelium         lawrencium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fr<br>francium     | Ra<br>radium       | actinoids          | <b>Rf</b><br>rutherfordium | Db<br>dubnium               | Sg<br>seaborgium      | Bh<br>bohrium          | HS<br>hassium     | <b>Mt</b><br>meitnerium | <b>DS</b><br>darmstadtium | Rg<br>roentgenium      | Cn<br>copernicium   |                          | FI<br>flerovium           | 1                   | LV<br>livermorium        |                            |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                  |                    | 10 μ <sub>P</sub>  |                            |                             |                       |                        |                   |                         |                           |                        |                     |                          | 2012                      |                     |                          |                            |                  |
| La<br>Ianthanum<br>138.9Ce<br>cerium<br>140.1Pr<br>praseodymium<br>140.9Pm<br>nomethium<br>144.2Sm<br>samarium<br>150.4Eu<br>europium<br>150.4Gd<br>gadolinium<br>157.3Tb<br>try<br>try<br>157.3Dy<br>tho<br>thornium<br>152.9Ho<br>thornium<br>they<br>thornium<br>textTm<br>thulium<br>thulium<br>thulium<br>thulium<br>175.3Yb<br>tur<br>Itulium<br>175.3Lu<br>lutetium<br>175.389<br>Ac<br>actinium<br>232.091<br>protactinium<br>231.092<br>uranium<br>238.093<br>P4<br>P4<br>protactinium<br>238.096<br>P4<br>P4<br>plutonium<br>plutonium<br>americum<br>plutonium<br>americum96<br>Cm<br>Cm<br>Cm<br>curium97<br>P8<br>P6<br>Cf<br>californium<br>californium<br>einsteinium101<br>model<br>mendelevium<br>nobelium102<br>luto<br>luto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    | 57                 | 58                         | 59                          | 60                    | 61                     | 62                | 63                      | 64                        | 65                     | 66                  | 67                       | 68                        | 69                  | 70                       | 71                         |                  |
| Ianthanum<br>138.9cerium<br>140.1praseodymium<br>140.9neodymium<br>144.2promethium<br>samarium<br>150.4samarium<br>150.4europium<br>150.0terbium<br>157.3terbium<br>162.5ebrium<br>162.5tholmium<br>162.5ebrium<br>161.9tholmium<br>187.3ebrium<br>188.9tholmium<br>187.3ebrium<br>188.9tholmium<br>187.3ebrium<br>188.9tholmium<br>182.5ebrium<br>180.9tholmium<br>187.3ebrium<br>180.9tholmium<br>180.9ebrium<br>180.9tholmium<br>180.9ebrium<br>180.9tholmium<br>180.9ebrium<br>180.9tholmium<br>180.9ebrium<br>180.9tholmium<br>180.9ebrium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br>180.9tholmium<br><th></th> <th></th> <th>La</th> <th>Ce</th> <th>Pr</th> <th>Nd</th> <th>Pm</th> <th>Sm</th> <th>Eu</th> <th>Gd</th> <th>Tb</th> <th>Dy</th> <th>Ho</th> <th>Er</th> <th>Tm</th> <th>Yb</th> <th>Lu</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    | La                 | Ce                         | Pr                          | Nd                    | Pm                     | Sm                | Eu                      | Gd                        | Tb                     | Dy                  | Ho                       | Er                        | Tm                  | Yb                       | Lu                         |                  |
| 8990919293949596979899100101102103Ac<br>actinium<br>232.0Th<br>231.0Pa<br>231.0U<br>231.0U<br>231.0Np<br>231.0Pu<br>231.0Pu<br>plutonium<br>231.096<br>Pu<br>plutonium97<br>Cm<br>curium98<br>Bk<br>curium99<br>Cf<br>californium100<br>Es<br>einsteinium101<br>Md<br>mendelevium102<br>No<br>nobelium103<br>Lr<br>lawrencium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                    | lanthanum<br>138.9 | cerium<br>140.1            | praseodymium<br>140.9       | neodymium<br>144.2    | promethium             | samarium<br>150.4 | europium<br>152.0       | gadolinium<br>157.3       | terbium<br>158.9       | dysprosium<br>162.5 | holmium<br>164.9         | erbium<br>167.3           | thulium<br>168.9    | ytterbium<br>173.1       | lutetium<br>175.0          |                  |
| Ac<br>actiniumTh<br>thorium<br>232.0Pa<br>protactinium<br>231.0U<br>uranium<br>238.0Np<br>neptuniumPu<br>plutoniumAm<br>americiumCm<br>curiumBk<br>berkeliumCf<br>californiumEs<br>einsteiniumFm<br>mendeleviumMd<br>nobeliumNo<br>nobeliumLr<br>lawrencium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    | 89                 | 90                         | 91                          | 92                    | 93                     | 94                | 95                      | 96                        | 97                     | 98                  | 99                       | 100                       | 101                 | 102                      | 103                        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    | Ac<br>actinium     | Th<br>thorium<br>232.0     | Pa<br>protactinium<br>231.0 | U<br>uranium<br>238.0 | <b>Np</b><br>neptunium | Pu<br>plutonium   | Am<br>americium         | Cm<br>curium              | <b>Bk</b><br>berkelium | Cf<br>californium   | <b>Es</b><br>einsteinium | Fm<br>fermium             | Md<br>mendelevium   | <b>No</b><br>nobelium    | Lr<br>lawrencium           |                  |

magnetic moment: 7  $\mu_{B}$ 





50 TIMES **STRONGER** MAGNETS THAN ALKALI ATOMS



# EXPLORE NEW PHYSICS

Publications within this (upcoming) thesis:

• Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid

L. Chomaz, S. Baier, D. P., M. J. Mark, F. Wächtler, L. Santos, F. Ferlaino, PRX 6, 041039 (2016)

- Observation of roton mode population in a dipolar quantum gas

   L. Chomaz, R. v. Bijnen, <u>D. P.</u>, G. Faraoni, S. Baier, J. H. Becher, M. J. Mark, F. Waechtler, L. Santos, F. Ferlaino, Nat. Phys. 14, 442 (2018)
- Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases
   L. Chomaz, <u>D. P.</u>, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, F. Ferlaino, PRX **9**, 021012 (2019)
- Probing the Roton Excitation Spectrum of a stable dipolar Bose gas,
   <u>D. P.</u>, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz, F. Ferlaino, PRL **122**, 183401 (2019)



# EXPLORE NEW PHYSICS

Publications within this (upcoming) thesis:

• Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid

L. Chomaz, S. Baier, D. P., M. J. Mark, F. Wächtler, L. Santos, F. Ferlaino, PRX 6, 041039 (2016)

- Observation of roton mode population in a dipolar quantum gas

   L. Chomaz, R. v. Bijnen, <u>D. P.</u>, G. Faraoni, S. Baier, J. H. Becher, M. J. Mark, F. Waechtler, L. Santos, F. Ferlaino, Nat. Phys. 14, 442 (2018)
- Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases
   L. Chomaz, <u>D. P.</u>, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante, R. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, F. Ferlaino, PRX **9**, 021012 (2019)
- Probing the Roton Excitation Spectrum of a stable dipolar Bose gas,
   <u>D. P.</u>, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz, F. Ferlaino, PRL 122, 183401 (2019)



What is an excitation spectrum (dispersion relation)?

Describes the energy E that is needed to excite a physical system at a certain momentum p (or velocity v)





*m* ... mass of atom

p = mv



At low momentum, atoms respond *collectively* (due to delocalisation + interactions)





At low momentum, atoms respond *collectively* (due to delocalisation + interactions)





Collective excitations travel as *plane waves* through BEC (similar to phonons in solids, or waves in water)



At low momentum, atoms respond *collectively* (due to delocalisation + interactions)







Bragg spectroscopy:

- Two laser beams cross under angle  $\theta$  at atomic cloud
- Frequency difference  $\omega$
- Excitation via two-photon process





- Frequency difference  $\omega$
- Excitation via two-photon process





Excitation via two-photon process ٠

٠





Excitation via *two*–*photon process* ٠

٠

Momentum transfer **p** happens only when energy ( $\hbar\omega$ ) ٠ matches excitation spectrum

www.erbium.at

#### Implement a Bragg spectroscopy setup:

#### Main requirement:

Easy tunability over relevant momentum and energy range

#### Technical implementation with *digital micromirror device:*

- Use holographic gratings to create two Bragg beams from one incoming laser beam
- Allows to change momentum *p* and frequency ω independently via computer programm



Programmable mirror board with 1920x1080 tiny mirrors

mirror

# www.erkium.at

#### Implement a Bragg spectroscopy setup:

Main requirement:

Easy tunability over relevant momentum and energy range

Technical implementation with *digital micromirror device:* 

- Use holographic gratings to create two Bragg beams from one incoming laser beam
- Allows to change momentum *p* and frequency ω independently via computer programm
- Reguirements: Additional Laser setup, Programming, offline calibration, implementation into experiment



Measurement sequence:

• Prepare cloud





Measurement sequence:

- Prepare cloud
- Apply a short Bragg pulse with fixed momentum
- Let atoms expand in free space (switch off trap)
- Take a picture





Measurement sequence:

- Prepare cloud
- Apply a short Bragg pulse with fixed momentum
- Let atoms expand in free space (switch off trap)
- Take a picture





Repeat for different momenta and compare to theory





What happens when the energy of the roton minimum is tuned to zero?









