A splitting integrator for third order problems with transparent boundary conditions

Mirko Residori
University of Innsbruck
MIP Seminar 2020
Innsbruck, January 15th, 2020

Introduction

Water waves in shallow water

- Russell 1834: I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses [...]
- Rayleigh and Boussinesq (1870), Korteweg and De Vries (1895): theoretical investigations
- Zabusky and Kruskal (1965): solitions
- Gardner, Greene, Kruskal and Miura (1967): inverse scattering transform

Figure. Russell's experiment (1995), Department of Mathematics, Heriot-Watt University, Edinburgh, Scotland

Collision of solitions https://www.youtube.com/ watch?v=wEbYELtGZwI

The Korteweg-de Vries (KdV) equation

$$
\left\{\begin{array}{l}
u_{t}+6 u u_{x}+u_{x x x}=0, \quad t \in[0, T], \quad x \in \mathbb{R}, \tag{1}\\
u(0, x)=u^{0}(x) .
\end{array}\right.
$$

The Korteweg-de Vries (KdV) equation

$$
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \quad t \in[0, T], \quad x \in \mathbb{R}, \tag{1}\\
u(0, x)=u^{0}(x) .
\end{array}\right.
$$

Motivation
Equation (2) finds applications in

- simulations of long ocean waves over an uneven bottom,
- propagation of fairly long waves in the shallow water.

The Korteweg-de Vries (KdV) equation

$$
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \quad t \in[0, T], \quad x \in \mathbb{R}, \tag{1}\\
u(0, x)=u^{0}(x) .
\end{array}\right.
$$

Motivation
Equation (2) finds applications in

- simulations of long ocean waves over an uneven bottom,
- propagation of fairly long waves in the shallow water.

Numerical simulations require

- Temporal discretization
- Spatial discretization

The problem

Shallow Water Wave Properties

$$
u_{t}+g(x) u_{x}+u_{x x x}=0
$$

The problem

Shallow Water Wave Properties

$$
u_{t}+g(x) u_{x}+u_{x x x}=0
$$

Dispersion

Figure. Drogogne river, France. Picture: https://www.sudouest.fr/

$$
u_{t}+u_{x x x}=0
$$

Dispersion

$$
u_{t}+u_{x x x}=0
$$

Advection

$$
u_{t}+g(x) u_{x}=0
$$

Temporal discretization

Let $m>0$ and $\tau=T / m$. Consider the uniform time discretization

$$
\begin{gathered}
0=t^{0}<t^{1}<\cdots<t^{m}=T, \quad t^{k}=k \tau . \\
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \\
u(0, x)=u^{0}(x),
\end{array}\right.
\end{gathered}
$$

Temporal discretization

Let $m>0$ and $\tau=T / m$. Consider the uniform time discretization

$$
\begin{gathered}
0=t^{0}<t^{1}<\cdots<t^{m}=T, \quad t^{k}=k \tau \\
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \\
u(0, x)=u^{0}(x),
\end{array}\right. \\
\mathcal{T}^{t}\left(v^{0}\right):\left\{\begin{array}{l}
v_{t}+g(x) v_{x}=0, \\
v(0, x)=v^{0}(x),
\end{array} \quad \mathcal{D}^{t}\left(w^{0}\right):\left\{\begin{array}{l}
w_{t}+w_{x x x}=0, \\
w(0, x)=w^{0}(x)
\end{array}\right.\right.
\end{gathered}
$$

By Lie-Trotter splitting

$$
u(\tau, x) \approx u^{1}(x)=\mathcal{D}^{\tau} \circ \mathcal{T}^{\tau}\left(u^{0}\right)
$$

Boundary conditions

Boundary conditions

Consider the problem

$$
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \quad t \in[0, T], \quad x \in \mathbb{R} \\
u(0, x)=u^{0}(x)
\end{array}\right.
$$

Boundary conditions

Consider the problem

$$
\left\{\begin{array}{l}
u_{t}+g(x) u_{x}+u_{x x x}=0, \quad t \in[0, T], \quad x \in(a, b), \\
u(0, x)=u^{0}(x) \\
u(t, a)=\ldots \\
u(t, b)=\ldots \\
u_{x}(t, b)=\ldots
\end{array}\right.
$$

... we must impose boundary conditions on a and b.
A typical choice are periodic boundary conditions.

Periodic boundary conditions

Figure. Time simulation for $T=2$ with periodic boundary conditions.

Transparent boundary conditions

Figure. Time simulation for $T=2$ with transparent boundary conditions.

Transparent boundary conditions

Figure. Time simulation for $T=2$ with transparent boundary conditions.

No free lunch theorem

- Transparent boundary conditions are difficult to compute
- Transparent boundary conditions are expensive to compute
- Transparent boundary conditions must be carefully design on the underlying numerical scheme

Transparent boundary conditions

We finally obtain the boundary conditions for the interior problem

$$
\left\{\begin{array}{l}
u^{m+1}+\tau u_{x x x}^{m+1}=u^{m}-\tau g(x) u_{x}^{m}, \quad m \geq 0, \quad x \in(a, b), \\
u(0, x)=u^{0}(x), \\
u^{m+1}(a)-Y_{1}^{0} u_{x}^{m+1}(a)-Y_{2}^{0} u_{x x}^{m+1}(a)=h_{1}^{m}, \\
u^{m+1}(b)-Y_{3}^{0} u_{x x}^{m+1}(b)=h_{2}^{m}, \\
u_{x}^{m+1}(b)-Y_{4}^{0} u_{x x}^{m+1}(b)=h_{3}^{m} .
\end{array}\right.
$$

where

$$
\begin{aligned}
& h_{1}^{m}=\sum_{k=1}^{m+1} Y_{1}^{k} u_{x}^{m+1-k}(a)+Y_{2}^{k} u_{x x}^{m+1-k}(a), \\
& h_{2}^{m}=\sum_{k=1}^{m+1} Y_{3}^{k} u_{x x}^{m+1-k}(b), \quad h_{3}^{m}=\sum_{k=1}^{m+1} Y_{4}^{k} u_{x x}^{m+1-k}(b)
\end{aligned}
$$

Spatial discretization

Given the semi-discrete scheme

$$
\left\{\begin{array}{l}
u^{m+1}+\tau u_{x x x}^{m+1}=u^{m}-\tau g(x) u_{x}^{m} \quad m \geq 0, \quad x \in[a, b] \\
u(0, x)=u^{0}(x), \\
u^{m+1}(a)-Y_{1}^{0} u_{x}^{m+1}(a)-Y_{2}^{0} u_{x x}^{m+1}(a)=h_{1}^{m}, \\
u^{m+1}(b)-Y_{3}^{0} u_{x x}^{m+1}(b)=h_{2}^{m}, \\
u_{x}^{m+1}(b)-Y_{4}^{0} u_{x x}^{m+1}(b)=h_{3}^{m},
\end{array}\right.
$$

we perform a space discretization by a pseudo-spectral method. In particular, we implement a dual-Petrov-Galerkin method.

Numerical results

Figure. Left: time convergence, m number of time steps. Right: space convergence, N number of grid points.

Numerical results

Conclusions

- A splitting scheme was used for the time discretization
- Discrete transparent boundary conditions were designed for the particular time scheme
- A pseudo-spectral spatial discretization was presented to achieve fast convergence

Conclusions

- A splitting scheme was used for the time discretization
- Discrete transparent boundary conditions were designed for the particular time scheme
- A pseudo-spectral spatial discretization was presented to achieve fast convergence
Future work
- Second order time scheme
- Rigorous stability analysis
- 2-D implementation

Thanks for the attention!

囯 L. Einkemmer, A. Ostermann, M. Residori, A pseudo-spectral splitting method for linear dispersive problems with transparent boundary conditions (arXiv-2019)

