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Introduction
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Water waves in shallow water

Russell 1834: I was
observing the motion of a
boat which was rapidly
drawn along a narrow
channel by a pair of horses
[...]
Rayleigh and Boussinesq
(1870), Korteweg and De
Vries (1895): theoretical
investigations
Zabusky and Kruskal
(1965): solitions
Gardner, Greene, Kruskal
and Miura (1967): inverse
scattering transform

Figure. Russell’s experiment (1995),
Department of Mathematics,
Heriot-Watt University, Edinburgh,
Scotland

Collision of solitions
https://www.youtube.com/

watch?v=wEbYELtGZwI
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The Korteweg–de Vries (KdV) equation

{
ut + 6uux + uxxx = 0, t ∈ [0,T ], x ∈ R,
u(0, x) = u0(x).

(1)

{
ut + g(x)ux + uxxx = 0, t ∈ [0,T ], x ∈ R,
u(0, x) = u0(x).

(2)

Motivation
Equation (2) finds applications in

simulations of long ocean waves over an uneven bottom,
propagation of fairly long waves in the shallow water.

Numerical simulations require
Temporal discretization
Spatial discretization
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The problem

ut + g(x)ux + uxxx = 0

Mirko Residori January 2020 5 / 18



The problem

ut + g(x)ux + uxxx = 0

Mirko Residori January 2020 5 / 18



Dispersion

Figure. Drogogne river, France. Picture: https://www.sudouest.fr/

ut + uxxx = 0
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Dispersion

ut + uxxx = 0
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Advection

ut + g(x)ux = 0
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Temporal discretization

Let m > 0 and τ = T/m. Consider the uniform time discretization

0 = t0 < t1 < · · · < tm = T , tk = kτ.{
ut + g(x)ux + uxxx = 0,
u(0, x) = u0(x),

T t(v0) :

{
vt + g(x) vx = 0,
v(0, x) = v0(x),

Dt(w0) :

{
wt + wxxx = 0,
w(0, x) = w0(x).

By Lie-Trotter splitting

u(τ, x) ≈ u1(x) = Dτ ◦ T τ (u0)
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Boundary conditions
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Boundary conditions

Consider the problem

ut + g(x)ux + uxxx = 0, t ∈ [0,T ], x ∈ (a, b),

u(0, x) = u0(x),

u(t, a) = ...

u(t, b) = ...

ux(t, b) = ...

... we must impose boundary conditions on a and b.

A typical choice are periodic boundary conditions.
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Periodic boundary conditions
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Figure. Time simulation for T = 2 with periodic boundary conditions.
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Transparent boundary conditions
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Figure. Time simulation for T = 2 with transparent boundary conditions.

No free lunch theorem
Transparent boundary conditions are difficult to compute
Transparent boundary conditions are expensive to compute
Transparent boundary conditions must be carefully design on the
underlying numerical scheme
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Transparent boundary conditions

We finally obtain the boundary conditions for the interior problem

um+1 + τum+1
xxx = um − τ g(x)umx , m ≥ 0, x ∈ (a, b),

u(0, x) = u0(x),

um+1(a)− Y 0
1 u

m+1
x (a)− Y 0

2 u
m+1
xx (a) = hm1 ,

um+1(b)− Y 0
3 u

m+1
xx (b) = hm2 ,

um+1
x (b)− Y 0

4 u
m+1
xx (b) = hm3 .

where

hm1 =
m+1∑
k=1

Y k
1 u

m+1−k
x (a) + Y k

2 u
m+1−k
xx (a),

hm2 =
m+1∑
k=1

Y k
3 u

m+1−k
xx (b), hm3 =

m+1∑
k=1

Y k
4 u

m+1−k
xx (b).
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Spatial discretization

Given the semi-discrete scheme

um+1 + τum+1
xxx = um − τ g(x)umx m ≥ 0, x ∈ [a, b],

u(0, x) = u0(x),

um+1(a)− Y 0
1 u

m+1
x (a)− Y 0

2 u
m+1
xx (a) = hm1 ,

um+1(b)− Y 0
3 u

m+1
xx (b) = hm2 ,

um+1
x (b)− Y 0

4 u
m+1
xx (b) = hm3 ,

we perform a space discretization by a pseudo-spectral method.
In particular, we implement a dual-Petrov–Galerkin method.
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Numerical results
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Figure. Left: time convergence, m number of time steps. Right: space convergence, N
number of grid points.
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Numerical results
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Conclusions

A splitting scheme was used for the time discretization
Discrete transparent boundary conditions were designed for the
particular time scheme
A pseudo-spectral spatial discretization was presented to achieve fast
convergence

Future work
Second order time scheme
Rigorous stability analysis
2-D implementation

Mirko Residori January 2020 17 / 18



Conclusions

A splitting scheme was used for the time discretization
Discrete transparent boundary conditions were designed for the
particular time scheme
A pseudo-spectral spatial discretization was presented to achieve fast
convergence

Future work
Second order time scheme
Rigorous stability analysis
2-D implementation

Mirko Residori January 2020 17 / 18



Thanks for the attention!

L. Einkemmer, A. Ostermann, M. Residori, A pseudo-spectral splitting
method for linear dispersive problems with transparent boundary
conditions (arXiv-2019)
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