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Introduction
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Water waves in shallow water

@ Russell 1834: | was
observing the motion of a
boat which was rapidly
drawn along a narrow
channel by a pair of horses
[]

o Rayleigh and Boussinesq
(1870), Korteweg and De
Vries (1895): theoretical
investigations

@ Zabusky and Kruskal
(1965): solitions

o Gardner, Greene, Kruskal
and Miura (1967): inverse
scattering transform

Mirko Residori

Figure. Russell's experiment (1995),
Department of Mathematics,
Heriot-Watt University, Edinburgh,
Scotland

Collision of solitions
https://www.youtube.com/
watch?v=wEbYELtGZwI
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https://www.youtube.com/watch?v=wEbYELtGZwI
https://www.youtube.com/watch?v=wEbYELtGZwI

|
The Korteweg—de Vries (KdV) equation

ur +6uly + U =0, t€[0,T], x€R,
u(0,x) = u0(x).
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|
The Korteweg—de Vries (KdV) equation

ur+ g(x)ux + uwx =0, t€[0,T], x€eR,
u(0,x) = u°(x).

Motivation
Equation (2) finds applications in
@ simulations of long ocean waves over an uneven bottom,

@ propagation of fairly long waves in the shallow water.
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|
The Korteweg—de Vries (KdV) equation

ur+ g(x)ux + uwx =0, t€[0,T], x€eR,
u(0,x) = u°(x).

Motivation
Equation (2) finds applications in
@ simulations of long ocean waves over an uneven bottom,

@ propagation of fairly long waves in the shallow water.

Numerical simulations require

@ Temporal discretization

@ Spatial discretization
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-
The problem

Shallow Water Wave Properties

Deep water

Shallow zone

ur + g(X)ux + Usex =0

}PRN G4
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The problem

Shallow Water Wave Properties

Deep water

Shallow zone

ur + g(X)ux + U =0
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-
Dispersion

Figure. Drogogne river, France. Picture: https://www.sudouest.fr/

Ut + Uxxx = 0
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Dispersion

Ut + Uxxx = 0
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Advection

Ut +g(X)UX =0
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Temporal discretization

Let m > 0 and 7 = T/m. Consider the uniform time discretization
0=t"<tl<...<t"=T, thk=kr

ug + g(X)UX + Usxx = 07
u(0, x) = u®(x),
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Temporal discretization
Let m > 0 and 7 = T/m. Consider the uniform time discretization
0=t"<tl<...<t"=T, thk=kr
ur + g(x)ux + U = 0,
u(0,x) = u°(x),
Tt(VO) : VtJrg(X) vx =0, ,Dt(Wo) : Wi + Wi = 0,
v(0,x) = v9(x), w(0, x) = wO(x).

By Lie-Trotter splitting

u(t,x) =~ ut(x) =D o T7(u°)
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Boundary conditions
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Boundary conditions

Consider the problem

ur + g(x)ux + U =0, t€[0,T], xeR,
u(0, x) = u¥(x).
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Boundary conditions

Consider the problem

ur+ g(X)ux + ux =0, t€[0,T], xe€(a,b),
u(0, x) = u®(x),

u(t,a) = ...

u(t, b) = ...

ux(t, b) = ...

.. we must impose boundary conditions on a and b.

A typical choice are periodic boundary conditions.
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Periodic boundary conditions
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Figure. Time simulation for T = 2 with periodic boundary conditions.
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Transparent boundary conditions

i
)\ W\/\A/\ ——————— NW\/\/

Figure. Time simulation for T = 2 with transparent boundary conditions.
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Transparent boundary conditions

i
)\ W\/\A/\ ——————— NW\/\/

Figure. Time simulation for T = 2 with transparent boundary conditions.

No free lunch theorem
@ Transparent boundary conditions are difficult to compute
@ Transparent boundary conditions are expensive to compute

@ Transparent boundary conditions must be carefully design on the
underlying numerical scheme
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Transparent boundary conditions

We finally obtain the boundary conditions for the interior problem

umtl Lyt =y — 7 g(x)u”, m>0, xc(a,b),
u(0,x) = u°(x),
um(3) — YPur (@) - YOuH(a) = A
u™(b) = YJuZH(b) = h3,
uti(b) — YJuZH(b) = hy.

where
m+1
m __ k m+1—k k m+1—k
1 — E Yl Uy (a) + Y2 Usex (a)7
k=1
m+1 m+1
m __ k m+1— k k m+1 k
h2*§y3uxx )s h3*§y (b).
k=1
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Spatial discretization

Given the semi-discrete scheme

u™t o rultt = 0™ — T g(x)uf m>0, xelab],
u(0, x) = u°(x),

u™ (@) = YPul "t (a) - YuZt(a) = hY,

u™ () — YPuZt(b) = hY,

uf ™t (b) = YQug(b) = hy,

we perform a space discretization by a pseudo-spectral method.
In particular, we implement a dual-Petrov—Galerkin method.

Mirko Residori January 2020

14 /18



Numerical results

err
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Figure. Left: time convergence, m number of time steps. Right: space convergence, N
number of grid points.
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Numerical results
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Conclusions

@ A splitting scheme was used for the time discretization

@ Discrete transparent boundary conditions were designed for the
particular time scheme

@ A pseudo-spectral spatial discretization was presented to achieve fast
convergence
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Conclusions

@ A splitting scheme was used for the time discretization

@ Discrete transparent boundary conditions were designed for the
particular time scheme

@ A pseudo-spectral spatial discretization was presented to achieve fast
convergence

Future work
@ Second order time scheme
@ Rigorous stability analysis

@ 2-D implementation
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Thanks for the attention!

[4 L. Einkemmer, A. Ostermann, M. Residori, A pseudo-spectral splitting
method for linear dispersive problems with transparent boundary
conditions (arXiv-2019)
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