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Plan

1. 1D and 2D quantum repeaters for distribution of entangled 
states


2. Protocol for the 2D quantum repeater


3. Comparison of quantum networks build with the 1D and 2D 
quantum repeaters
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Detection of errors +

error correction / filtration



Our goal

Develop protocol for 2D quantum repeater

using scalable resources and compare it 

with the 1D repeater in presence of realistic  
imperfections
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To the Editor — For many years, we have 
been using glass alkali-metal vapour cells 
with inner walls coated with paraffi  n. High-
quality paraffi  n coatings1,2 have the ‘magical’ 
property that polarized alkali atoms may 
bounce between the cell walls several 
thousand times before they depolarize, 
which has led to widespread application 
of such cells anywhere where long-lived 
atomic polarization is desired, for example, 
in optical atomic magnetometers3.

Although condensation of the alkali 
metal on the paraffi  n-coated walls is usually 
carefully avoided, and the excess metal 
is located in the cell ‘stem’ (see Fig. 1a), 
in some of the cells, we have observed 
needle-like metal crystals — shown in 
Fig. 1 — that have grown from the paraffi  n 
coating and have reached the length of 
up to 2–3 mm in about two months (our 
coating procedure is described in ref. 4). 
Th e crystals are all of regular square cross-
section, approximately 30 μm on the side, 
terminating on a sharp-vertex pyramid at 
the ends of the needle.

Th e observed rate of growth indicates 
that an atom from the vapour phase that 
hits the crystal at the prismatic part of 
the needle near the vertex has sticking 
probability of order unity, or that atoms 
adsorbed in a ‘wrong’ place on the 
crystal somehow migrate towards the 
end of the needle. Most of the whiskers 
are perpendicular to the cell wall, but 
occasionally we fi nd needles that grow at 
an angle.

A quick e-mail poll of the workers 
who have studied paraffi  n-coated cells 
has revealed that, although most of them 
have not seen alkali-metal whiskers, the 
paraffi  n-coating pioneer, Hugh Robinson 
(now at NIST, Boulder), in fact, fi rst 
observed their formation some 20 years 
ago, and was even able to stimulate their 
formation by providing a ‘cold spot’ on 
the surface of the cell. Unfortunately, 
Robinson’s results remain unpublished.

As it turns out, rubidium is a member 
of a large ‘family’ of metals and other 
materials that tend to grow whiskers5. In 
fact, tin, zinc and gold whiskers represent 
a signifi cant problem for the electronics 
industry, as they can lead to electrical shorts 
and failure of electronic equipment. NASA 

maintains an informative web site6 devoted 
to metal whiskers, however, alkali metals 
have not as yet been featured. Th ere are 
also reports of bismuth whiskers growing 
in a heat-pipe vapour cell (M. Zolotorev, 
personal communication).

Alkali-metal needles may also present 
certain problems, for example, in the work 
that requires application of high-voltage 
electric fi eld to coated cells7. However, 
they might also prove useful as a way to 
manufacture alkali-metal wires, for which 
one interesting application is loading a 
dense cryogenic buff er gas with the alkali 
metal by laser ablation of the end of a 
micrometre-sized wire8.

M. V. Balabas1, A. O. Sushkov2 and D. Budker3*
1S. I. Vavilov State Optical Institute, St. Petersburg 
199034, Russia.

Rubidium ‘whiskers’ in a vapour cell

Figure 1 Rubidium whiskers. a, View of a paraffi n-coated vapour cell with one of the rubidium whiskers clearly 
seen (outlined with a yellow circle). b, A microscope photograph of the side view of the whisker. c, Microscope 
photograph of the base of the whisker as seen from the coating side. (We thank A. Cingoz and D. English for help 
with photography.)
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Imperfections: 
• Dark counts 10Hz

• Detector efficiency 95% 


• Read-out efficiency 95% 

• Fiber attenuation length 22km 


• Cavity losses 40%
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Results

1. Scalable protocol for 2D repeaters


2. 2D repeater protocol outperforms 1D repeater


