Scalable repeater architectures for multiparty states Viacheslav V. Kuzmin

- **Group of Peter Zoller**
- 15.01.2020, MIP Seminar

Quantum states

Classical bit $|0\rangle$ $|1\rangle$

Quantum bit (Qbit)

Quantum states

2 qubits:

Bell state

 $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

n-party GHZ states $\frac{1}{\sqrt{2}}(|00..0\rangle + |11..1\rangle)$

- Secure communication
- Secret voting
- Distributed quantum computing

Secure communication

- Secret voting
- Distributed quantum computing

- Secure communication
- Secret voting
- Distributed quantum computing

- Secure communication
- Secret voting
- Distributed quantum computing

Target tripartite state

 $\frac{1}{\sqrt{2}}(|001\rangle + |110\rangle)$

states

- 2. Protocol for the 2D quantum repeater
- quantum repeaters

Plan

1. 1D and 2D quantum repeaters for distribution of entangled

3. Comparison of quantum networks build with the 1D and 2D

Direct transmission

Direct transmission

Photon pulse

Direct transmission

1D repeater network

Imperfections:

• Errors in quantum local operations

Imperfections:

- Errors in quantum local operations
- Finite memory time ~10ms

Imperfections:

- Errors in quantum local operations
- Finite memory time ~10ms

*Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., & Dür, W. (2016). PRA, 94(5)

2D repeater network*

*Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., & Dür, W. (2016). PRA, 94(5)

Develop protocol for **2D quantum repeater** using scalable resources and compare it with the 1D repeater in presence of realistic imperfections

Scalable resources:

- Room temperature atomic ensembles in glass cells*
- Beamsplitters
- Photon detectors

*Balabas, M., Sushkov, A. & Budker, D. Nature Phys 3, 2 (2007)

Scalable resources:

- Room temperature atomic ensembles in glass cells*
- Beamsplitters
- Photon detectors

*Balabas, M., Sushkov, A. & Budker, D. Nature Phys 3, 2 (2007)

Scalable resources:

- Room temperature atomic ensembles in glass cells*
- Beamsplitters
- Photon detectors

*Balabas, M., Sushkov, A. & Budker, D. Nature Phys 3, 2 (2007)

states

2. Protocol for the 2D quantum repeater

3. Comparison of quantum networks build with the 1D and 2D quantum repeaters

Plan

1. 1D and 2D quantum repeaters for distribution of entangled

$\frac{1}{\sqrt{2}}(|0_A 0_B 1_C\rangle + |1_A 1_B 0_C\rangle)$ B С Α

 $|0_A 0_B 0_b\rangle + \sqrt{\varepsilon} |1_A 1_B 1_b\rangle + O(\varepsilon)$

Probability	Event	State	Response	
~ 1	0 clicks	$ 0_A 0_B 0_C\rangle$		
$\sim \varepsilon$	0 clicks + 1 loss	i.e. $ 0_A 0_B 1_C\rangle$		
$\sim \varepsilon$	1 click	$\sim 0_A 0_B 1_C \rangle + 1_A 1_B 0_C \rangle$		
$\sim \varepsilon^2$	2 click	$ 1_A 1_B 1_C\rangle$		
$\sim \varepsilon^2$	1 clicks + 1 loss	$ 1_A 1_B 1_C\rangle$		

;

Probability	Event
~ 1	0 clicks
$\sim \epsilon$	0 clicks + 1 l
$\sim \varepsilon$	1 click
$\sim \epsilon^2$	2 click
$\sim \varepsilon^2$	1 clicks + 1 l

Probability	Event
~ 1	0 clicks
	0 clicks + 1 l
$\sim \varepsilon$	1 click
$\sim \varepsilon^2$	2 click
$\sim \varepsilon^2$	1 clicks + 1 l

Read-out of quantum information:

- Initial state:
- $|0_A 0_B 1_C\rangle + |1_A 1_B 0_C\rangle$
- $|1_D 1_E \mathbf{0}_F\rangle + |0_D 0_E \mathbf{1}_F\rangle$

robability	Event	State	Response
~25 %	0 click	$ 1_{A}1_{B}1_{D}1_{E}\rangle$	
~25 %	2 click	$ 0_A 0_B 0_D 0_E\rangle$	
~50 %	1 click	$ 0_A 0_B 1_D 1_E\rangle + 1_A 1_B 0_D 0_E\rangle$	

Initial state:

- $|0_A 0_B 1_D 1_E\rangle + |1_A 1_B 0_D 0_E\rangle$
- $|0_G 0_H 1_K \rangle + |1_G 1_H 0_K \rangle$

robability	Event	State	Respo
~25 %	0 click		
~25 %	2 click	• • •	
~50 %	1 click	$ 0_A 1_D 1_E 0_G 0_H \rangle + 1_A 0_D 0_E 1_G 1_H \rangle$	

onse

Initial state:

 $|0_A \mathbf{1}_D \mathbf{1}_E \mathbf{0}_G \mathbf{0}_H \rangle + |1_A \mathbf{0}_D \mathbf{0}_E \mathbf{1}_G \mathbf{1}_H \rangle$

Probability	Event	State	Response
100 %	1 click	$ 0_A 1_E 0_G\rangle + 1_A 0_E 1_G\rangle$	

Initial state:

 $|0_A \mathbf{1}_D \mathbf{1}_E \mathbf{0}_G \mathbf{0}_H \rangle + |1_A \mathbf{0}_D \mathbf{0}_E \mathbf{1}_G \mathbf{1}_H \rangle$

Probability	Event	State	Response
100 %	1 click	$ 0_A 1_E 0_G\rangle + 1_A 0_E 1_G\rangle$	

- Initial state:
- $|0_A 0_B 1_D 1_E\rangle + |1_A 1_B 0_D 0_E\rangle$
- $|0_G 0_H 0_K\rangle$

Probability	Event	State	Response
~50 %	0 click		
~50 %	1 click	$ 1_A 0_D 0_E 0_G 0_H\rangle$	

- Initial state:
- $|1_A \mathbf{0}_D \mathbf{0}_E \mathbf{0}_G \mathbf{0}_H \rangle$

Probability	Event	State	Response
100 %	0 click	$ 1_A 0_E 0_G\rangle$	

Next nesting level

Comparison

Imperfections:

- Dark counts 10Hz
- Detector efficiency 95%
- Read-out efficiency 95%
- Fiber attenuation length 22km
- Cavity losses 40%

- 1. Scalable protocol for 2D repeaters
- 2. 2D repeater protocol outperforms 1D repeater

Results