
AI for Isabelle/HOL

Yutaka Nagashima

University of Innsbruck

Czech Technical University

 https://twitter.com/YutakangJ

https://github.com/data61/PSL/slide/2019_proof_summit.pdf
https://github.com/data61/PSL/slide/2019_proof_summit.pdf

AI for Isabelle/HOL

Yutaka Nagashima

University of Innsbruck

Czech Technical University

?

https://twitter.com/YutakangJ

https://github.com/data61/PSL/slide/2019_proof_summit.pdf
https://github.com/data61/PSL/slide/2019_proof_summit.pdf

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

http://cl-informatik.uibk.ac.at/users/cek/

2017 ~ 2018

https://en.wikipedia.org/wiki/File:EU-Austria.svg

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

with Prof. Cezary Kaliszyk

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

2018 ~ 2020

https://en.wikipedia.org/wiki/File:EU-Czech_Republic.svg

http://ai4reason.org/members.html

http://cl-informatik.uibk.ac.at/users/cek/

2017 ~ 2018

https://en.wikipedia.org/wiki/File:EU-Austria.svg

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

with Prof. Cezary Kaliszyk

with Dr. Josef Urban

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

2018 ~ 2020

https://en.wikipedia.org/wiki/File:EU-Czech_Republic.svg

http://ai4reason.org/members.html

2020 ~ 2021?

http://cl-informatik.uibk.ac.at/users/cek/

2017 ~ 2018

https://en.wikipedia.org/wiki/File:EU-Austria.svg

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

with Prof. Cezary Kaliszyk

with Dr. Josef Urban

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

2018 ~ 2020

https://en.wikipedia.org/wiki/File:EU-Czech_Republic.svg

http://ai4reason.org/members.html

2020 ~ 2021?

http://cl-informatik.uibk.ac.at/users/cek/

2017 ~ 2018

https://en.wikipedia.org/wiki/File:EU-Austria.svg

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

with Prof. Cezary Kaliszyk

with Dr. Josef Urban

http://aitp-conference.org/2019/

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

2018 ~ 2020

https://en.wikipedia.org/wiki/File:EU-Czech_Republic.svg

http://ai4reason.org/members.html

2020 ~ 2021?

http://cl-informatik.uibk.ac.at/users/cek/

2017 ~ 2018

https://en.wikipedia.org/wiki/File:EU-Austria.svg

()
 http://www.cse.unsw.edu.au/~kleing/

2013 ~ 2017

https://en.wikipedia.org/wiki/Australia#/media/File:Australia_with_AAT_(orthographic_projection).svg

with Dr. Gerwin Klein

pre-PhD

PhD in
AI for theorem proving

with Prof. Cezary Kaliszyk

with Dr. Josef Urban

http://aitp-conference.org/2019/

?

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Isabelle/HOL architecture

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

HOL

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

Isar
HOL

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

Isar
HOL

PIDE / jEdit

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

Isar
HOL

PIDE / jEdit

CC BY 3.0

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

Isar
HOL

PIDE / jEdit

You can access all the layers!
:)

CC BY 3.0

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Isabelle/HOL architecture

ML (Poly/ML)
Meta-logic

Isar
HOL

PIDE / jEdit

You can access all the layers!
:)

CC BY 3.0

They come all together!
: (

PIDE / jEdit

Isar

Meta-logic

HOL

ML (Poly/ML)

CC BY 3.0

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

DEMO!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Example proof at Data61

!5

taken from:
https://github.com/seL4/seL4

https://github.com/data61/PSL/slide/2019_ps.pdf

Example proof at Data61

!5

taken from:
https://github.com/seL4/seL4

impressive!

interesting?

https://github.com/data61/PSL/slide/2019_ps.pdf

Example proof at Data61

!5

taken from:
https://github.com/seL4/seL4

impressive!

interesting?

https://github.com/data61/PSL/slide/2019_ps.pdf

Example proof at Data61

!5

taken from:
https://github.com/seL4/seL4

impressive!

interesting?

https://github.com/data61/PSL/slide/2019_ps.pdf

Example proof at Data61

!5

taken from:
https://github.com/seL4/seL4

これを人間が書くべきなの…？
どうにかしろよ、人工知能。

impressive!

interesting?

https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal goal goalimp

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal goal goalimp

False Pimp

principle of explosion

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal goal goalimp

tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal

Case 2

goal

goal goalimp

tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

preprocessgoal

Case 2

goal

goal goalimp

subgoal 1

Case 3

imp subgoal 2 goalimpimp
tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 2

tactic

preprocessgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 2

[], ,tactic

preprocessgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 2

[]
tactic

preprocessgoal

Case 4 (failure = empty list)

goal goalimp

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3 (w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3 (w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
our original goal our current proof

obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3 (w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
our original goal our current proof

obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3 (w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
apply (erule conjE)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
apply (erule conjE)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z) :thm
apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

[]

:thm
apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm
apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm
apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,](y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm
apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

apply (rule conjE, assumption)

sequential combinator that admits backtracking (= THEN)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 3

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

apply (rule conjE, assumption)

sequential combinator that admits backtracking (= THEN)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 4

�10

fun tactic :: thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 4

�10

fun tactic :: thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

inductsimpauto

succeedfail

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 4

�10

fun tactic :: thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

simp autoOR

THENinduct auto

REPEAT simp

inductsimpauto

succeedfail

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Tactics 4

�10

fun tactic :: thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

simp autoOR

THENinduct auto

REPEAT simp

inductsimpauto

succeedfail DEMO!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

done

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Dynamic (Induct)

Auto

IsSolved

apply (induct)

apply (auto)

apply (induct xs)

apply (auto)

apply (induct xs rule: Demo.sep.induct)
apply (auto)

done

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Try_Hard: the default strategy

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

16 percentage point performance
improvement compared to sledgehammer

PaMpeR: Proof Method Recommendation

but the search space explodes

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

preparation phase

recommendation phase

How does
PaMpeR work?

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

Archive of Formal Proofs (https://www.isa-afp.org)

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

large proof corpora

AFP and standard library

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

preparation phase

recommendation phase

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

proof method
recommendation

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

preprocess

decision tree construction

feature vector

proof method
recommendation

lookup

preparation phase

recommendation phase fast feature extractor

? proof
state

proof
engineer

How does
PaMpeR work?

full feature extractor

6021 CPU hours

108 assertions

:: (tactic_name, [bool])

database (425334 data points)

large proof corpora

AFP and standard library

?

ITP2018 review

?
anonymous

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review
Proof Method Recommendation, PaMpeR!

?
anonymous

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various
approaches proposed in the paper.

?
anonymous

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements….

ITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various
approaches proposed in the paper.

?
anonymous

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements….

ITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various
approaches proposed in the paper.

?
anonymous

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

New users of Isabelle are facing many
challenges from

- writing their first definitions,
- stating suitable theorem statements….

ITP2018 review
Proof Method Recommendation, PaMpeR!

I have doubts about various
approaches proposed in the paper.

?
anonymous

reviewer

Proof Goal Transformer, PGT!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

PGT

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

PGT

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

PGT

tactic / sub-tool

proof goal context

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proof for the original goal,
and auxiliary lemma

optimal for proof automation

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL with PGT

PGT strategy

proof goal sub-optimal
for proof automation

context

proof for the original goal,
and auxiliary lemma

optimal for proof automation

proved theorem /
subgoals / message

PGT

tactic / sub-tool

proof goal context

DEMO!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

Success story
PSL can find how to apply
induction for easy problems.

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Success story
PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Success story
PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Success story
PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Success story
PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

ASE2018

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Success story
PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

CADE2017

ASE2018

CICM2018
(best system award)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL can find how to apply
induction for easy problems.

Too good to be true?

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL can find how to apply
induction for easy problems.

Too good to be true?

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL can find how to apply
induction for easy problems.

Too good to be true?

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL can find how to apply
induction for easy problems.

Too good to be true?

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

Recommend how to
apply induction without

completing a proof.

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

PSL can find how to apply
induction for easy problems.

Too good to be true?

but PaMpeR does
 not recommend

arguments for pr
oof methods

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

only if PSL compl
etes a proof searc

h

only if PSL with P
GT completes a

proof search

Recommend how to
apply induction without

completing a proof.
MeLoId: Machine

Learning Induction

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML algorithm
Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML algorithmbig data
Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML algorithmbig data abstract
notion

Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML algorithmbig data abstract
notion

Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML algorithmbig data abstract
notion

Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?q=cat&t=ffab&iar=images&iax=images&ia=images

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

ML for Inductive Theorem Proving
the BAD

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism type class

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

Higher-Order functions

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

lambda abstraction

Higher-Order functions

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

lambda abstraction

concise formula that can cover
many concrete casesHigher-Order functions

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

lambda abstraction

concise formula that can cover
many concrete casesHigher-Order functions

different proof for general case

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- many concrete cases

ML for Inductive Theorem Proving
the BAD

<- one abstract representation

lo
gi

c <- abstraction using expressive logic

M
L

polymorphism

universal quantifier

type class

lambda abstraction

concise formula that can cover
many concrete casesHigher-Order functions

different proof for general case

A small data set is not a failure
 but an achievement!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

M
L

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

M
L

<- pros: good at ambiguity (heuristics)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Grand Challenge: Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

M
L

<- pros: good at ambiguity (heuristics)

<- cons: bad at reasoning & abstraction

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://cbmm.mit.edu/video/power-self-learning-systems

https://cbmm.mit.edu/video/power-self-learning-systems

https://cbmm.mit.edu/video/power-self-learning-systems

Abstract conceptsといえば

https://cbmm.mit.edu/video/power-self-learning-systems

Abstract conceptsといえば

論理でしょう。

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

lo
gi

c abstraction using
another logic (LiFtEr)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

lo
gi

c <- pros: good at rigorous abstractionabstraction using
another logic (LiFtEr)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

lo
gi

c <- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

Logic about Proofs to Abstract Abstraction

<- small dataset about
 different domains

<- one abstract representation

M
L

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- even more abstract

lo
gi

c <- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

Big Picture

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

M
L

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

<- pros: good at ambiguity (heuristics)M
L

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Li
Ft

Er
 1

<- pros: good at ambiguity (heuristics)M
L

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3 具体例?

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

conjunction

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

conjunction

variable for auxiliary lemmas

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

conjunction

variable for auxiliary lemmas

variable for terms

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

existential quantifier

universal
quantifier

conjunction

variable for auxiliary lemmas

variable for terms

variable for term occurrences

variable for natural numbers

implication

Example Assertion in LiFtEr (in Abstract Syntax)
https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)
True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

first

first

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

True for xs (n = 1)!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

first

first

second

second

r1

(r1 = itrev.induct)

t1

(t1 = itrev)

to1

(to1 = itrev)

t2

(t2 = xs and ys)

to2

(to2 = xs and ys)

True! r1 (= itrev.induct) is a lemma about to1 (= itrev).

True for xs (n = 1)!

True for ys (n = 2)!

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

the same LiFtEr assertion

new types ->

the same LiFtEr assertion

new types ->

new constants ->

the same LiFtEr assertion

new types ->

new constants ->

new lemma ->
a model proof ->

the same LiFtEr assertion

new types ->

new constants ->

new lemma ->
a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

a model proof ->

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

new types ->

new constants ->

new lemma ->

first

first

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

True for is1 (n -> 1)!

new types ->

new constants ->

new lemma ->

first

first

second

second

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

True for is1 (n -> 1)!

True for ys (n -> 2)!

new types ->

new constants ->

new lemma ->

first

first

second

second

r1

(r1 = exec.induct)

t1

(t1 = exec)

to1

(to1 = exec)

t2

(t2 = is1, s, and stk)

to2

(to2 = is1, s, and stk)

third

third

a model proof ->

True! r1 (= exec.induct) is a lemma about to1 (= exec).

True for is1 (n -> 1)!

True for ys (n -> 2)!
True for stk (n -> 3)!

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

Li
Ft

Er
 1

<- pros: good at ambiguity (heuristics)M
L

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T]

Big Picture
Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

<- pros: good at rigorous abstraction

<- cons: bad at ambiguity (heuristics)

abstraction using
another logic (LiFtEr)

lo
gi

c <- abstraction using expressive logic

<- many concrete cases

<- small dataset about
 different domains

<- one abstract representation

Li
Ft

Er
 1

<- pros: good at ambiguity (heuristics)M
L

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

Li
Ft

Er
 1

Li
Ft

Er
 2

Li
Ft

Er
 3

<- simple representation[]: bool list[T,F,T], [T,T,T], [F,T,T] WIP
Big Picture

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

http://aitp-conference.org/2019/

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Feature extractor?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

[…,1,…,1,…0,…,1,…0,…]

10th 27th 32nd 58th 93rd

resulting feature vector:

