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Try_Hard: the default strategy

strategy Basic =
  Ors [
       Auto_Solve,
       Blast_Solve,
       FF_Solve,
       Thens [IntroClasses, Auto_Solve],
       Thens [Transfer, Auto_Solve],
       Thens [Normalization, IsSolved],
       Thens [DInduct, Auto_Solve],
       Thens [Hammer, IsSolved],
       Thens [DCases, Auto_Solve],
       Thens [DCoinduction, Auto_Solve],
       Thens [Auto, RepeatN(Hammer), IsSolved],
       Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
        Thens [DInductTac, Auto_Solve],
        Thens [DCaseTac, Auto_Solve],
        Thens [Subgoal, Advanced],
        Thens [DCaseTac, Solve_Many],
        Thens [DInductTac, Solve_Many] ]

16 percentage point performance  
improvement compared to sledgehammer

PaMpeR: Proof Method Recommendation

but the search space explodes
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automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

assertion 10: the context has a related recursive simplification rule?

Feature extractor?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?
assertion 93: if the goal has a term of type “real”?

assertion 58: the context has a constant defined with the “fun” keyword?

[…,1,…,1,…0,…,1,…0,…]

10th 27th 32nd 58th 93rd

resulting feature vector:


