https://twitter.com/YutakangJ

Al for Isabelle/HOL

Yutaka Nagashima

University of Innsbruck
Czech Technical University

CZECH INSTITUTE yutakang_jp

OF INFORMATICS @YutakangJ
ROBOTICS AND

CYBERNETICS

CTU IN PRAGUE

https://github.com/data61/PSL/slide/2019_proof_summit.pdf
https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

Al for Isabelle/HOL

Yutaka Nagashima

University of Innsbruck
Czech Technical University

CZECH INSTITUTE yutakang_jp

OF INFORMATICS @YutakangJ
ROBOTICS AND

CYBERNETICS

CTU IN PRAGUE

https://github.com/data61/PSL/slide/2019_proof_summit.pdf
https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “

| ata61/PSL/inde/201?rps.pdf
O

N

=

v

: .
(Gr -l4)
Security. Performance. Proof.

S TyRT——— http://www.cse.unsw.edu.au/~kleing/

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “
+ pre-PhD

ata61/PSL/slide/201 ?rps.pdf
T 0[

el

(@214

Security. Performance. Proof.

- sikpsdaoromiimsismdaAs s s cssnc ssinss—— yttpr//www.cse.unsw.edu.au/~kleing/

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “
+ pre-PhD

ata61/PSL/slide/201 ?rps.pdf
T 0[

el

(@214

Security. Performance. Proof.

- sikpsdaoromiimsismdaAs s s cssnc ssinss—— yttpr//www.cse.unsw.edu.au/~kleing/

* PhD in
or theorem proving

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “
+ pre-PhD

g2

el

ata61/PSL/slide/201 ?rops.pdf
S L

(@214

4 . Security. Performance. Proof.
s saizs—— ttp://www.cse.unsw.edu.au/~kleing/

2017 ~ 2018

with Prof. Cezary Kaliszyk

http://cl-informatik.uibk.ac.at/users/cek/

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “
+ pre-PhD

ata61/PSL/slide/201 ?rps.pdf

o)

(@:2l4

. Security. Performance. Proof.
http://www.cse.unsw.edu.au/~kleing/

2018 ~ 2020

with Dr. Josef Urban

_ http://aidreason.org/members.html

https://twitter.com/YutakangdJ https://githu

2013 ~ 2017

with Dr. Gerwin Klein “
+ pre-PhD

2017 ~ 2018

2020 ~ 2021?
with Prof. Cezary Kaliszyk

ata61/PSL/slide/201 ?rps.pdf
TR 0[

ol

(@:2l4

. Security. Performance. Proof.
s saizs—— ttp://www.cse.unsw.edu.au/~kleing/

2018 ~ 2020

with Dr. Josef Urban -

_ http://aidreason.org/members.html

https://twitter.com/Yutakangd = - https://github

2013 ~ 2017

with Dr. Gerwin Klein

data61/PSL/slide/201 ?rps.pdf
e e\\e O

pre-PhD

ference on Artificial Intelligence and Theorem Proving
- - » ALTP 2019

.

April 7-12#9019°Ok:

Registration is now closed.

Background http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al
and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP conference
is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

Topics

Al and big-data methods in theorem proving and mathematics
Collaboration between automated and interactive theorem proving
Common-sense reasoning and reasoning in science

Alignment and joint processing of formal, semi-formal, and informal libraries

Methods for large-scale computer understanding of mathematics and science
Combinations of linguistic/learning-based and semantic/reasoning methods

https://twitter.com/Yutakangd = - https://github

2013 ~ 2017

with Dr. Gerwin Klein

data61/PSL/slide/201 ?rps.pdf
e e\\e O

pre-PhD

ference on Artificial Intelligence and Theorem Proving
s . AIT[_’ 2019
April 7-1272019) Obicen

Registration is now closed.

Background http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al
and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP confere
is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

Topics

Al and big-data methods in theorem proving and mathematics
Collaboration between automated and interactive theorem proving
Common-sense reasoning and reasoning in science

Alignment and joint processing of formal, semi-formal, and informal libraries

Methods for large-scale computer understanding of mathematics and science
Combinations of linguistic/learning-based and semantic/reasoning methods

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

ML (Poly/ML)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

Meta-logic
ML (Poly/ML)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

HOL
Meta-logic
ML (Poly/ML)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

|sar

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

PIDE / jEdit
l I\/Ieta Iog|c o
- I\/IL

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

|lsabelle/HOL architecture

L)
l I\/Ieta Iog|c o
ML (PolyML)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Isabelle/HOL architecture

L")
- I\/Ieta Iog|c

You can access all the layers!

)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Isabelle/HOL architecture

m They come all together!

PIDE / jEdit
Sar o
HOL

HOL

)

Meta-logic

ML (Poly/ML)
"ML (Poly/ML) S —

You can access all the layers!

)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with

Isabelle/HOL

tactic / proof method

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

error-message
subgoals| | no sub-goal!

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

tactic / proof method

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github. com/data61/PSL/sI|de/2019 _ps.pdf

Interactive theorem proving with
Isabelle/HOL

__A

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

Interacti

b.com/data61/PSL/slide/2019 ps.pdf

C g with
OL

sore
Isabelle

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

Interacti

b.com/data61/PSL/slide/2019 ps.pdf

C g with
OL

sore
Isabelle

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

Interacti

b.com/data61/PSL/slide/2019 ps.pdf

eorem g with
|Isabelle/HOL
proofgoa I|H||
tactic / proof method

=1 093

orror-me
It's blatantly clear
You stupid machine, that what m
I tell you 1is true
(Michael Norrish)

T

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

Interacti

b.com/data61/PSL/slide/2019 ps.pdf

eorem g with
|Isabelle/HOL
preofgoal| |context

Sage

It's blatantly clear

You stupid machine, that what m
I tell you 1is true
(Michael Norrish)

T

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://github.com/data61/PSL/slide/2019_ps.pdf
Example proof at Data61

lemma performPageTableInvocationUnmap_ccorres:
"ccorres (K (K \<bottom>) \<currency> dc) (liftxf errstate id (K ()) ret__unsigned_long_")
(invs' and cte_wp_at' (diminished' (ArchObjectCap cap) \<circ> cteCap) ctSlot
and (\<lambda>_. isPageTableCap cap))
(UNIV \<inter> \<lbrace>ccap_relation (ArchObjectCap cap) \<acute>cap\<rbrace> \<inter> \<lbrace>\<acute>ctSlof1
[]
(LiftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"
apply (simp only: 1iftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit 1ift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/sel. 4/sel 4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
= (\<lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")

apply (rule ccorres_Cond_rhs)
apply (simp add: to_bool_def)
apply (rule ccorres_rhs_assoc)+
apply csymbr
apply csymbr
apply csymbr
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

Example proof at Data61

lemma performPageTablelp
“ccorres (K (K)"

" (LiftE

https://github.com/data61/PSL/slide/2019_ps.pdf

pcationUnmap_ccorres:
R \<currency> dc) "

(diminishe#™

(performPageTableInvocation (PageTableUnmap cap ctSlot)))

(Call performPageTableInvocationUnmap_'proc)"

apply (simp only: 1iftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit 1ift: cap_' ctSlot_') taken from:

apply csymbr https://github.com/sel. 4/sel 4

apply (simp del: Collect_const)

apply (rule ccorres_split_nothrow_novcg_dc)

apply (subgoal_tac "capPTMappedAddress cap

= (\<lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")

apply (rule ccorres_Cond_rhs)

apply
apply
apply
apply
apply
apply
apply

(simp add: to_bool_def)

(rule ccorres_rhs_assoc)+

csymbr

csymbr

csymbr

csymbr

(ctac add: unmapPageTable_ccorres)

apply csymbr

apply (simp add: storePTE_def swp_def)

apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

https://github.com/data61/PSL/slide/2019_ps.pdf

Example proof at Data61

lemma performPageTablelpmMocationUnmap_ccorres:
"ccorres (K (K) R \<currency> dc)_k

" (LiftE

(diminishe

(performPageTableInvocation (PageTableUnmap cap ctSlot)))

(Call performPageTableInvocationUnmap_'proc)"

apply (simp only: 1iftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit 1ift: cap_' ctSlot_') taken from:

apply csymbr https://github.com/sel. 4/sel 4

apply (simp del: Collect_const)

apply (rule ccorres_split_nothrow_novcg_dc)

apply (subgoal_tac "capPTMappedAddress cap

= (\<lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")

apply (rule ccorres_Cond_rhs)

apply
apply
apply
apply
apply
apply
apply

(simp add: to_bool_def)

(rule ccorres_rhs_assoc)+

csymbr

csymbr

csymbr

csymbr

(ctac add: unmapPageTable_ccorres)

apply csymbr

apply (simp add: storePTE_def swp_def)

apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

https://github.com/data61/PSL/slide/2019_ps.pdf
Example proof at Data61

lemma performPageTablelps

gocationUnmap_ccorres:
¥ \<currency> dc)_k

“ccorres (K (K Mo
: (diminishe

T (LiftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"
apply (simp only: 1iftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit 1ift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/sel. 4/sel 4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap

= (\<lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")
ccorres_Cond_rhs)
p add: to_bool_def)
ccorres_rhs_assoc)+

r

i
ply

apply csymbr

ymbr

apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

https://github.com/data61/PSL/slide/2019_ps.pdf
Example proof at Data61

lemma performPageTablelgmocationUnmap_ccorres:
"ccorres (K (K',m='”

\<currency> dc)_k

(diminishe

NZABDNERELGD...7?
EDlChUsB K. ANTHIBE,

apply (rule ccorres_gen_asm)

apply (cinit lift: cap_' ctSlot_')

apply csymbr
apply (simp del: Collect_const)
apply (rule ccorres_split_not
apply (subgoal_tac "capP
= (\ cp. if to_bool (cap rPpeu— .
(:::::>en Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
€lse None) (cap_page_table_cap_lift capa)")

ccorres_Cond_rhs)
p add: to_bool_def)
ccorres_rhs_assoc)+

r

i
ply

apply csymbr

ymbr

apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

[goal] preproces>

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1 %
(gon) o (g0 o) (out]

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1 %:@t H
[goal] preproces> ([goalj E)> [goal]\ (principle of explosion)
’ [False] E> @

N\ J

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

=215

-
N)
[goal] preproces> [goal] [goal] principle of explosion
JTE;_}[[False] imp) @
@)
N _ /
N
/ Case 1 \

[new goal] imp [goal

\

\—

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

=215

-
N)
[goal] preproces> [goal] [goal] principle of explosion
=] [False] imp @
18
N7 - v
N
/" Case \ /" Case2

[new goal] imp [goal

Na

[wa]

\—

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 1

(% a / 4
> ~
[goalj preproces> [goal J Imp [QOGJJ (princip|e of explosion
Y
3 [Falsej imp) @
o _ J

/ Case 1 \ / Case 2 \

new goalj imp [goalj

{ ~ e
/ Case 3 \
J

[1]l subgoat 2 |[mp) o< imp) [goa

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 2

[goal] preproces> /[goalj @ [goal]\ th M

/ Case 1 \ / Case 2\
@ew goal] imp [goag \[goal] /

/ Case 3 \

==][) subgoal2 |[mp) cc[imp)goa)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 2

|
goal || preprocess goal | |imp) | goal] thl I l

J110€]

Case 1 Case 2

new goal || imp goal goal

Case 3

subgoal 1 | imp)| subgoal2 | imp imp goal

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 2

goal || preprocess goal | |imp) | goal

Case 4 (failure = empty list)

J110€]

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3

(WAX=>yAz=>2)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2)
=>

(WAX=>yAz=>2)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2)

== \
. W x=>yA z=>\zD \
our original goal ——+t— | our current proof
\ /

obligation

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

= \
our original goal —ﬁ@x ==Y A Z@ M our current oroof

obligation

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

= \
our original goal —ﬁ@x ==Y A Z@ M our current oroof

obligation

< apply (erule conjE) >

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

— \
g W Xx=>yA z=>\zD .
our original goal ——+t— | our current proof
\ /

obligation

< apply (erule conjE) >

(VAz=>w=>x=>2) |
=>
(WAX=>YyAz=>2) ,

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) _t
- \ u hl I I
our original goal —#'Wx ==Y A Z=>\ZD J\ our current proof
— e obligation
< apply (erule conjE) >
(VAz=>w=>x=>2) |]
=>
(WAX=>YyAz=>2) ,

apply (assumption) >

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

= \
our original goal —ﬁ@x ==Y A Z@ M our current oroof

obligation

< apply (erule conjE) >

(VAz=>w=>x=>2) |]
=>
(WAX=>YyAz=>2) ,

< apply (assumption) >

]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

= \
our original goal —ﬁ@x ==Y A Z@ M our current oroof

obligation
< apply (erule conjE) >
| back
(yAz=>w=>x=>2)]
=>
(WAX=>YyAz=>2) ,

< apply (assumption) >

]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

— \
g W Xx=>yA z=>\zD .
our original goal ——+t— | our current proof
\ /

obligation
< apply (erule conjE) >
. back
(VAz=>w=>x=>2) (WAX=>y=>2z2=>2)

=> —>
(WAX=>YyAz=>2) ? (WAX=>YyAz=>2)

< apply (assumption) >

]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

— \
g W Xx=>yA z=>\zD .
our original goal ——+t— | our current proof
\ /

obligation
< apply (erule conjE) >
. back
(VAz=>w=>x=>2) (WAX=>y=>2z2=>2)

=> —>
(WAX=>YyAz=>2) ? (WAX=>YyAz=>2)

< apply (assumption) >

]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ

https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3

(WAX=>YyANz=>2)

thm

— \
g W Xx=>yA z=>\zD .
our original goal ——+t— | our current proof
\ /

obligation

C

apply (erule conjE)

D

back

=>

(VAz=>w=>x=>2) |

(WAX=>YyAz=>2)

| (WAX=>y=>2z2=>2)

=>

? (WAX=>YyAz=>2)

apply (assumption)

D

[]++[t (WAX=>yAz=>2)]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
thm

=
(w/\x=>yAz=>z\
WA ZD

our original goal ———+»

our current pr u
Obl Qe ‘

< apply (erule conj S

3 3\0‘ a/

g y ((\‘O \\)
N qﬂeﬂwptlon) >

(WAX=>YyAz=>2)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3 (WAX=>yAz=>2) h
t m

— \
our original goal —r’Wx ==Y A Z=>\ZD our current pr u

(WAX=>YyAz=>2)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 4

goal :: thm | | tactic [goal 1:: thm y goal 2 :: thm y u _]

. Lazy
fun tactic :: thm ->[thm]

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 4

[goal ::thm] @[[goal 1:: thm], [goal 2 ::thm], ek]

 Lazy |

=

fun tactic :: thm ->[thm]

fail > succee>
auto simp induct >

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 4

auto >

[goal B thm] tactic >[[goal 1::thm], [goal 2 thm], s]
I :

fun tactic :: thm ->[thm]

fail > succee> simp > | OR » auto >

simp > induct >

REPEA> simp >

induct > | THEN > | auto »

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 4

[goal i thm] tactic >[[goal 1:: thm], [goal 2 thm], s]

fun tactic :: thm ->[thm]

fail > succee>

auto >

OR » auto >

Induct

simp

REPEA{> simp >

induct > | THEN > | auto »

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

C' Dynamic (Induct)

Ooooodboo

Auto

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

P

Oddoodboo

Auto

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N

& Dynamic (Induct))

QQ\‘!
L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

//_/_/uu\,/uu

Auto _)

OOOOOOQ -

>

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO)

OOOOOOQ .

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

P A A N W A N W A A

apply (at (auto) AUtO _)
v -
 \ f \ f'"\ f'"\ - \ /—"\ - \ ST
Ay. is filter y = map f (sep x xs) = sep (f x) (map f xs)

T Tesows

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO)

OOOOOOQ .

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

g;' IDynanuc Induct
apply (at (auto) AUtO

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x) = sep (f x) (map f x5)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc (Induct))

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) AUtO)

OOOOOOQ)

IsSoIved

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc (Induct))

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) AUtO)

OOOOOOQ)

IsSoIved

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

ggoaq
F

- ©

3

6°
« nanuc Induct ;)
QQQ\ ~o° \! j (. <)‘
1. map f (sep x []) = sep (f x) (map T [])

2. ANa xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) Auto)
S— — — — — — v —

1. Aa xs. T, et
map f (sep x xs) = sep (f x) (map f xs) — : :
map f (Sep X (a # XS)) = SEep (f X) (f a # map f Xs)llt' ®anns?

Q _ _ _ IsSo_Ived _)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc (Induct))

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) AUtO)

OOOOOOQ)

IsSoIved

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

/_\(\6\)0‘\6\)
99‘ \,\\ ynamic (Induct)
2

Ooooodboo

apply (at (auto) apply (auto) AUtO

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

oal
\9 ?
\)0‘\ *690 o/

OV av©
Qg_“‘\\,\\?namlc,"/o, *'uct))

OOOOOO%QO

apply (auto) apply (auto) AUtO ‘/oa

OOOOOOQ -

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

/_ 6\)0‘\6\)0
o 3 ¥ e hamic Ya ey UCt))
20 QQQ 1. Na. map f (sep . "O] - sep (f a) (map f [])

2. Na x. map T (sep a 4’3’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = _O, eba) (map T (x # y # zs))

apply (at (auto) apply (auto) AUtO "70(,0;

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ Qo’o
g_\“\d\\ hamica ingg 1UCt))

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) Od"o,)

OOOOOOQ)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ 600
g_\“\d\\ hamica ingg 1UCt))

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ’70(,01)

OOOOOmwww
IsSoIved)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ 600
g_\“\d\\ hamica ingg 1UCt))

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ’70(,01)

OOooomww»

IsSolved %/,e)

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Q
oo Wy,
RS ‘}namlc, Vi uct) \

Number of lines of commands 3"

[x])
C apply (induct xs rule: Demo.sep.1induct)
p—.

f (y # zs)) —
map f (x # y # zs))

)

- Ccy

OOooomww»

IsSolved %/,e)

apply auto

appWKl done

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Try_Hard: the default strategy

strategy Try Hard =

'Ors [Thens [Subgoal, Basic],
S Thens [DinductTac, Auto_Solve],
strategy Basic = | Thens [DCaseTac, Auto_Solve],
Ors [Thens [Subgoal, Advanced],
' Auto_Solve, Thens [DCaseTac, Solve_Many],
| Blast_Solve, Thens [DInductTac, Solve_Many]]
FF_Solve, | | - o

hens [IntroClasses, Auto_Solvel], *
ens {IranSfel_r’ A.utO_ISglvle], 16 percentage point performance
nens [Normalization, Is olved], improvement compared to sledgehammer
nens [Dinduct, Auto_Solve],
nens [Hammer, IsSolved],

nens ;:)Cases Auto_Solve], but the search space explodes'
nens [DCoinduction, Auto_Solve], , *

nens Auto RepeatN(Hammer), IsSolved], ‘
| 1eNs -DAUtO; IsSolved]] PaMpeR: Proof Method Recommendation

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

preparation phase

How does
PaMpeR work?

recommendation phase

preparation phase

large proof corpora

\/

AFP and standard library

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

STATISTICS

Archive of Formal Proofs (https://www.isa-afp.org)

Statistics
Number of Articles: 468

Number of Authors: 313

Home Number of lemmas: ~128,900
About Lines of Code: ~2,170,300
Submission
Updating Most used AFP articles:
Entries Name Used by ? articles
Using Entries 1. Cpllechons_ 15
2. List-Index 14

Search 3. Coinductive 12

preparation phase

large proof corpora

\/

AFP and standard library

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

full feature extractor

6021

<

CPU hours

108 assertions

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase

large proof corpora

\/

AFP and standard library

full feature extractor

database (425334 data points)

6021

<

CPU hours

—> v\ > (tactic_name, [bool])
V\ -
v

108 assertions

How does
PaMpeR work?

recommendation phase

proof
state

® O
proof
w ﬁ engineer

full feature extractor database (425334 data pOintS)

preparation phase

large proof corpora

\/

—> v\ > (tactic_name, [bool])
V\ -
v

* preprocess

<

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase

proof
state

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

]] e
recommendation phase fast feature extractor

proof
state

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

6021 |CPU hours

AFP and standard library

108 assertions

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase fast feature extractor feature vector

proof
state

—

® O
proof
w ﬁ engineer

preparation phase full feature extractor database (425334 data points)

large proof corpora

\/

S —) :
I q V\’ :: (tactic_name, [bool])
V\’
@ —

* preprocess

AFP and standard library 6021(CPU hours

How does A |
PaMpeR Work? o idemsmntr;econstructlon
o

recommendation phase fast feature extractor feature vector

proof
state

lookup
® O
proof
engineer proof method
‘ recommendation

preparation phase

database (425334 data points)

full feature extractor

large proof corpora

\/

AFP and standard library 6021

v .

—> v\ > (tactic_name, [bool])
V\ -

v

* preprocess

<

CPU hours

108 asse

How does
PaMpeR work?

+ decision tree construction

S EIT LT

recommendation phase

fast feature extractor

feature vector

0

lookup

a

proof I
state

® O
proof

w ﬁ engineer |

proof method
recommendation

]

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

anonymous
reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

[Proof Method Recommendation, PaMpeR!]

anonymous
reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

[Proof Method Recommendation, PaMpeR! ,

I have doubts about wvarious
approaches proposed in the paper.

anonymous
reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

[Proof Method Recommendation, PaMpeR!

I have doubts about wvarious
approaches proposed in the paper.

New users of Isabelle are facing many
challenges from

- writing their first definitions,

— stating suitable theorem statements...| ;350nymous

=

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

[Proof Method Recommendation, PaMpeR!

I have doubts about wvarious
approaches proposed in the paper.

New users of Isabelle are facing many
challenges from

- writing their first definitions,

— stating suitable theorem statements...| ;350nymous

=

reviewer

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ITP2018 review

[Proof Method Recommendation, PaMpeR!

I have doubts about wvarious
approaches proposed in the paper.

New users of Isabelle are facing many

challenges from ~
- writing their first definitions,
— stating suitable theorem statements...| ;350nymous
reviewer

Proof Goal Transformer, PGT!]

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

proof goal sub-optimal
for proof automation

PGT strategy

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy

tactic / sub-

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy

tactic / sub-

proved theorem /
subgoals / message

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy

tactic / sub-

proof for the original goal, proved theorem /
and auxiliary lemma subgoals / message

optimal for proof automation

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

PSL with PGT

proof goal sub-optimal roof aoal
for proof automation
PGT strategy

tactic / sub-
d

proof for the original goal,
and auxiliary lemma
optimal for proof automation

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

goal (1 subgoal):
1. 1itrev xs [] =

rev Xs

=27 1] [‘\\

Conjecture
Slele O‘Qé‘o

Fastforce

¥
-

I xéé*

C

chkcheck

T

Dind

i?i
%

rgoal (1 subgoal): | apply (subgoal tac

1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
‘ /111[‘\\
Conjecture
SOOODC
Fastforce
v v (5 Y. .y
Q'O Qi
(chkcheck

T ‘?‘

Dind Dind

goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
: 7772 I 1 \\3s= (

goal (2 subgoals):
Conjecture 1. (/AANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs
/ + ¥ 2. ANil. itrev xs Nil = rev xs @ Nil
QOC QCS QOO bUU
Fastforce
OO YOO
I I I ’nnlnn’ *enns?
(Quickcheck

N N A 4

Dind Dind

goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
: 7772 I 1 \\3s= (

goal (2 subgoals):
Conjecture 1. (ANil. itrev xs Nil = rev xs @ Nil) =

/ d + ¥ 2. /i\tNl:'Lelv. xist r[e]v =xsreNvilXS= rev xs @ Nil
T OO0 OTTO
Fastforce < %y fastfm‘f})
Y y é LA A
QYO O
(Quickcheck

N N A 4

Dind Dind

goal (1 subgoal)

: | apply (subgoal tac
itrev xs [] = rev xs "ANil. i '
777 I 1 \\3 5= (

1.
goal (2 subgoals):
Conjecture Lorew xs 11 -
SOOOLTE
FaStforCe < apply fastforc
5T
=hg=%
(chkcheck

itrev xs Nil =

rev xs @ Nil")

1. (ANil. itrev xs Nil =

rev Xs

itrev xs Nil =

rev xs @ Nil) =

rev xs @ Nil

goal (1 subgoal):

Dind

Dind

élﬁ /\N11 1trev xs Nil = rev xs @ Nil
g*) Voo ? v
JAN

goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
: 77 1 1 \\ s~ (

goal (2 subgoals):
Conjecture 1. (ANil. itrev xs Nil = rev xs @ Nil) =

itrev xs [] = rev xs
/ + ¥ 2. ANil. itrev xs Nil = rev xs @ Nil
QOO d QO

Fastforce < 2%y fastf""ckl)

* * goal (1 subgoal):
O ¢ ‘ é élﬁ /\N11 itrev xs Nil = rev xs @ Nil

[
(chkcheck
goal (1 subgoal):

é * ¢ 1. ANil. itrev xs Nil = rev xs @ Nil]

Dind Dind

goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
: 77 1 1 \\ s~ (

goal (2 subgoals):
Conjecture 1. (ANil. itrev xs Nil = rev xs @ Nil) =

itrev xs [] = rev xs
/ + ¥ 2. ANil. itrev xs Nil = rev xs @ Nil
QOO d QO

Fastforce < 2%y fastf""ckl)

* * goal (1 subgoal):
O ¢ ‘ é élﬁ /\N11 itrev xs Nil = rev xs @ Nil

[
(chkcheck
goal (1 subgoal):

é * ¢ 1. ANil. itrev xs Nil = rev xs @ Nil]

apply (induct xs)

apply auto
Dina Dina < done

1

itrev xs Nil = rev xs @ Nil")

Conjecture

se[alelele

2.

goal (1 subgoal): apply (subgoal tac
. 1trev xs [] = rev xs "ANil. i '
‘ 777 I 1 \\3 5= (

goal (2 subgoals):
(ANil. itrev xs Nil = rev xs @ Nil) =

itrev xs [] = rev xs
ANil.

itrev xs Nil = rev xs @ Nil

Fastforce < apply

I
fastforclxl)

* * goal (1 subgoal):
O ¢ ‘ é élﬁ /\N11 1trev xs Nil = rev xs @ Nil

(chkcheck
* goal (1 subgoal):
? * ¢ 1. ANil. itrev xs Nil = rev xs @ Nil
//\\ apply (induct xs)
apply auto
Dind Dind < done

theorem i1trev ?xs []

= rev ?xs]

goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
- 77 I 1| \N\SS f _

goal (2 subgoals):
Conjecture 1. (/\Nil itrev xs Nil = rev xs @ Nil) =

QC OOOC)

2. ANil. itrev xs Nil = rev xs @ Nil
~ . 1€ .. _ /(:anrﬂ Y 'FQC'I"FnrrlD\

Number of lines of commands: 5
_apply (subgoal tac "ANil. itrev xs Nil = rev xs @ Nil") i1
apply fastforce

(apply (induct xs)

apply auto
done | | Nil\
//\\ apply (induct xs)
apply auto
Dind Dind < done

theorem 1trev ?xs [] = rev ?xs]

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply
induction for easy problems.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply M
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply M
induction for easy problems.

PaMpeR recommends which AsE‘ZO'\B
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Success story

PSL can find how to apply
induction for easy problems.

PaMpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019 ps.pdf

Too good to be true?

PSL can find how to apply
induction for easy problems.

e

PaMpeR recommends which /
proof methods to use. v

PGT produces useful auxiliary
lemmas.

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Too good to be true?

PSL can find how to apply

induction for 223 roof search

PaMpeR recommends which /
proof methods to use. v

PGT produces useful auxiliary

VAL Pé?_"m "pGT completes d
proof search

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Too good to be true?

PSL can find how to apply

nduction of eaiipletds arproof search

for proof methods

PGT produces useful auxiliary

VAL Pé?_"m SPGT completes a
proof search

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Too good to be true?

PSL can find how to apply

induction for 223 roof search

Recommend how to
lermmas ‘ apply indu_ction without
only if PSL wit PGT comPl completing a proof.

proof search

PGT produces useful auxiliar

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Too good to be true?

if PSL completes’a proof search

Recommend how to
apply induction without
L with PGT compl completing a proof.

ly if PS
only oroof search MeLold: Machine

Learning Induction

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Introduction to Machine
Learning in 10 seconds

https://duckduckgo.com/?qg=cat&t=ffab&iar=images&iax=images&ia=images

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Introduction to Machine
Learning in 10 seconds

big data

https://duckduckgo.com/?qg=cat&t=ffab&iar=images&iax=images&ia=images

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Introduction to Machine
Learning in 10 seconds

abstract
notion

big data

https://duckduckgo.com/?qg=cat&t=ffab&iar=images&iax=images&ia=images

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

notion

@ cat Q » =

Web Images Videos News Meanings Stock Definition

Introduction to Machine
Learning in 10 seconds

i Japan v Safe Search: Strict v AllSizes v AllTypes v AllLayouts v AllColors v X

https://duckduckgo.com/?qg=cat&t=ffab&iar=images&iax=images&ia=images

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

notion

) Japan v Safe Search: Strict + AllSizes v AllTypes v AllLayouts v AllColors v X

Introduction to Machine
Learning in 10 seconds

I

@ cat Q

Web Images Videos News Meanings Stock Definition

https://duckduckgo.com/?qg=cat&t=ffab&iar=images&iax=images&ia=images

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev xs ys = rev xs @ ys"

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev ["'a'',"'b"'] [] =rev ["'@a"","'b""'] @ []" by auto
lemma "itrev [X,y, z] [] = rev [X,y,Zz] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev xs ys = rev xs @ ys"

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev ["'a'',"'b"'] [] =rev ["'@a"","'b""'] @ []" by auto
lemma "itrev [X,y, z] [] = rev [X,y,Zz] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev xs ys = rev xs @ ys"

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev ["'a'',"'b"'] [] =rev ["'@a"","'b""'] @ []" by auto
lemma "itrev [X,y, z] [] = rev [X,y,Zz] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev Xs ys = rev xs @ ys <~ owne abstract mgr@.saw&&l&iom

£

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto | |)

lemma "itrev [''a'',''b'']1 [1 =rev [''a'',''b''] @ []" by auto | <~ Mahy concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,Zz] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev xs ys = rev xs @ ys" by auto |.- cue abstrack representation

£

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto | |)

lemma "itrev [''a'',''b''] [1 =rev [''a'',''b''] @ [1" by auto | <~ ™Maly concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma "itrev Xs ys = rev Xs @ ys bymto <~ ohe abstract representaktion

Failed to apply proof methodn:
goal (1 subgoal):

% l. 1trev Xs ys = rev Xs @ ys

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',"'b''] []1 =rev [''a'',"'b''] @ [1" by auto | <~ Mahy conhcrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemn_la 1trev Xs ys = fey A @ ys bymto <~ owne abstract representation
by(induct xs ys rule:"itrev.induct") duto Failed to apply proof methodo:
goal (1 subgoal):

% l. 1trev Xs ys = rev Xs @ ys

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',"'b''] []1 =rev [''a'',"'b''] @ [1" by auto | <~ Mahy conhcrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

lemma 1trev Xxs ys = fey A @ ys <~ owne abskract representation
by(induct xs ys rule:"1itrev.induct") auto

7

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto | |)

lemma "itrev [''a'',''b'']1 [1 =rev [''a'',''b''] @ []" by auto | <~ Mahy concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,Zz] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

1em|T|a "1trev xs ys = fey A @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',''b'']1 [] =rev [''a'',''b''] @ []" by auto |<~ ™Many concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

polymorphism

1em"_13 "1trev xs ys = rev xs @ ys’ <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',''b''] [1 =rev [''a'',"'b''] @ []" by auto | <~ ™Manhy concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

polymorphism

lemn:‘a "itrev XS yS = F?V XS @ yS" <= one &bS&T‘&tE fEﬁ.F‘V@SQm&&Z&iOM
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',''b''] [1 =rev [''a'',''b''] @ [1" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

polymorphism | | type class
universal quantifier

lem"_‘a "1trev xs ys = rev xs @ ys” <~ one abstract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto | ,

lemma "itrev [''a'',''b''] [] = rev [''a'',"'b''] @ [1" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

Higher-Order functions
polymorphism | | type class
universal quantifier

lem"_‘a "1trev xs ys = rev xs @ ys” <~ one abstract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto | ,

lemma "itrev [''a'',''b''] [] = rev [''a'',"'b''] @ [1" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

Higher-Order functions
polymorphism | | type class

universal quantifier

lambda abstraction

lem“_‘a "itrev xs ys = fey A @ ys” <~ one absktract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto ,

lemma "itrev [''a'',''b''] [1 =rev [''a'',"'b''] @ [1" by auto | <~ ™Manhy concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

concise formula that can cover
Higher-Order functions many concrete cases
polymorphism | | type class

universal quantifier

lambda abstraction

lemma "itrev xs ys = rev xs @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |

lemma “itrev [''a'',''b''] [l = rev [''a'',''b''] @ [1" by auto | <~ Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

concise formula that can cover
many concrete cases

different proof for general case

Higher-Order functions
polymorphism | | type class

universal quantifier

lambda abstraction

lemma "itrev xs ys = rev xs @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |

lemma “itrev [''a'',''b''] [l = rev [''a'',''b''] @ [1" by auto | <~ Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

ML for Inductive Theorem Proving
the BAD

concise formula that can cover
many concrete cases

different proof for general case

Higher-Order functions
polymorphism | | type class

universal quantifier

A small data set is not a failure
lambda abstraction but an achievement!

lemma "itrev xs ys = rev xs @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto ,

lemma "itrev [''a'',''b''] [1 =rev [''a'',"'b''] @ [1" by auto | <~ ™Manhy concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

{

%emma "ltrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive Llogic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma “itrev [''a'',''b''] [1 =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

1em|T|a "1trev xs ys = fey A @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

é ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |)

lemma "itrev [''a'',''b'']1 [] =rev [''a'',''b''] @ []" by auto |<~ ™Many concrete cases
lemma "itrev [X,y, z] [] = rev [X,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

temma
by(induction rule:

"star r x y = star ry z =— star r x z"
star.induct) (auto simp: step)

<= small dataset about
different domains

lemma "exec (1sl @ 1s2) s stk =
it exec is2 s (exec isl s stk)"
by(1nduct isl s stk rule:exec.induct) auto

1em"_‘a "1trev xs ys = rev xs @ ys” <~ onhe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

* ﬁ <~ abstraction using expressive Llogic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto

lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto |

lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

.

emma "star r X y = star r y z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

AT/

lemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (1induct 1s1 s stk rule:exec.induct) auto

o

%emma "ltrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

* ﬁ <~ abstraction using expressive Llogic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma “itrev [''a'',''b''] [1 =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

.

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

A

-

emma "itrev xs ys = rev xs @ ys" <~ one absktract representation
y(induct xs ys rule:"itrev.induct") auto

* ﬁ <~ abskraction using expressi,ve Logi,c

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

.

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

<= pros: good at ambiguity (heuristics)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

A

-

emma "itrev xs ys = rev xs @ ys" <~ one absktract representation
y(induct xs ys rule:"itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Grand Challenge: Abstract Abstraction

Abstract notion of “good” application of induction. |EEEREZARIAATIVEL Y.
Heuristics that are valid across problem domains.
<= pros: good at ambiguity (heuristics)

é <= cons: bad at reasoning & abstraction ‘

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Many key challenges remain

Unsupervised Learning

CENTER FOR

Memory and one-shot learning = o I%/Iri?: Q;

Machines

Imagination-based Planning with

Generative Models

March 20,2019
Learning Abstract Concepts

Transfer Learning The Power of

Language understanding

https://cbmm.mit.edu/video/power-self-learning-systems

Many key challenges remain

Unsupervised Learning

CENTER FOR
Brains
Minds+
Machines

Memory and one-shot learning

Imagination-based Planni
Generative M

Transfer Learning

Language understanding

https://cbmm.mit.edu/video/power-self-learning-systems

Many key challenges remain

Unsupervised Learning
CENTER FOR

Memory and one-shot learning = o I%/Iri?: Q;

Machines

Imagination-based Planning with
Generative Mg

March 20,2019

Abstract concepts & W\ Z (X o e Povero

https://cbmm.mit.edu/video/power-self-learning-systems

Many key challenges remain

Unsupervised Learning

CENTER FOR

Memory and one-shot learning | Eﬂriilg : +

Machines

Imagination-based Planningwith

Generative Models

The Power of
Self T

https://cbmm.mit.edu/video/power-self-learning-systems

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. [EERACARILSIEIALIENe:
Heuristics that are valid across problem domains.

.

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

A

v

emma "itrev xs ys = rev xs @ ys" <~ one absktract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive Llogic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

~%emma "star r x y = star ry z = star r x z"

by(induction rule: star.induct) (auto simp: step)

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

A

-

emma "itrev xs ys = rev xs @ ys" <~ one absktract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

abstraction using
another logic (LiFtEr)

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

ﬁ abstraction using <= pros: good at rigorous a\bs&rac&ov*

another logic (LiFtEr)

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

ﬁ abstraction using <= pros: good at rigorous a\bs&rac&ov*

another logic (LIFEET) - cons bad ok ambiquity (heurisfzias)‘

~%emma "star r x y = star ry z = star r x z"

by(induction rule: star.induct) (auto simp: step)

lemma "exec (isl @ 1s2) s stk = <= small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
Logic about Proofs to Abstract Abstraction

Abstract notion of “good” application of induction. EEERAAEIACIIRLe.
Heuristics that are valid across problem domains.

ﬁ abstraction using <= pros: good at rigorous a\bsfsrac&ov*

another logic (LiFtEr)

eamma "star r x y = star ry z =— star r x z"
by(induction rule: star.induct) (auto simp: step)

=\

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Big Picture

abstraction using <= pros: good at rigorous &bs&racfsim«*
another logic (LiFtEr) ..

~%emma "star r x y = star ry z = star r x z"
by(induction rule: star.induct) (auto simp: step)

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[]! []! []]: bOOI IiSt <= sémpte represem&aﬂan

abstraction using <= pros: good at rigorous &bs&rac&mm‘
another logic (LiFtEr) .. o

~%emma "star r x y = star ry z = star r x z"
by(induction rule: star.induct) (auto simp: step)

Llemma "exec (1sl @ 1s2) s stk = <~ small dataset about
exec is2 s (exec isl s stk)" different domains
oy (induct 1sl s stk rule:exec.induct) auto

-

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

]! []! []]: bOOI |iSt <= smeLe represem&a&ion
<= pros: good at rigorous abs&rac&iam‘

abstraction using
another logic (LiFtEr)

mma "star r X y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

]! []! []]: bOOI IiSt <= sémpte represem&aﬂan
<= pros: good at rigorous abs?:rac&iom‘

abstraction using
another logic (LiFtEr)

mma "star r X y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[-r']! []! []]: bOOI IiSt <= smeLe. represem&a&ion

<~ pros: good ok rigorous abs&rac&iam‘

abstraction using
another logic (LiFtEr)

mma "star r X y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!]! []! []]: bOOI IiSt <= smeLe represem&aﬂon

abstraction using <= pros: good at rigorous &bs&rac&mm‘

another logic (LiFtEr)

mma "star r X y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!]! []! []]: bOOI IiSt <= smeLe. represem&a&ion

abstraction using <= pros: good at rigorous abs&rac&iam‘

another logic (LiFtEr)

mma "star r x y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! []! []]: bOOI IiSt <= smeLe represem&aﬂon

abstraction using <= pros: good at rigorous &bs&rac&mm‘

another logic (LiFtEr)

mma "star r x y = star ry z =— star r x z°"
by(induction rule: star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

Qemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! []! []]: bOOI IiSt <= smeLe. represem&a&ion

Abstraction using <= pros: good at rigorous abs&rac&iam‘
anocther logic (LiFEET) .. o

mma "star r
by(induction r

' — star ry z — star r x z"
1 star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!]! []]: bOOI IiSt <= smeLe. represem&a&ion

Abstraction using <= pros: good at rigorous abs&rac&iam‘
anocther logic (LiFEET) .. o

mma "star r
by(induction r

' — star ry z — star r x z"
1 star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!]! []]: bOOI IiSt <= smeLe. represem&a&ion
EEEF FE
by(induction r

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

Araction using <= pros: good at rigorous abs&rac&iam‘
other logic (LiFtEr) .. o

— star ry z =— star r x z"
star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!]! []]: bOOI IiSt <= smeLe. represem&a&ion
EEEF FE
by(induction r

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

Araction using <= pros: good at rigorous abs&rac&iam‘
other logic (LiFtEr) .. o

— star ry z =— star r x z"
star.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!]! []]: bOOI IiSt <= smeLe. represem&a&ion

mma "star r
by(induction r

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

~etion using <= pros: good at rigorous abs%rac&iam‘
er logic (LiFtEr) o

star ry z — star r x z"
ar.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! []]: bOOI IiSt <= smeLe. represem&a&ion

’ A-bion using <= pros: good at rigorous abs&rac&iam‘
er logic (LIFLET) e mriasciuekscbergeryrBirererier-blremppieaieoe

mma "star r star ry z — star r x z"
by(induction r ar.induct) (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s stk =
exec 1s2 s (exec 1sl s stk)"
y(induct 1sl s stk rule:exec.induct) auto

gemma "itrev xs ys = rev xs @ ys" <~ ohe abstract representotion
L by(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! []]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

Aaq <= pros: good at rigorous abs&rac&iam‘
(LiFEET) -

y z — star r x z"
t) (auto simp: step)

by(induction r ar.1in

<~ small dakaselt abouk
different domains

. stk)™"
.1nduct) auto

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1s
y(induct 1sl s stk rule:e
(.

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! [F!]]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

Aaq <= pros: good at rigorous abs&rac&iam‘
(LiFEET) -

y z — star r x z"
t) (auto simp: step)

by(induction r ar.1in

<~ small dakaselt abouk
different domains

. stk)™"
.1nduct) auto

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1s
y(induct 1sl s stk rule:e
(.

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! [F!]]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

<~ pros: good ok rigorous abs&rac&iam‘

z —> star r x z"

by(induction r ar.1in (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1s tk)"

y(induct 1sl s stk rule:e nduct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! [F!T!]]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

]

<= pros: good at rigorous abs%rac&iam‘
FEEY) o

z —> star r x z"

by(induction r ar.1in (auto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1s tk)"

y(induct 1sl s stk rule:e nduct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! [F!T!]]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

<~ pros: good ok rigorous abs&rac&iam‘

£r)

—> star r x z"

by(induction r ar.1in Jto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T!F!T]! [T!T!T]! [F!T!T]]: bOOI IiSt <= smeLe represam&a&éov\

’ || A
er Lo
mma "star r star

by(induction r ar.1in

<~ pros: good ok rigorous abs&rac&iam‘

£r)

—> star r x z"
Jto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu re

[[T I: [T T [F!-l]]: bOOI IiSt - simple representation

mma “star r
by(induction r

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

- M <~ pros: good at rigorous abs?:rac&iom‘
E'r) ,

er Lo

—> star r x z"
Jto simp: step)

star
ar.1in

<~ small dakaselt abouk
different domains

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains. Blg Plctu re

a

[[T I: [T T [F!-l]]: bOOI IiSt - simple representation

- M <~ pros: good at rigorous abs?:rac&iom‘
E'r) ,

er Lo

—> star r x z"
Jto simp: step)

mma "star r star
by(induction r ar.1in
lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1s

<~ small dakaselt abouk
different domains

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu e
ﬁ <= pros: good at ambiquity (heuristics) ‘

[[T I: [T T [F!-l]]: bOOI IiSt - simple representation

mma “star r
by(induction r

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

- M <~ pros: good at rigorous abs?:rac&iom‘
E'r) ,

er Lo

—> star r x z"
Jto simp: step)

star
ar.1in

<~ small dakaselt abouk
different domains

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu e
ﬁ <= pros: good at ambiquity (heuristics) ‘

[T I: [T T [F!-l]]: bOOI IiSt <= simple representation

~demma "star r
by(induction r

lemma "exec (1sl @ 1s2) s

- M <~ pros: good ot rigorous abs&rac&iam‘
£r)

er Lo

P D e !,4’5 ‘,' oo Rt o T e W B R e el

- small dakaset abouk

—> star r x z"
Jto simp: step)

star
ar.1in

| exec 1s2 s (exec 1is)" different domains
oy(induct 1sl s stk rule:e uct) auto
| %emma "itrev xs ys = rev xs @ ys” <~ one abstract rapresen&a&om
L by(induct xs ys rule:"itrev.induct") auto

<- abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [l = rev [1,2,3] @ []" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
N
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
_
4 r]l : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
_
4 r]l : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
A\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
_
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
A\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
_
4 rl : rule.
4 ¢1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
N\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

4 r]l : rule. True
_
4 rl : rule.
3 t1 : term. ‘
d tol : term_occurrence € tl1 : term
rl is_rule_of tol
N\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

Lmyiwo&mm
JEI rl : rule. True
N variable for auxiliary lemmas
4 r1 : rule.

3 ¢l : term. 4§ \variable for terms
4 tol : term_occurrence tl : +term
7“1 is_rule of tol é"‘“" variable for term occurrences
N M= conjunction
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
3 n : number. e variable for natural numbers
is_nth_argument_of ({02, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

imytiaa&éom
JEI rl : rule. True
N variable for auxiliary lemmas
4 r1 : rule.

3 ¢1 : term. - variable for terms
d tol : term_occurrence tl : +term
741 1S rule Of to]_ éﬁﬁw V’O\ri&biﬁi “?07’ %Q‘;Tm occurrences
N M= conjunction
-V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

3 n : number. e variable for natural numbers
is_nth_argument_of ({02, n, tol)

uhiversal
quant ier A

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

Example Assertion in LiFtEr (in Abstract Syntax)

implication existential quantifier

JEI rl : rule. True

4 rl : rule.

3 ¢1 : term. - variable for terms
d tol : term_occurrence tl : term
7“1 is_rule of tol é""" variable for term occurrences
N M= conjunction
-V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.

3 n : number. e variable for natural numbers
is_nth_argument_of ({02, n, tol)

variable for auxiliary lemmas

universal
quant ier A

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.1induct")

apply auto done
4 rl : rule. True

_>
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
— rl
3 rl : rule. (r1 = tbreviinduct)
4 t1 : term.

4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
— rl
4 7l : rule. (rl = itreviinduct)
4 t1 : term.

4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
— rl
3 rl : rule. (r1 = ibrev.iinduct)

4 ¢1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -
34 rl : rule. True ‘
— Bl rl
d rl : rule. (r1 = tbrev.iinduct)
3 t1 : term. (1 = ibrev)

4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https: //glthub com/data61/PSL/slide/2019_ps.pdf
primrec rev :: a list = 'a list" where

"rev [] [1"]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -

34 rl : rule. True ‘ -R\\\
— Bl rl
3 rl : rule. (rl = ibrev.iinduct)

3 t1 : term. (E1 = ikrev)
4 tol : term_occurrence € tl1 : term. (kol = ikrev)

rl is_rule_of tol
/\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https: //glthub com/data61/PSL/slide/2019_ps.pdf
primrec rev :: a list = 'a list" where

"rev [] [1"]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - . N
34 rl : rule. True ‘

— k1 rl

3 rl @ rule. (r1 = ibreviinduct)
4 ¢t1 : term. (k1 = ibrev)
3 tol : term_occurrence € tl1 : term. (kol = ikrev)

rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

"rev [] [1"]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")
apply auto done N

34 rl : rule. True ‘ \

- k1l rl
3 rl : rule. (r1 = ibreviinduct)
3 t1 : term. (E1 = ikrev)
3 tol : term_occurrence € tl1 : term. (kol = ikrev)
rl is_rule_of tol True! r1 (= itreviinduct) is a lemama aboub tol (= ikrev).
A

V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

"rev [] [1"]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")
apply auto done N

34 rl : rule. True ‘ \

— & rl
4 rl : rule. (vl = itrevinduct)
3 t1 : term. (E1 = ikrev)
4 tol : term_occurrence € t1 : term. (kol = ikrev)
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A

V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -
3 rl : rule. True ‘ -R\N\
— & ri
3 rl : rule. (r1 = brev.iinduct)

3 t1 : term. (E1 = ikrev)

4 tol : term_occurrence € tl1 : term. (kol = ibrev)

rl is_rule_of t0l True! ri (= ikreviinduct) is a lemma about tol (= iktrev).
A

V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : ternm.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply autojéone R ﬁ\\\
4 rl : rule. True k2 ‘
— k1 ri
3 rl : rule. (r1 = ibreviinduct)
3 t1 : term. (E1 = ikrev)
4 tol : term_occurrence € tl1 : term. (tol = ikrev)
rl is_rule_of t0ol True! ri (= itreviinduct) is a lemma about kol (= ikrev).
A
V t2 : term € induction_term. (R = xs and ys D)

4 t02 : term_occurrence € t2 : ternm.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xs ys#éfrev XS @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojéone R ﬁ\\\
4 rl : rule. True k2 ‘
— k1 rl
1 rl : rule. (r1 = ibreviinduct)
3 ¢1 : term. (k1 = ibrev)
1 tol : term_occurrence € tl1 : term. (tol = itrev)
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B = xs and ys)
4 to2 : term_occurrence € {2 : term. (ko2 = x5 and 3:3),

4 n : number.
is_nth_argument_of (to2, n, tol)
A\
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xswx§{£#rev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojﬁone R a\\\
4 rl : rule. True k2 ‘
— & ri
3 rl : rule. (r1 = ibreviinduct)
3 t1 : term. (E1 = ikrev)
4 tol : term_occurrence € tl1 : term. (kol = ibrev)
rl is_rule_of t0ol True! ri (= itreviinduct) is a lemma about kol (= ikrev).
A
V t2 : term € induction_term. (E2 = x5 and ys)
4 to2 : term_occurrence € t2 : term. (Eo2 = x5 and Yys D)

4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xsqxéfifrev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojﬂone R ﬁ\\\
4 rl : rule. True k2 i
— k1 rl
3 rl ¢ rule. (r1 = brev.iinduct)
3 ¢1 : term. (k1 = ibrev)
1 tol : term_occurrence € tl1 : term. (tol = itrev)
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B2 = xs and ys)
3 to2 : term_occurrence € t2 : term. (toR = xs and ys)

4 n : number.
is_nth_argument_of (t02, n, tol)
A\
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

(1%]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
tol \ first to2
lemma "itrev xsqxéfiirev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply autojﬂon N
3 rl : rule. True k2 ‘

— first t rt
3 rl ¢ rule. (r1 = brev.iinduct)
3 ¢1 : term. (k1 = ibrev)
3 tol : term_occurrence € tl1 : term. (tol = itrev)
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B2 = xs and ys)
3 to2 : term_occurrence € t2 : term. (toR = xs and ys)

4 n : number.
is_nth_argument_of (f02, n, tol) True for xs (n = 1)
A\
t2 is_nth_induction_term n

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
primrec rev :: ""a list = 'a list" where

"rev [] = [1" |
"rev (X # xs) = rev xs @ [x]"

fun 1trev :: "'a list = 'a list = 'a list" wher

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol first second, to2

lemma "itrev xsqxéfiirev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto Adon - -
3 rl : rule. True ;_.;{6 T \s;?tomci ; \

— first k1 rt
3 rl : rule. (rl = tkrev.iinduct)

3 ¢1 : term. (k1 = ibrev)
4 tol : term_occurrence € tl1 : term. (tol = ikrev)

rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A\

V t2 : term € induction_term. (k2
4 to2 : term_occurrence € t2 : term. (tor
4 n : number.
is_nth_argument_of (t02, m, tol) True for xs (n = 1)
A
t2 is_nth_induction_term n True for ys (n = 2)!

xs and ys)

xs and ys)

nn

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

4 r]l : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
A
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)
A
t2 is_nth_induction_term n

4 r]l : rule. True
N
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)
/\
t2 is_nth_induction_term n

datatype instr
type synonym stack

LOADI val | LOAD vname | ADD
"val list"

NEw E:tj?@s 3

the samwe LiFEEYr asserkion

34 rl : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o pin b il "execl (LOADI n) stk = n # stk" |
n tants - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

Fhe somie LiEFET asserbion €X€C (1#1s) s stk = exec is s (execl 1 s stk)"

34 rl : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskonks — "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

Fhe somie LiEFET asserbion €X€C (1#1s) s stk = exec is s (execl 1 s stk)"

new lemama => lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proo«f ->apply(induct isl s stk rule:exec.induct)

d rl : rule. True apply auto done
_>
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskamnks - "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama => lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

d rl : rule. True apply auto done
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o P "execl (LOADI n) stk = n # stk" |
n nstanks - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof -»apply(induct isl s stk rule:exec.induct)
34 rl : rule. True apply auto done

— rl
4 rl : rule. (r1
4 t1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

= exec.induct)

N
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskonks — "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemania => 1lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)
4 rl : rule. True apply auto done

— rl
3 rl : rule. (rl = exec.induct)
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o P "execl (LOADI n) stk = n # stk" |
n nstanks - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

4 rl : rule. True apply auto done
— rl
3 rl : rule. (rl = exec.iinduct)
4 ¢1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n

. o datatype instr = LOADI val | LOAD vname | ADD
hew types -» type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| P "execl (LOADI n) stk = n # stk" |
n nstanks - —
s comstants "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new Llemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

4 rl : rule. True apply auto done *T“““
— £l rl
3 rl : rule. (rl = exec.induct)
4 t1 : term. (El = exec)

4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
A
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A

t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types -> type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| P "execl (LOADI n) stk = n # stk" |
e nskanks - =
S comstants T "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

| tol
new Lemima => lemma "exec (isl @ is2) s stk = exec is2 §\(exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done *T“““
— k

3 rl ¢ rule. (rl = exec.induct)
4 ¢1 : term. (k1 = exec)
3 tol : term_occurrence € t1 : term. (tol = exec)
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
N\
t2 is_nth_induction_term n

rl

Y

o | datatype instr = LOADI val | LOAD vname | ADD
hew types -» type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o P "execl (LOADI n) stk = n # stk" |
n nstanks - —
s comstants T "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl 1 s stk)"

| tol
new Lemima => lemma "exec (isl @ is2) s stk = exec is2 5\(exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done T
— k
3 rl : rule. (r1 exec.induct)
4 ¢1 : term. (k1 = exec)
4 tol : term_occurrence € tl1 : term. (tol = @x@,@)
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

rl

Y

p BN

N
t2 is_nth_induction_term n

: | datatype instr = LOADI val | LOAD vname | ADD
hew types -> type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| ; "execl (LOADI n) stk = n # stk" |
e nskanks - —
S comstants T "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

kol
new lemama -> 1emma "exec (isl @ is2) s stk = exec is2 Q\(exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done T
— t
3 rl ¢ rule. (rl = exec.induct)
4 ¢t1 : term. (k1 = exec)
d tol : term_occurrence € {1 : term. (ol = exec)
rl is_rule_of f0l True' r1 (= excciinduct) is a lemma aboub kol (= exec).
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

rl

Y

p BN

/\
t2 is_nth_induction_term n

: o datatype instr = LOADI val | LOAD vname | ADD
hew types -» type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| P "execl (LOADI n) stk = n # stk" |
n wnskawnks - —
s comstants T "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl 1 s stk)"

| tol
new Lemima => lemma "exec (isl @ is2) s stk = exec is2 5\(exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done *T“““
—> Bl rl
3 rl ¢ rule. (rl = exec.induct)
4 t1 : term. (El = exec)
41 tol : term_occurrence € tl1 : term. (E;Qj_ = exes)

rl is_rule_of 10l True' ri (= exec.induct) is a lemama aboub kol (= exec).
A
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

m datatype instr = LOADI val | LOAD vname | ADD
hew types -» type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
e onskonks - "execl (LOADI n) stk = n # stk" |
G COMSEOMES 77 wexecl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl 1 s stk)"

kol
new levania => 1emma "exec (isl @ is2) s stk = exec is2 §\(exec 1sl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done *T"““
— 3 rl
3 rl ¢ rule. (rl = exec.induct)
3 t1 : term. (El = exec)
d tol : term_occurrence € tl1 : term. (ol = exec)

rl is_rule_of 10l True' ri (= exec.induct) is a lemama aboub kol (= exec).
A\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| "execl (LOADI n) stk = n # stk" |
& nskanks - —
ew constants = "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl 1 s stk)"

k2 kol
new levania -> 1emma "exec (isl @ is2) s stk = exec is?2 5\(exec 1sl s stk)"
a model proof —»apply(induct\isl s stk rule:exec.induct) -

4 rl : rule. True apply auto done T
— Bl rl
3 rl ¢ rule. (rl = exec.induct)
4 ¢1 : term. (k1 = exec)
d tol : term_occurrence € tl1 : term. (ol = exec)
rl is_rule_of 10l True' ri (= exec.induct) is a lemama aboub kol (= exec).
/\
V t2 : term € induction_term. (k2 = isl, 5, and stk)
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

: datatype instr = LOADI val | LOAD vname | ADD
new types =2 type_synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
‘ "execl (LOADI n) stk = n # stk" |
M - S
hew constants =, ecl (LOAD x) 5 stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl i s stk)"
k2 tol
new levama -> lemma "exec (3sl @ is2) s stk = exec is2 §\(exec isl s stk)"
a model proc«% ~>apply(inductyisl s stk rule:exec.induct) }
4 rl : rule. True apply auto done T ko
— k1l rl
3 rl ¢ rule. (rl = exec.induct)
3 ¢1 : term. (k1 = exec)

d tol : term_occurrence € tl1 : term. (ol = exec)
rl is_rule_of tol True! rl (= exec.induct) is a lemma aboub kol (= exec).
/\
V t2 : term € induction_term. (E
J t02 : term_occurrence € t2 : term. (to2
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n

2 = isl, 5, and skk)
= is1, 5, and stk)

datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| ; "execl (LOADI n) stk = n # stk" |
ne nstanks - _
cw constants = execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec is s (execl 1 s stk)"
ER tol
new lemima —> lemma "exec (3sl @ is2) s stk = exec is2 §\(exec isl s stk)"
a model proo% ->apply(inductyisl s stk rule:exec.induct) - !
3 r1 : rule. True apply auto done T e
— k1l rl
3 rl : rule. (rl = exec.induct)

3 ¢1 : term. (E1 = exec)
d tol : term_occurrence € tl1 : term. (ol = exec)

rl is_rule_of 10l True' ri (= exec.induct) is a lemama aboub kol (= exec).
/\
V t2 : term € induction_term. (2 = isl, 5, and stk)
J to2 : term_occurrence € t2 : term. (to2 = isl, s, and skl)
4 n : number.
is_nth_argument_of (to2, n, tol)
N\
t2 is_nth_induction_term n

: datatype instr = LOADI val | LOAD vname | ADD
new types =2 type_synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
‘ "execl (LOADI n) stk = n # stk" |
M - S
hew constants =, ecl (LOAD x) 5 stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (1#1s) s stk = exec 1s s (execl i s stk)"
kR tol
new levama -> lemma "exec (3sl @ is2) s stk = exec is2 §\(exec isl s stk)"
a model proc«% ->apply(inductyisl s stk rule:exec.induct) - }
4 rl : rule. True apply auto done *TMM“ ko
— k1l rl
3 rl ¢ rule. (rl = exec.induct)
3 ¢1 : term. (k1 = exec)

d tol : term_occurrence € tl1 : term. (ol = exec)
rl is_rule_of tol True! rl (= exec.induct) is a lemma aboub kol (= exec).
/\
V t2 : term € induction_term. (E
4 to2 : term_occurrence € t2 : term. (%02
4 n : number.
is_nth_argument_of (t02, n, tol)
/\

t2 is_nth_induction_term n

2 = isl, 5, and skk)
= is1, 5, and stk)

: datatype instr = LOADI val | LOAD vname | ADD
new types =2 type_synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
P "execl (LOADI n) stk = n # stk" |
hew constants =, ecl (LOAD x) 5 stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] _ stk = stk" | first
"exec (1#1s) s stk = exec is s (execl 1 s stk)
k2 tol
new levama -> lemma "exec (3sl @ is2) s stk = exec is2 s\(exec isl s stk)"
a model proof —»apply(induct\isl s stk rule:exec.induct) - }
4 rl : rule. True apply auto don‘e/“"" "r““ ko
— first & rl
. Lrs |
3 7l @ rule. (rl = exec.induct)
3 ¢1 : term. (k1 = exec)

d tol : term_occurrence € ¢l : term. (lol = exec)
rl is_rule_of 10l True' ri (= exec.induct) is a lemama aboub kol (= exec).
/\
V t2 : term € induction_term. (E
4 to2 : term_occurrence € t2 : term. (%02
4 n : number.
is_nth_argument_of ({02, n, tol) True for is1 (n -> 1)
/\
t2 is_nth_induction_term n

2 = isl, 5, and skk)
= isl, 5, and stk)

- b datatype instr = LOADI val | LOAD vname | ADD
new types =2 type_synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
"execl (LOADI n) stk = n # stk" |
n nsktanks - _
ew constants = "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] _ stk = stk" | first

"exec (i#is) s stk exec 1s s (execl i s stk)¥ second
kR tol

new levania => 1emma "exec (isl @ is2) s stk = exec is2 s\(exec isl s stk)"
a model proof —»apply(induct\isl s stk rule:exec.induct) -

4 rl : rule. True apply auto dorr7***** -—r‘" ko2

N ot k1l rl
. rs
J rl : rule. “second (rl = exec.induct)
3 ¢1 : term. (E1 = exec)

d tol : term_occurrence € ¢l : term. (lol = exec)
rl is_rule_of {0l True' ri (= exec.induct) is a lemma about kol (= exec).
/\
V t2 : term € induction_term. (k2 = isl, 5, and stk)
J to2 : term_occurrence € t2 : term. (to2 = isl, s, and skl)
4 n : number.
is_nth_argument_of ({02, n, tol) True for is1 (n -> 1)

A True for ys (n =» 2)!
t2 is_nth_induction_term n

- b datatype instr = LOADI val | LOAD vname | ADD
new types =2 type_synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
" nskamlbs - "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = s(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" | first Ehird
"exec (i#is) s stk = exec is s (execl i s stk)* sgtomd/
k2 tol

new levania => 1emma "exec (isl @ is2) s stk = exec is2 s\(exec isl s stk)"
a model proof —»apply(induct\isl s stk rule:exec.induct) -

4 r]l : rule. True apply auto dorré/‘""“”“'" T -—r‘" ko2
: first “r
3 7l : rule. second (rl = exec.induct)
4 ¢1 : term. (El = exec)

3 tol : term_occurrence € tl1 : term. (lol = exec)
rl is_rule_of {0l True' ri (= exec.induct) is a lemma about kol (= exec).
A
V t2 : term € induction_term. (R = isl, 5, and stk)
J to2 : term_occurrence € t2 : term. (to2 = isl, s, and skl)
4 n : number.
is_nth_argument_of ({02, n, tol) True for is1 (n -> 1)

A True for ys (n =» 2)!
t2 is_nth_induction_term n True for stk (n => 3)!

Abstract notion of “good” application of induction.

Heuristics that are valid across problem domains. B|g P|Ctu e
ﬁ <= pros: good at ambiquity (heuristics) ‘

[[T!F!T]! [T!T!T]! [F!T!T]]: bOOl ||St <= simple representation

’ || A
er Lo
mma "star r star

by(induction r ar.1in

<~ pros: qood ak riqorous abs%rac&iam‘
4 9 9

£r)

—> star r x z"
Jto simp: step)

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys" <~ onhe abstract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [] = rev [1,2,3] @ []1" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Abstract notion of “good” application of induction.
Heuristics that are valid across problem domains. Blg Plctu e

ﬁ <= pros: good at ambiq Ebj (heuristics

[T!F!T]! [T!T!T]! [F!T!T]]: bool list

<= pros: good ab rigd

[

| { A

er Lo

eP—> star r x z"
Jto simp: step)

star
r.1in

by(induction r

<~ small dakaselt abouk
different domains

lemma "exec (1sl @ 1s2) s
exec 1s2 s (exec 1is
(.

)II

y(induct 1sl s stk rule:e uct) auto

emma "itrev xs ys = rev xs @ ys"

_ : : <~ one abskract representation
y(induct xs ys rule:"itrev.induct") auto

ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
lemma "itrev [1,2,3] [l = rev [1,2,3] @ []" by auto
lemma "itrev [''a'',''b''] [] =rev [''a'',''b''] @ []" by auto | <~ ™Many concrete cases
lemma "itrev [X,y, z] [1 = rev [Xx,y,z] @ []1" by auto

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf

iference on Artificial Intelligence and Theorem Proving
G AITP2019

A

April 7-127 20’1@\ Ob

Registration is now closed.

Background http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al
and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP conference
is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

Topics

Al and big-data methods in theorem proving and mathematics

Collaboration between automated and interactive theorem proving
Common-sense reasoning and reasoning in science

Alignment and joint processing of formal, semi-formal, and informal libraries
Methods for large-scale computer understanding of mathematics and science
Combinations of linguistic/learning-based and semantic/reasoning methods

https://github.com/data61/PSL/slide/2019_proof_summit.pdf

Feature extractor?

Llemma "map f (sep X xs) = sep (f x) (map f xs)"

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"
assertion 27: if the outermost constant is the HOL equality?]

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"
X

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifie

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.
Llemma "map f (sep x xs) = sep (f x) (map f xs)"
X

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifie

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
||Sep a [] — [:u I
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"
automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
assertion 32: if the outermost constant is the HOL existential quantifier.x

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

"sep a (x#y#zs) = x # a # sep a (y#zs)"

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
assertion 32: if the outermost constant is the HOL existential quantifier.x

assertion 93: if the goal has a term of type “real”?

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality? /
I quantifier.x

assertion 32: if the outermost constant is the HOL existenti
assertion 93: if the goal has a term of type “real”?

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL existential quantifier.x
assertion 93: if the goal has a term of type “real”? X

v

assertion 10: the context has a related recursive simplivication rule?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keyword?

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)")

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

resulting feature vector: [...,1,...,1,...0,...,1,...0,...]

| L

10th 27th 32nd 58th 93rd

