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Example proof at Data61

lemma performPageTableInvocationUnmap_ccorres:
"ccorres (K (K \<bottom>) \<currency> dc) (liftxf errstate id (K ()) ret__unsigned_long_")
(invs' and cte_wp_at' (diminished' (ArchObjectCap cap) \<circ> cteCap) ctSlot
and (\<lambda>_. isPageTableCap cap))
(UNIV \<inter> \<lbrace>ccap_relation (ArchObjectCap cap) \<acute>cap\<rbrace> \<inter> \<lbrace>\<acute>ctSlof1
[]
(LiftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"
apply (simp only: 1iftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit 1ift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/sel. 4/sel 4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
= (\<lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")

apply (rule ccorres_Cond_rhs)
apply (simp add: to_bool_def)
apply (rule ccorres_rhs_assoc)+
apply csymbr
apply csymbr
apply csymbr
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)
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apply wp
apply (simp del: Collect_const)
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Tactics 4

goal :: thm | | tactic [ goal 1:: thm y goal 2 :: thm y u _]

. Lazy
fun tactic :: thm ->[ thm ]
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Tactics 4

[goal ::thm] @[[goal 1:: thm ], [goal 2 ::thm], ek ]

 Lazy |

=

fun tactic :: thm ->[ thm ]

fail > succee>
auto simp induct >
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Tactics 4

auto >

[goal B thm] tactic >[[goal 1::thm ], [goal 2 thm], s ]
I :

fun tactic :: thm ->[ thm ]

fail > succee> simp > | OR » auto >

simp > induct >

REPEA> simp >

induct > | THEN > | auto »
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Tactics 4

[goal i thm] tactic >[[goal 1:: thm ], [goal 2 thm], s ]

fun tactic :: thm ->[ thm ]

fail > succee>

auto >

OR » auto >

Induct

simp

REPEA{> simp >

induct > | THEN > | auto »
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

C' Dynamic ( Induct )

Ooooodboo

Auto

OOOOOOQ )



https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N

& Dynamic ( Induct ) )

QQ\‘!
L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

\_/\_/\_/\_/uu\,/uu

Auto _)

OOOOOOQ -

>
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO )

OOOOOOQ .
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

P A A N W A N W A A

apply (at (auto) AUtO _)
v -
 \ f \ f'"\ f'"\ - \ /—"\ - \ ST
Ay. is filter y = map f (sep x xs) = sep (f x) (map f xs)

T Tesows
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Dynanuc(lnduct) ;)

o
oA

>

L N NEm~N"7N\N NN S NN
Ay. vy € {F. is filter F} = map f (sep x xs) = sep (f x) (map f xs)

AW AN AW LA
apply (auto) AUtO )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

g;' IDynanuc Induct
apply (at (auto) AUtO

OOOOOOQ )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO
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lemma "map f (sep x ) = sep (f x) (map f x5)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO

OOOOOOQ )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

)
/_ \(\6\)0 6\)

99‘ \,\\ ,namlc Induct
apply (at (auto) AUtO

OOOOOOQ )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc ( Induct ) )

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) AUtO )

OOOOOOQ )

IsSoIved
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc ( Induct ) )

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) AUtO )

OOOOOOQ )

IsSoIved
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

ggoaq
F

- ©

3

6°
« nanuc Induct ;)
QQQ\ ~o° \! j ( . < )‘
1. map f (sep x []) = sep (f x) (map T [])

2. ANa xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) Auto )
S— — — — — — v —

1. Aa xs. T, et
map f (sep x xs) = sep (f x) (map f xs) — : :
map f (Sep X (a # XS)) = SEep (f X) (f a # map f Xs)llt' ®anns?

Q _ _ _ IsSo_Ived _ )



https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

goal
O ‘jéz:::)
//' S

M \\,\\,namlc ( Induct ) )

1. map f (sep x []) = sep (f x) (map f [])

2. Na xs
map f (sep x xs) = sep (f x) (map f xs) —
P map f (sep x (a # xs)) = sep (f x) (map f (a # xs))
apply (auto) apply (auto) AUtO )

OOOOOOQ )

IsSoIved



https://github.com/data61/PSL/slide/2019_proof_summit.pdf

https://twitter.com/YutakangJ https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

/_\(\6\)0‘\6\)
99‘ \,\\ ynamic ( Induct )
2

Ooooodboo

apply (at (auto) apply (auto) AUtO

OOOOOOQ )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

oal
\9 ?
\)0‘\ \*690 o/

OV av©
Qg_“‘\\,\\?namlc,"/o, *'uct) )

OOOOOO%QO

apply (auto) apply (auto) AUtO ‘/oa

OOOOOOQ -
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

/_ 6\)0‘\6\)0
o 3 ¥ e hamic Ya ey UCt ) )
20 QQQ 1. Na. map f (sep . "O] - sep (f a) (map f [])

2. Na x. map T (sep a 4’3’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = _O, eba) (map T (x # y # zs))

apply (at (auto) apply (auto) AUtO "70(,0;

OOOOOOQ )
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ Qo’o
g_\“\d\\ hamica ingg 1UCt ) )

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) Od"o,)
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ 600
g_\“\d\\ hamica ingg 1UCt ) )

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ’70(,01)

OOOOOmwww
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

N ¥
6\)0 \)0‘ 600
g_\“\d\\ hamica ingg 1UCt ) )

CUR Aa. map f (sep Hyq, - sep (f a) (map f [1)

2. Na x. map T (sep a *s’. sep (f a) (map f [x])

3. N\a x vy zs. "/e
map f (sep a (y # zs)) = 0’7? a) (map f (y # zs)) =
map f (sep a (x # y # zs)) = O, eba) (map T (x # y # zs))

apply (auto) apply (auto) AUtO apply (auto) ’70(,01)
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lemma "map f (sep x xs) = sep (f x) (map f xs)"

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Q
oo Wy,
RS ‘}namlc, Vi uct ) \

Number of lines of commands 3"

[x])
C apply (induct xs rule: Demo.sep.1induct)
p—.

f (y # zs)) —
map f (x # y # zs))

)

- Ccy

OOooomww»

IsSolved %/,e )

apply auto

appWKl done
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Try_Hard: the default strategy

strategy Try Hard =

'Ors [Thens [Subgoal, Basic],
S Thens [DinductTac, Auto_Solve],
strategy Basic = | Thens [DCaseTac, Auto_Solve],
Ors [ Thens [Subgoal, Advanced],
' Auto_Solve, Thens [DCaseTac, Solve_Many],
| Blast_Solve, Thens [DInductTac, Solve_Many] ]
FF_Solve, | | - o

hens [IntroClasses, Auto_Solvel], *
ens {IranSfel_r’ A.utO_ISglvle], 16 percentage point performance
nens [Normalization, Is olved], improvement compared to sledgehammer
nens [Dinduct, Auto_Solve],
nens [Hammer, IsSolved],

nens ;:)Cases Auto_Solve], but the search space explodes'
nens [DCoinduction, Auto_Solve], , *

nens Auto RepeatN(Hammer), IsSolved], ‘
| 1eNs -DAUtO; IsSolved]] PaMpeR: Proof Method Recommendation
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STATISTICS

Archive of Formal Proofs (https://www.isa-afp.org)

Statistics
Number of Articles: 468

Number of Authors: 313

Home Number of lemmas: ~128,900
About Lines of Code: ~2,170,300
Submission
Updating Most used AFP articles:
Entries Name Used by ? articles
Using Entries 1. Cpllechons_ 15
2. List-Index 14

Search 3. Coinductive 12
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goal (1 subgoal):
1. 1itrev xs [] =

rev Xs

=27 1] [‘\\

Conjecture
Slele O‘Qé‘o

Fastforce

¥
-

I xéé*

C

chkcheck

T

Dind

i?i
%




rgoal (1 subgoal): | apply (subgoal tac

1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
‘ /111[‘\\
Conjecture
SOOODC
Fastforce
v v (5 Y. .y
Q'O Qi
( chkcheck

T ‘?‘

Dind Dind




goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
: 7772 I 1 \\3s= (

goal (2 subgoals):
Conjecture 1. (/AANil. itrev xs Nil = rev xs @ Nil) =
itrev xs [] = rev xs
/ + ¥ 2. ANil. itrev xs Nil = rev xs @ Nil
QOC QCS QOO bUU
Fastforce
OO YOO
I I I ’nnlnn’ *enns?
( Quickcheck

N N A 4

Dind Dind




goal (1 subgoal): m apply (subgoal tac
1. itrev xs [] = rev xs "ANil. itrev xs Nil = rev xs @ Nil")
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(ANil. itrev xs Nil = rev xs @ Nil) =

itrev xs [] = rev xs
ANil.

itrev xs Nil = rev xs @ Nil

Fastforce < apply

I
fastforclxl)

* * goal (1 subgoal):
O ¢ ‘ é élﬁ /\N11 1trev xs Nil = rev xs @ Nil

( chkcheck
* goal (1 subgoal):
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many concrete cases

different proof for general case

Higher-Order functions
polymorphism | | type class

universal quantifier

A small data set is not a failure
lambda abstraction but an achievement!

lemma "itrev xs ys = rev xs @ ys” <~ ohe abstract representation
by(induct xs ys rule:"1itrev.induct") auto

* ﬁ <~ abstraction using expressive logic

lemma "itrev [1,2] [] = rev [1,2] @ []1" by auto
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by(induct xs ys rule:"1itrev.induct") auto
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Grand Challenge: Abstract Abstraction

temma
by(induction rule:

"star r x y = star ry z =— star r x z"
star.induct) (auto simp: step)

<= small dataset about
different domains

lemma "exec (1sl @ 1s2) s stk =
it exec is2 s (exec isl s stk)"
by(1nduct isl s stk rule:exec.induct) auto

1em"_‘a "1trev xs ys = rev xs @ ys” <~ onhe abstract representation
by(induct xs ys rule:"1itrev.induct") auto
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primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done
4 rl : rule. True
— rl
3 rl : rule. ( r1 = ibrev.iinduct )

4 ¢1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1%

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1trev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"

lemma "1itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -
34 rl : rule. True ‘
— Bl rl
d rl : rule. ( r1 = tbrev.iinduct )
3 t1 : term. (1 = ibrev )

4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n
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primrec rev :: a list = 'a list" where

"rev [] [1" ]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -

34 rl : rule. True ‘ -R\\\
— Bl rl
3 rl : rule. ( rl = ibrev.iinduct )

3 t1 : term. ( E1 = ikrev )
4 tol : term_occurrence € tl1 : term. ( kol = ikrev )

rl is_rule_of tol
/\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n
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primrec rev :: a list = 'a list" where

"rev [] [1" ]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - . N
34 rl : rule. True ‘

— k1 rl

3 rl @ rule. ( r1 = ibreviinduct )
4 ¢t1 : term. (k1 = ibrev )
3 tol : term_occurrence € tl1 : term. ( kol = ikrev )

rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\

t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

"rev [] [1" ]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")
apply auto done N

34 rl : rule. True ‘ \

- k1l rl
3 rl : rule. ( r1 = ibreviinduct )
3 t1 : term. (E1 = ikrev )
3 tol : term_occurrence € tl1 : term. ( kol = ikrev )
rl is_rule_of tol True! r1 (= itreviinduct) is a lemama aboub tol (= ikrev).
A

V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

"rev [] [1" ]

"rev (x # xs) rev xs @ [x]"

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")
apply auto done N

34 rl : rule. True ‘ \

— & rl
4 rl : rule. (vl = itrevinduct )
3 t1 : term. (E1 = ikrev )
4 tol : term_occurrence € t1 : term. ( kol = ikrev )
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A

V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto done - -
3 rl : rule. True ‘ -R\N\
— & ri
3 rl : rule. ( r1 = brev.iinduct )

3 t1 : term. ( E1 = ikrev )

4 tol : term_occurrence € tl1 : term. ( kol = ibrev )

rl is_rule_of t0l True! ri (= ikreviinduct) is a lemma about tol (= iktrev).
A

V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : ternm.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
Lol "itrev (x#xs) ys = 1itrev xs (x#ys)"
lemma "itrev Xxs ys = rev xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply autojéone R ﬁ\\\
4 rl : rule. True k2 ‘
— k1 ri
3 rl : rule. ( r1 = ibreviinduct )
3 t1 : term. ( E1 = ikrev )
4 tol : term_occurrence € tl1 : term. ( tol = ikrev )
rl is_rule_of t0ol True! ri (= itreviinduct) is a lemma about kol (= ikrev).
A
V t2 : term € induction_term. (R = xs and ys D)

4 t02 : term_occurrence € t2 : ternm.
4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xs ys#éfrev XS @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojéone R ﬁ\\\
4 rl : rule. True k2 ‘
— k1 rl
1 rl : rule. ( r1 = ibreviinduct )
3 ¢1 : term. (k1 = ibrev )
1 tol : term_occurrence € tl1 : term. ( tol = itrev )
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B = xs and ys )
4 to2 : term_occurrence € {2 : term. ( ko2 = x5 and 3:3 ),

4 n : number.
is_nth_argument_of (to2, n, tol)
A\
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xswx§{£#rev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojﬁone R a\\\
4 rl : rule. True k2 ‘
— & ri
3 rl : rule. ( r1 = ibreviinduct )
3 t1 : term. ( E1 = ikrev )
4 tol : term_occurrence € tl1 : term. ( kol = ibrev )
rl is_rule_of t0ol True! ri (= itreviinduct) is a lemma about kol (= ikrev).
A
V t2 : term € induction_term. (E2 = x5 and ys )
4 to2 : term_occurrence € t2 : term. ( Eo2 = x5 and Yys D)

4 n : number.
is_nth_argument_of (to2, n, tol)
A
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
to2
lemma "itrev xsqxéfifrev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

kol

apply autojﬂone R ﬁ\\\
4 rl : rule. True k2 i
— k1 rl
3 rl ¢ rule. ( r1 = brev.iinduct )
3 ¢1 : term. (k1 = ibrev )
1 tol : term_occurrence € tl1 : term. ( tol = itrev )
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B2 = xs and ys )
3 to2 : term_occurrence € t2 : term. (toR = xs and ys )

4 n : number.
is_nth_argument_of (t02, n, tol)
A\
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

(1% ]

rev xs @ [x]"

"rev []
"rev (x # xs)

fun 1itrev :: "'a list = 'a list = 'a list" wher
"itrev [] ys = ys" |
"itrev (x#xs) ys = 1itrev xs (x#ys)"
tol \ first to2
lemma "itrev xsqxéfiirev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply autojﬂon N
3 rl : rule. True k2 ‘

— first t rt
3 rl ¢ rule. ( r1 = brev.iinduct )
3 ¢1 : term. (k1 = ibrev )
3 tol : term_occurrence € tl1 : term. ( tol = itrev )
rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A
V t2 : term € induction_term. (B2 = xs and ys )
3 to2 : term_occurrence € t2 : term. (toR = xs and ys )

4 n : number.
is_nth_argument_of (f02, n, tol) True for xs (n = 1)
A\
t2 is_nth_induction_term n
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primrec rev :: ""a list = 'a list" where

"rev [] = [1" |
"rev (X # xs) = rev xs @ [x]"

fun 1trev :: "'a list = 'a list = 'a list" wher

"itrev [] ys = ys" |
"itrev (x#xs) ys = itrev xs (x#ys)"
tol first second, to2

lemma "itrev xsqxéfiirev Xs @ ys"
apply(induct xs ys rule:"itrev.induct")

apply auto Adon - -
3 rl : rule. True ;_.;{6 T \s;?tomci ; \

— first k1 rt
3 rl : rule. ( rl = tkrev.iinduct )

3 ¢1 : term. (k1 = ibrev )
4 tol : term_occurrence € tl1 : term. ( tol = ikrev )

rl is_rule_of tol True! rl (= ibreviinduct) is a lemma about tol (= ikrev).
A\

V t2 : term € induction_term. ( k2
4 to2 : term_occurrence € t2 : term. ( tor
4 n : number.
is_nth_argument_of (t02, m, tol) True for xs (n = 1)
A
t2 is_nth_induction_term n True for ys (n = 2)!

xs and ys )

xs and ys )

nn
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4 r]l : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
A
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)
A
t2 is_nth_induction_term n



4 r]l : rule. True
N
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (t02, n, tol)
/\
t2 is_nth_induction_term n



datatype instr
type synonym stack

LOADI val | LOAD vname | ADD
"val list"

NEw E:tj?@s 3

the samwe LiFEEYr asserkion

34 rl : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o pin b il "execl (LOADI n) stk = n # stk" |
n tants - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

Fhe somie LiEFET asserbion €X€C (1#1s) s stk = exec is s (execl 1 s stk)"

34 rl : rule. True
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskonks — "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

Fhe somie LiEFET asserbion €X€C (1#1s) s stk = exec is s (execl 1 s stk)"

new lemama => lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proo«f ->apply(induct isl s stk rule:exec.induct)

d rl : rule. True apply auto done
_>
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskamnks - "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama => lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

d rl : rule. True apply auto done
_)
4 rl : rule.
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
/\
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o P "execl (LOADI n) stk = n # stk" |
n nstanks - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof -»apply(induct isl s stk rule:exec.induct)
34 rl : rule. True apply auto done

— rl
4 rl : rule. ( r1
4 t1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

= exec.induct )

N
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
new comnskonks — "execl (LOADI n) stk = n # stk" |
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemania => 1lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)
4 rl : rule. True apply auto done

— rl
3 rl : rule. ( rl = exec.induct )
4 t1 : term.
4 tol : term_occurrence € t1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 to2 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types - type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
o P "execl (LOADI n) stk = n # stk" |
n nstanks - —
S comstants T "execl (LOAD x) s stk = S(x) # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new lemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

4 rl : rule. True apply auto done
— rl
3 rl : rule. ( rl = exec.iinduct )
4 ¢1 : term.
4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
/\
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)

N
t2 is_nth_induction_term n



. o datatype instr = LOADI val | LOAD vname | ADD
hew types -» type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| P "execl (LOADI n) stk = n # stk" |
n nstanks - —
s comstants "execl (LOAD x) s stk = s(x)  # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |

"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

new Llemama -> lemma "exec (isl @ is2) s stk = exec is2 s (exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct)

4 rl : rule. True apply auto done *T“““
— £l rl
3 rl : rule. ( rl = exec.induct )
4 t1 : term. (El = exec )

4 tol : term_occurrence € tl1 : term.
rl is_rule_of tol
A
V t2 : term € induction_term.
4 t02 : term_occurrence € t2 : term.
4 n : number.
is_nth_argument_of (to2, n, tol)
A

t2 is_nth_induction_term n



datatype instr = LOADI val | LOAD vname | ADD

hew types -> type synonym stack = "val list"
fun execl :: "instr = state = stack = stack" where
| P "execl (LOADI n) stk = n # stk" |
e nskanks - =
S comstants T "execl (LOAD x) s stk = s(x)  # stk" |
"execl ADD ~ (j#i#stk) = (1 + j) # stk"
fun exec :: "instr list = state = stack = stack" where
"exec [] stk = stk" |
"exec (i#1s) s stk = exec 1s s (execl 1 s stk)"

| tol
new Lemima => lemma "exec (isl @ is2) s stk = exec is2 §\(exec isl s stk)"
a model proof —»apply(induct isl s stk rule:exec.induct) -
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automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?




Feature extractor?

fun sep::"'a = 'a list = 'a list" where
"sep a [] = []" |
"sep a [x] = [x]" |

("sep a (x#y#zs) = x # a # sep a (y#zs)" )

automatically proves and saves many auxiliary lemmas in the context
sep.simps, sep.induct, sep.elims, etc.

Llemma "map f (sep x xs) = sep (f x) (map f xs)"

I quantlflerx

assertion 10: the context has a related recursive simpliiication rule’?
assertion 58: the context has a constant defined with the “fun” keywor

assertion 27: if the outermost constant is the HOL equality?
assertion 32: if the outermost constant is the HOL eX|stentF1

assertion 93: if the goal has a term of type “real”?

resulting feature vector: [...,1,...,1,...0,...,1,...0,...]
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10th 27th 32nd 58th 93rd



