Al for Isabelle/HOL

Yutaka Nagashima
University of Innsbruck Czech Technical University

CZECH INSTITUTE

OF INFORMATICS ROBOTICS AND

yutakang_ip
@YutakangJ

Al for Isabelle/HOL

Yutaka Nagashima
University of Innsbruck Czech Technical University

CZECH INSTITUTE

OF INFORMATICS ROBOTICS AND

yutakang_jp
@YutakangJ
https://twitter.com/YutakangJ

2013 ~ 2017

with Dr. Gerwin Klein
https://github.com/data61/PSL/slide/2019_ps.pdf

http://www.cse.unsw.edu.au/~kleing/
https://twitter.com/YutakangJ

2013 ~ 2017

with Dr. Gerwin Klein
pre-PhD

http://www.cse.unsw.edu.au/~kleing/
https://twitter.com/YutakangJ 2013 ~ 2017 with Dr. Gerwin Klein
https://github.com/data61/PSL/slide/2019_ps.pdf

http://www.cse.unsw.edu.au/~kleing/
PhD in
Al for theorem proving
https://twitter.com/YutakangJ 2013 ~ 2017 with Dr. Gerwin Klein
https://github.com/data61/PSL/slide/2019_ps.pdf

http://www.cse.unsw.edu.au/~kleing/
PhD in Alfor theorem proving 2017 ~ 2018
with Prof. Cezary Kaliszyk

https://twitter.com/YutakangJ 2013 ~ 2017 with Dr. Gerwin Klein
https://github.com/data61/PSL/slide/2019_ps.pdf

http://www.cse.unsw.edu.au/~kleing/
PhD in
Alfor theorem proving
2017 ~ 2018
with Prof. Cezary Kaliszyk

2018 ~ 2020

with Dr. Josef Urban
http://cl-informatik.uibk.ac.at/users/cek/

http://ai4reason.org/members.html
https://twitter.com/YutakangJ 2013 ~ 2017 with Dr. Gerwin Klein
https://github.com/data61/PSL/slide/2019_ps.pdf

http://www.cse.unsw.edu.au/~kleing/
PhD in Alfor theorem proving

2017 ~ 2018 2020 ~ 2021?
with Prof. Cezary Kaliszyk

2018 ~ 2020

with Dr. Josef Urban
http://cl-informatik.uibk.ac.at/users/cek/

http://ai4reason.org/members.html

Registration is now closed.
Background

http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP conference is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

Topics

- Al and big-data methods in theorem proving and mathematics
- Collaboration between automated and interactive theorem proving
- Common-sense reasoning and reasoning in science
- Alignment and joint processing of formal, semi-formal, and informal libraries
- Methods for large-scale computer understanding of mathematics and science
- Combinations of linguistic/learning-based and semantic/reasoning methods

Registration is now closed.
Background

http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP conference is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

Topics

- Al and big-data methods in theorem proving and mathematics
- Collaboration between automated and interactive theorem proving
- Common-sense reasoning and reasoning in science
- Alignment and joint processing of formal, semi-formal, and informal libraries
- Methods for large-scale computer understanding of mathematics and science
- Combinations of linguistic/learning-based and semantic/reasoning methods

Isabelle/HOL architecture

Isabelle/HOL architecture

Isabelle/HOL architecture

Meta-logic
ML (Poly/ML)

Isabelle/HOL architecture

Meta-logic
ML (Poly/ML)

Isabelle/HOL architecture

Isabelle/HOL architecture

PIDE / jEdit

Isar
HOL
Meta-logic
ML (Poly/ML)

Isabelle/HOL architecture

PIDE / jEdit
Isar
HOL
Meta-logic
ML (Poly/ML)

Isabelle/HOL architecture

PIDE / jEdit
Isar
HOL
Meta-logic
ML (Poly/ML)
You can access all the layers!

Isabelle/HOL architecture

PIDE / jEdit Isar HOL

Meta-logic
ML (Poly/ML)

They come all together!

PIDE / jEdit

You can access all the layers!)
https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

Interactive theorem proving with Isabelle/HOL

https://github.com/data61/PSL/slide/2019_ps.pdf
Interactive theorem proving with Isabelle/HOL proof goal context
tactic / proof method

https://github.com/data61/PSL/slide/2019_ps.pdf

Interactive theorem proving with Isabelle/HOL proof goal context

tactic / proof method

subgoals

https://github.com/data61/PSL/slide/2019_ps.pdf

Interactive theorem proving with Isabelle/HOL proof goal context

tactic / proof method

subgoals

https://github.com/data61/PSL/slide/2019_ps.pdf

Interactive theorem proving with Isabelle/HOL proof goal context

tactic / proof method

subgoals

no sub-goal!
https://github.com/data61/PSL/slide/2019_ps.pdf

Interactive theorem proving with Isabelle/HOL proof goal context

subgoals

no sub-goal!
https://github.com/data61/PSL/slide/2019_ps.pdf
Interactive theorem proving with

Isabelle/HOL

 proof goal contexttactic / proof method

error-message

It's blatantly clear
You stupid machine, that what
-goal!
I tell you is true
(Michael Norrish)

Example proof at Data61

lemma performPageTableInvocationUnmap_ccorres:
"ccorres (K (K \<bottom>) \<currency> dc) (liftxf errstate id (K ()) ret_unsigned_long_')
(invs' and cte_wp_at' (diminished' (ArchObjectCap cap) \<circ> cteCap) ctSlot
and (\<lambda>_. isPageTableCap cap))
(UNIV \<inter> \<lbrace>ccap_relation (ArchObjectCap cap) \<acute>capl<rbrace> \<inter> \<lbrace>\<acute>ctSlo
[]
(liftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"
apply (simp only: liftE_liftM ccorres_liftM_simp)
apply (rule ccorres_gen_asm)
apply (cinit lift: cap_' ctSlot_') taken from:
apply csymbr \quad https://github.com/seL4/seL4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
$=(\backslash<l a m b d a>c p$. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")
apply (rule ccorres_Cond_rhs)
apply (simp add: to_bool_def)
apply (rule ccorres_rhs_assoc)+
apply csymbr
apply csymbr
apply csymbr
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

Example proof at Data61

https://github.com/data61/PSL/slide/2019_ps.pdf

lemma performPageTableIn ocationUnmap_ccorres:

```
    "ccorres (K (K \- \ \<currency> dc)
                            (currency> dc) (diminishe
                                    late id (K ()) re
```

\qquad

``` _unsigned_long_')
(diminishp eresting? ap cap) \<circ> cteCap) ctSlot
impres \({ }^{\boldsymbol{s}}\) (ArchObjectCap cap) \<acute>cap\<rbrace> \<inter> \<lbrace>\<acute>ctSlo
```

(liftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"

```
apply (simp only: liftE_liftM ccorres_liftM_simp)
```

apply (rule ccorres_gen_asm)
apply (cinit lift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/seL4/seL4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
$=(\backslash<l a m b d a>c p$. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")
apply (rule ccorres_Cond_rhs)
apply (simp add: to_bool_def)
apply (rule ccorres_rhs_assoc)+
apply csymbr
apply csymbr
apply csymbr
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

Example proof at Data61

https://github.com/data61/PSL/slide/2019_ps.pdf

lemma performPageTableIn ocationUnmap_ccorres:

```
    "ccorres (K (K )/W! \<currency> dc)
```

 (diminisher cts) \<circ> cteCap) ctSlot
 impres ${ }^{\text {s }}$ ambda>.. (ArchObjectCap cap) \<acute>cap\<rbrace> \<inter> \<lbrace>\<acute>ctSlo
(liftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
(Call performPageTableInvocationUnmap_'proc)"

```
apply (simp only: liftE_liftM ccorres_liftM_simp)
```

apply (rule ccorres_gen_asm)
apply (cinit lift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/seL4/seL4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
= ($\backslash<$ lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")
apply (rule ccorres_Cond_rhs)
apply (simp add: to_bool_def)
apply (rule ccorres_rhs_assoc)+
apply csymbr
apply csymbr
apply csymbr
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

Example proof at Data61

https://github.com/data61/PSL/slide/2019_ps.pdf

lemma performPageTableIn\%ocationUnmap_ccorres:

```
        "ccorres (K (K \) O! \<currency> dc)
```

 (liftE (performPageTableInvocation (PageTableUnmap cap ctSlot)))
 (Call performPageTableInvocationUnmap_'proc)"
 apply (simp only: liftE_liftM ccorres_liftM_simp)
 apply (rule ccorres_gen_asm)
apply (cinit lift: cap_' ctSlot_') taken from:
apply csymbr https://github.com/seL4/seL4
apply (simp del: Collect_const)
apply (rule ccorres_split_nothrow_novcg_dc)
apply (subgoal_tac "capPTMappedAddress cap
= ($\backslash<$ lambda>cp. if to_bool (capPTIsMapped_CL cp)
then Some (capPTMappedASID_CL cp, capPTMappedAddress_CL cp)
else None) (cap_page_table_cap_lift capa)")
ccorres_Cond_rhs)
add: to_bool_def)
ccorres_rhs_assoc)+
ply $\begin{aligned} & \text { ply } \\ & \text { plymbr }\end{aligned}$
apply csymbr
apply (ctac add: unmapPageTable_ccorres)
apply csymbr
apply (simp add: storePTE_def swp_def)
apply (ctac add: clearMemory_setObject_PTE_ccorres[unfolded dc_def])
apply wp
apply (simp del: Collect_const)

Example proof at Data61

https://github.com/data61/PSL/slide/2019_ps.pdf
lemma performPageTableInmpcationUnmap_ccorres:
https://twitter.com/YutakangJ Tactics 1
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf Tactics 1

https://twitter.com/YutakangJ

Tactics 1

Case 1
new goal
imp goal
https://twitter.com/YutakangJ

Tactics 1

Case 2
goal
https://twitter.com/YutakangJ

Tactics 1

\section*{| $\stackrel{0}{2}$ |
| :--- |
| $\stackrel{\circ}{\square}$ |}

principle of explosion

False

Case 2
goal

Case 3
subgoal
 subgoal 2

Tactics 2

Tactics 2

Case 1
new goal

Case 3
subgoal 1
imp subgoal 2

Tactics 2

Case 4 (failure = empty list)

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

Tactics 3

$$
(w \wedge x=>y \wedge z=>z)
$$

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf
Tactics 3
($w \wedge x=>y \wedge z=>z)$
($w \wedge x=>y \wedge z=>z$)
https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

apply (erule conjE)

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

[]
https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

[]
https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

[]
https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

[]

Tactics 4

Tactics 4

Tactics 4

fun tactic :: thm -> [thm]

Tactics 4

fun tactic :: thm -> [thm]

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x$ xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

https://github.com/data61/PSL/slide/2019_ps.pdf
lemma "map $f(\operatorname{sep} x \times s)=\operatorname{sep}(f x)(\operatorname{map} f \times s)$ " find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x$ xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x$ xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x$ xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$

 find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)
2. $\wedge \mathrm{a} x$.

$$
\begin{aligned}
& \operatorname{map} f(\operatorname{sep} x \times s)=\operatorname{sep}(f x)(\operatorname{map} f x s) \Longrightarrow \\
& \operatorname{map} f(\operatorname{sep} x(a \# x s))=\operatorname{sep}(f x)(\operatorname{map} f(a \# x s))
\end{aligned}
$$

apply (auto) apply (auto) Auto

1. $\wedge \mathrm{a} x$.
$\operatorname{map} f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(\operatorname{map} f x s) \Longrightarrow$ $\operatorname{map} f(\operatorname{sep} x(a \# x s))=\operatorname{sep}(f x)(f a \# \operatorname{map} f x s)$

IsSolved

lemma "map $f(\operatorname{sep} x$ xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

https://twitter.com/YutakangJ
https://github.com/data61/PSL/slide/2019_ps.pdf

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map f (sep x xs) $=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$

find_proof DInd(*= Thens [Dynamic (Induct), Auto, IsSolved]*)

Try_Hard: the default strategy

How does PaMpeR work?

recommendation phase

preparation phase

large proof corpora

AFP and standard library

How does PaMpeR work?

recommendation phase

large proof corpora

AFP and standard library

$S_{\text {tatistics }}$

Archive of Formal Proofs (https://www.isa-afp.org)

Statistics

Number of Articles: 468
Number of Authors: 313
Number of lemmas: $\sim 128,900$
Lines of Code: ~2,170,300
Most used AFP articles:
Name Used by ? articles

1. Collections

15
2. List-Index 14
3. Coinductive 12

preparation phase

large proof corpora

AFP and standard library

How does PaMpeR work?

recommendation phase

preparation phase

large proof corpora

AFP and standard library

108 assertions

How does PaMpeR work?

recommendation phase

How does PaMpeR work?
recommendation phase

recommendation phase

feature vector

[^0]```
New users of Isabelle are facing many
 challenges from
- writing their first definitions,
-stating suitable theorem statements....
```



https://github.com/data61/PSL/slide/2019_ps.pdf PSL with PGT

https://github.com/data61/PSL/slide/2019_ps.pdf PSL with PGT

## proof goal sub-optimal for proof automation

## context

PGT strategy


## PGT

https://github.com/data61/PSL/slide/2019_ps.pdf PSL with PGT

## proof goal sub-optimal for proof automation

## context

PGT strategy

PGT

## proof goal context

tactic / sub-tool


## proof goal sub-optimal for proof automation

## context

PGT strategy

## proof goal context

tactic / sub-tool

proved theorem / subgoals / message

## proof goal sub-optimal for proof automation

## context

PGT strategy


## proof goal context

tactic / sub-tool
 and auxiliary lemma optimal for proof automation
proved theorem / subgoals / message

## proof goal sub-optimal for proof automation

## context

PGT strategy

PGT


## proof goal context

tactic / sub-tool

proof for the original goal, and auxiliary lemma optimal for proof automation
proved theorem / subgoals 1 ssage



```
goal (1 subgoal):
```

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev xs $\mathrm{Nil}=\mathrm{rev} \mathrm{xs} @ \mathrm{Nil}) \Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil

## Fastforce



Quickcheck

DInd

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev xs $\mathrm{Nil}=\mathrm{rev} \mathrm{xs}$ @ Nil) $\Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil

Fastforce apply fastforce


## Quickcheck

DInd

```
goal (1 subgoal):
```

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev xs $\mathrm{Nil}=\mathrm{rev} \mathrm{xs}$ @ Nil) $\Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil

Fastforce apply fastforce


1. Nil. itrev xs Nil = rev xs @ Nil

## Quickcheck

DInd

```
goal (1 subgoal):
```

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev $\mathrm{xs} \mathrm{Nil}=\mathrm{rev} \mathrm{xs}$ @ Nil) $\Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil


Fastforce apply fastforce $\qquad$


## Quickcheck

## DIng

```
goal (1 subgoal):
```

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev xs $\mathrm{Nil}=\mathrm{rev} \mathrm{xs}$ @ Nil) $\Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil


## Fastforce apply fastforce



## Quickcheck



```
goal (1 subgoal):
```

```
apply (subgoal_tac
"\Nil. itrev xs Nil = rev xs @ Nil")
```

Conjecture goal (2 subgoals):

1. ( $\bigwedge \mathrm{Nil}$. itrev $\mathrm{xs} \mathrm{Nil}=\mathrm{rev} \mathrm{xs}$ @ Nil) $\Longrightarrow$ itrev xs [] = rev xs
2. \Nil. itrev xs Nil = rev xs @ Nil


## Fastforce apply fastforce



## Quickcheck




## Success story

## PSL can find how to apply induction for easy problems.

## Success story

## PSL can find how to apply induction for easy problems.

PaMpeR recommends which proof methods to use.


## Success story

## PSL can find how to apply induction for easy problems.

PaMpeR recommends which proof methods to use.

PGT produces useful auxiliary
lemmas.

## Success story

## PSL can find how to apply induction for easy problems.

PaMpeR recommends which proof methods to use.


PGT produces useful auxiliary
lemmas.

## Success story

PSL can find how to apply induction for easy problems.

PaMpeR recommends which proof methods to use.

PGT produces useful auxiliary
lemmas.

## Success story

## PSL can find how to apply

 induction for easy problems. CADE2017PaMpeR recommends which proof methods to use.

PGT produces useful auxiliary lemmas.

## Too good to be true?

## PSL can find how to apply induction for easy problems.

## PaMpeR recommends which proof methods to use.

PGT produces useful auxiliary
lemmas.

## Too good to be true?

## PSL can find how to apply

induction for easy pietesraproof search only if PSL complete
IpeR recommends which
proof methods to use.

PGT produces useful auxiliary
lemmas SGT completes a
only if PSL with PGT compietes a
proof search

## Too good to be true?

## PSL can find how to apply

induction for easypietesraproof search only if PSL complete
PaMpeR recommends which
proof methods to use recommend
but PaMpeR does not recommend arguments for proof methods but PaMpeR does noof methods produces useful auxiliary
lemmas with completes a
only if PSL with PGT completes a proof search

## Too good to be true?

## PSL can find how to apply

induction for easypietesraproof search only if PSL complete
PaMpeR recommends which
proof methods to use
but PaMpeR does not recommend arguments for proof methods

PGT produces useful auxiliary

Recommend how to apply induction without completing a proof.
lemmas wh compl
only if PSL with PGT compl proof search

## Too good to be true?

## PSL can find how to apply

induction for easypietesraquoof search
only if PSL complete a
PaMpeR recommends which
proof methods to use
but PaMpeR does not recommend arguments for proof methods

PGT produces useful auxiliary
lemmas with com
proof search

Recommend how to apply induction without completing a proof. MeLold: Machine Learning Induction

## Introduction to Machine Learning in 10 seconds

https://duckduckgo.com/?q=cat\&t=ffab\&iar=images\&iax=images\&ia=images

## Introduction to Machine Learning in 10 seconds

## Introduction to Machine Learning in 10 seconds

## ML algorithm

abstract notion

## Introduction to Machine Learning in 10 seconds


https://duckduckgo.com/?q=cat\&t=ffab\&iar=images\&iax=images\&ia=images

## Introduction to Machine Learning in 10 seconds


abstract notion

https://duckduckgo.com/?q=cat\&t=ffab\&iar=images\&iax=images\&ia=images

## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys"
```



## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys"
```



## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys"
```



## ML for Inductive Theorem Proving the BAD

lemma "itrev xs ys = rev xs @ ys"

## ML for Inductive Theorem Proving the BAD

lemma "itrev xs ys = rev xs @ ys" by auto <- one abstract representation
$\frac{1}{2}$


## ML for Inductive Theorem Proving the BAD



## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys" by auto <- one abseract representakion
by(induct xs ys rule:"itrev.induct") auto Failed to apply proof methods:
 goal (1 subgoal):
 1. itrev xs ys = rev xs @ ys
<
\begin{tabular}{|c|c|c|}
\hline lemma "itrev [1,2] & [] = rev [1,2] @ []" by auto & \\
\hline lemma "itrev [1,2,3] & [] = rev [1,2,3] @ []" by auto & \\
\hline lemma "itrev [''a'',''b''] & [] = rev [''a'',''b''] @ []" by auto & - many concrete cases \\
\hline lemma "itrev [\(\mathrm{x}, \mathrm{y}, \mathrm{z}\)] & [] = rev [x,y,z] @ []" by auto & \\
\hline
\end{tabular}
```


## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys"
<- one abstract representation
by(induct xs ys rule:"itrev.induct") auto
```



## ML for Inductive Theorem Proving the BAD

```
lemma "itrev xs ys = rev xs @ ys"
<- one abstract representation
by(induct xs ys rule:"itrev.induct") auto
0
```



## ML for Inductive Theorem Proving the BAD

## polymorphism

```
lemma "itrev xs ys = rev xs @ ys"
<- one abstrack representakion
by(induct xs ys rule:"itrev.induct") auto
```

- 

| lemma "itrev [1,2] | [] = rev [1,2] @ []" by auto |  |
| :---: | :---: | :---: |
| lemma "itrev [1,2,3] | [] = rev [1,2,3] @ []" by auto |  |
| lemma "itrev [''a'',''b''] | [] = rev [''a'',''b''] @ []" by auto | - many concrete cases |
| lemma "itrev [ $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ] | [] = rev [x,y,z] @ []" by auto |  |

## ML for Inductive Theorem Proving the BAD

## polymorphism type class

```
lemma "itrev xs ys = rev xs @ ys"
<- one abstrack representakion
by(induct xs ys rule:"itrev.induct") auto
```

응

| lemma "itrev [1,2] | [] = rev [1,2] @ []" by auto |  |
| :---: | :---: | :---: |
| lemma "itrev [1,2,3] | [] = rev [1,2,3] @ []" by auto |  |
| lemma "itrev [''a'',''b''] | [] = rev [''a'',''b''] @ []" by auto | - many concrete cases |
| lemma "itrev [x,y,z] | [] = rev [x,y,z] @ []" by auto |  |

## ML for Inductive Theorem Proving the BAD

## polymorphism <br> type class

## universal quantifier

lemma "itrev xs ys = rev xs @ ys"
<- one abstract representation by(induct xs ys rule:"itrev.induct") auto

O - abstraction using expressive logic


## ML for Inductive Theorem Proving the BAD

## Higher-Order functions

polymorphism
type class

## universal quantifier

```
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

O - abstraction using expressive logic


## ML for Inductive Theorem Proving the BAD

## Higher-Order functions

polymorphism
type class

## universal quantifier

## lambda abstraction

```
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

응 - abstraction using expressive logic


## ML for Inductive Theorem Proving the BAD

## Higher-Order functions

concise formula that can cover many concrete cases

## polymorphism

type class

## universal quantifier

## lambda abstraction

```
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

                응 - abstraction using expressive logic
    

## ML for Inductive Theorem Proving the BAD

## Higher-Order functions

polymorphism type class

## universal quantifier

concise formula that can cover many concrete cases
different proof for general case
lemma "itrev xs ys = rev xs @ ys"
<- one abstract representation
by(induct xs ys rule:"itrev.induct") auto
응 - abstraction using expressive logic


## ML for Inductive Theorem Proving the BAD

## Higher-Order functions

polymorphism type class

## universal quantifier

lambda abstraction
concise formula that can cover many concrete cases
different proof for general case

## A small data set is not a failure but an achievement!

```
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

                                    - abstrackion using expressive logic
    
<- many concrele cases

| lemma "itrev $[1,2]$ | []$=\operatorname{rev}[1,2]$ | @ []" by auto |
| :--- | :--- | :--- |
| lemma "itrev $[1,2,3]$ | []$=\operatorname{rev}[1,2,3]$ | @ []" by auto |
| lemma "itrev [''a'','b''] | []$=\operatorname{rev}\left[' '^{\prime \prime \prime}, ' b^{\prime \prime}\right]$ @ []" by auto |  |
| lemma "itrev $[x, y, z]$ | []$=\operatorname{rev}[x, y, z]$ | @ []" by auto |

## Grand Challenge: Abstract Abstraction



## Grand Challenge: Abstract Abstraction

```
Zemma "star r x y \Longrightarrow star r y z \Longrightarrow star r x z"
by(induction rule: star.induct)(auto simp: step)
 lemma "exec (is1 @ is2) s stk =
 exec is2 s (exec is1 s stk)"
```

<- small dalasel about
different domains

```
by(induct is1 s stk rule:exec.induct) auto
 lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```



```
<- abstraction using expressive logic
\begin{tabular}{lll}
lemma "itrev \([1,2]\) & {[]\(=\operatorname{rev}[1,2]\)} & @ []" by auto \\
lemma "itrev \([1,2,3]\) & {[]\(=\operatorname{rev}[1,2,3]\)} & @ []" by auto \\
lemma "itrev [''a'','b''] & {[]\(=\operatorname{rev}\left[' '^{\prime \prime \prime}, ' b^{\prime \prime}\right]\) @ []" by auto } \\
lemma "itrev \([x, y, z]\) & {[]\(=\operatorname{rev}[x, y, z]\)} & @ []" by auto
\end{tabular}
```


## Grand Challenge: Abstract Abstraction



## Grand Challenge: Abstract Abstraction

Abstract notion of "good" application of induction. <- even more abstract Heuristics that are valid across problem domains.


```
#emma "star r x y \Longrightarrow star r y z # star r x z"
 by(induction rule: star.induct)(auto simp: step)
 lemma "exec (is1 @ is2) s stk =
 exec is2 s (exec is1 s stk)"
by(induct isl s stk rule:exec.induct) auto
 lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

<- small dataset about different domains
<- one abstract representation


- abstrackion using expressive logic

| lemma | "itrev | [1,2] | [] = rev | [1,2] |  |  | [] | ]" | by |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lemma | "itrev | [1,2,3] | [] = rev | [1,2,3] |  |  |  | ] | by | uto |
| lemma | "itrev | 'a'' | [] = rev | [' 'a' | 'b'] | @ |  |  |  |  |
| lemma | itrev | $x, y, z]$ | [] = rev | $[x, y, z]$ |  |  | [] |  |  |  |

<- many concrele cases

## Grand Challenge: Abstract Abstraction

Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

- even more abstract



## Grand Challenge: Abstract Abstraction

Abstract notion of "good" application of induction. <- even more abstract Heuristics that are valid across problem domains.

```
<- pros: good at ambiguity (heuristics)
```

<- cons: bad at reasoning \& abstraction

```
(Zemma "star r x y \Longrightarrow star r y z \Longrightarrow star r x z"
 by(induction rule: star.induct)(auto simp: step)
 lemma "exec (is1 @ is2) s stk =
 exec is2 s (exec is1 s stk)"
 by(induct is1 s stk rule:exec.induct) auto
 lemma "itrev xs ys = rev xs @ ys"
```



```
<- abstraction using expressive logic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline lemma & "itrev & [1,2] & [] = rev & 1,2] & & @ & [] &] & by & auto \\
\hline lemma & "itrev & [1,2,3] & [] = rev & \([1,2,3]\) & & @ & [& [& by & auto \\
\hline lemma & "itrev & [''a'','b''] & [] = rev & ['a' & \(\left.\mathrm{b}^{\prime}\right]\) & @ & [& & by & auto \\
\hline lemma & "itrev & [\(x, y, z\)] & [] = rev & [\(x, y, z\)] & & & & & & auto \\
\hline
\end{tabular}
<- many concrete cases
```


## Many key challenges remain

Unsupervised Learning
Memory and one-shot learning Imagination-based Planning with Generative Models

Learning Abstract Concepts
Transfer Learning
Language understanding


March 20, 2019


## Many key challenges remain

Unsupervised Learning
Memory and one-shot learning Imagination-based Planning with Generative Models

## Learning Abstract Concepts

Transfer Learning
Language understanding


CENTER FOR Brains Minds+ Machines

## March 20, 2019



## Many key challenges remain

Unsupervised Learning
Memory and one－shot learning
Imagination－based Planning with Generative Models

March 20， 2019
Learning Abstract Concepts

## Abstract conceptsといえば

## Many key challenges remain

Unsupervised Learning
Memory and one－shot learning
Imagination－based Planning with Generative Models

Learning Abstract Concepts
Abstract conceptsといえば
March 20， 2019

論理でしょう。
https：／／cbmm．mit．edu／video／power－self－learning－systems

## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract Heuristics that are valid across problem domains.


```
#emma "star r x y \Longrightarrow star r y z # star r x z"
by(induction rule: star.induct)(auto simp: step)
 lemma "exec (is1 @ is2) s stk =
 exec is2 s (exec is1 s stk)"
 by(induct is1 s stk rule:exec.induct) auto
 lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

<- abstrackion using expressive Logic


## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract Heuristics that are valid across problem domains.

<- abstraction using expressive logic


## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract Heuristics that are valid across problem domains.

abseraction using
another Logic (LIFEEr)

```
Zemma "star r x y \Longrightarrow star r y z \Longrightarrow star r x z"
by(induction rule: star.induct)(auto simp: step)
 lemma "exec (is1 @ is2) s stk =
 exec is2 s (exec is1 s stk)"
 by(induct isl s stk rule:exec.induct) auto
 lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
```

<- abstraction using expressive logic


## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract Heuristics that are valid across problem domains.
$\frac{0}{O}$ abstrackion using
<- pros: good at rigorous abstraction

```
#emma "star r x y \Longrightarrow star r y z \Longrightarrow star r x z"
by(induction rule: star.induct)(auto simp: step)
```

lemma "exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
<- small dakaset about
different domains
by(induct isl s stk rule:exec.induct) auto
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto

```
<- abstraction using expressive logic
```



## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract


## Logic about Proofs to Abstract Abstraction

Abstract notion of "good" application of induction.
<- even more abstract Heuristics that are valid across problem domains.
$\underset{\sim}{1} \quad \begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ abstraction using
another Logic (LiFEEr)

```
Zemma "star r x y }\Longrightarrow\mathrm{ star r y z # star r x z"
#emma "star r x y # star r y z # star r x z"
```

lemma "exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
lemma "exec (is1 @ is2) s stk =
<- pros: good at rigorous abseraction

by(induct isl s stk rule:exec.induct) auto
lemma "itrev xs ys = rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto
<- abstrackion using expressive logic


## Big Picture

abstraction using <- pros: good at rigorous abseraction another Logic (LiFEEr)

> (temma "star r x y $\Longrightarrow$ star ryz $\Longrightarrow$ star r x z" by(induction rule: star.induct)(auto simp: step)
lemma "exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
<- small dataset about
different domains
by(induct is1 s stk rule:exec.induct) auto
lemma "itrev xs ys $=$ rev xs @ ys"
by(induct xs ys rule:"itrev.induct") auto <- one abstract representation
<- abstraction using expressive logic


## Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture


<- abstraction using expressive logic


## Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture


<- abstraction using expressive logic


## Abstract notion of "good" application of induction.

 Heuristics that are valid across problem domains.
## Big Picture


<- abstrackion using expressive logic


## Big Picture


<- abstraction using expressive logic


## Big Picture



## Big Picture



## Big Picture



## Big Picture



Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture



## Big Picture



Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture


<- abstraction using expressive logic

| lemma | "itrev | $[1,2]$ | [] = re | v [1,2] |  | @ | ] | by | auto | <- many concrete cases |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lemma | "itrev | [1,2,3] | [] = rev | [ $1,2,3]$ |  | @ | [] | b | $y$ auto |  |  |
| lemma | "itrev | [''a',''b''] | [] = re | rev [''a','' | 'b''] | @ | [] | b | $y$ auto |  |  |
| lemma | "itrev | $[x, y, z]$ | [] = re | v $[x, y, z]$ |  |  |  |  | auto |  |  |

Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture

## E

<- pros: good at ambiguity (heuristics)


| 0 |
| :--- |
| 0 |
| 0 |

<- abstraction using expressive logic

<- many concrete cases

## Example Assertion in LiFtEr (in Abstract Syntax)

$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term.
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$

## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
\existsr1 : rule. True
\existsr1 : rule.
 t1 : term.
 to1 : term_occurrence \in t1 : term.
 r1 is_rule_of to1
 \wedge
 \forallt2 : term \in induction_term.
 to2 : term_occurrence }\int2: term
 \exists : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
\existsr1 : rule. True
\existsr1 : rule.
 \existst1 : term.
 to1 : term_occurrence \in t1 : term.
 r1 is_rule_of to1
 \ conjunction
 \forallt2 : term \in induction_term.
 to2 : term_occurrence }\int2: term
 \exists : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
 \existsr1 : rule. True
 variable for auxiliary lemmas
 \existsr1 : rule.
 \existst1 : term.
 to1 : term_occurrence \in t1 : term.
 r1 is_rule_of to1
 \ conjunction
 t2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2: term
 \exists : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
 \existsr1 : rule. True
 variable for auxiliary lemmas
 \existsr1 : rule.
 t1 : term. & vriable for kerms
 to1 : term_occurrence }\int1: term
 r1 is_rule_of to1
 < conjunction
 t2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2 : term.
 \exists : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
 \existsr1 : rule. True
 variable for auxiliary lemmas
 \existsr1 : rule.
 \exists1 : term. & variable for berms
 \existsto1 : term_occurrence }\int1 : term.
 r1 is_rule_of tol variable for lerm occurrences
 < conjunction
 t2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2 : term.
 \exists : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
 \existsr1 : rule. True
 variable for auxiliary lemmas
 \existsr1 : rule.
 t1 : term. & vaiable for lerms
 to1 : term_occurrence }\int1 : term.
 r1 is_rule_of tol variable for berm occurrences
 < conjunction
 \forall2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2 : term.
 \exists : number. variable for nabural numbers
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
\existsr1 : rule. True
 variable for auxiliary lemmas
 \existsr1 : rule.
 t1 : term. & variable for berms
 \exists to1 : term_occurrence G t1 : term.
 r1 is_rule_of tol variable for berm occurrences
 \wedge conjunction
 t2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2: term.
 \exists}\mathrm{ : number. variable for natural
 is_nth_argument_of (to2, n, to1)
universal
 quankifier
 ^
 t2 is_nth_induction_term n
```


## Example Assertion in LiFtEr (in Abstract Syntax)

```
implication
 r1 : rule. True
 variable for auxiliary lemmas
 \exists r1 : rule.
 t1 : term. & variable for terms
 \exists to1 : term_occurrence € t1 : term.
 r1 is_rule_of to1 * variable for berm occurrences
 & conjunction
 t2 : term \in induction_term.
 to2 : term_occurrence }\int2 : term
 \exists}\mathrm{ : number. &ariable for natural numbers
 is_nth_argument_of (to2, n, to1)
 universal
 quankifier
 ^
 t2 is_nth_induction_term n
```

    \(\exists t 1\) : term.
        \(\exists\) to1 : term_occurrence \(\in t 1\) : term.
        \(r 1\) is_rule_of tol
            \(\wedge\)
                \(\forall t 2\) : term \(\in\) induction_term.
                    \(\exists t o 2\) : term_occurrence \(\in t 2\) : term.
                \(\exists n\) : number.
                is_nth_argument_of (to2, \(n, t o 1\) )
                    \(\wedge\)
                        \(t 2\) is_nth_induction_term \(n\)
    $\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term.
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists t o 1$ : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1
$\wedge$
$\forall t 2:$ term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number. is_nth_argument_of (to2, $n, t o 1$ )
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term.
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists$ to1 : term_occurrence $\in t 1$ : term.
( $\mathrm{EO}=\mathrm{I}=\mathrm{Brev}$ )
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term.
( $k 1=$ itrev)
( $\mathrm{Co} 1=$ ierev )
$r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\operatorname{Col}=$ ierev)
$r 1$ is_rule_of tol True! r1 (=itrev.induct) is a Lemma about tol (= itrev).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\mathrm{CO}=$ ierev)
$r 1$ is_rule_of to1 True! r1 (=itrevinduct) is a Lemma about tol (= itrev).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\operatorname{Col}=$ itrev)
$r 1$ is_rule_of to1 True! r1 (=itrevinduct) is a Lemma about tol (= itrev).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1 True! r1 (=itrevinduct) is a Lemma about tol (= itrev). $\wedge$
$\forall t 2:$ term $\in$ induction_term.
$\exists$ to2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$

apply(induct xs ys rule:"itrev.induct")
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1 True! r1 (=itrevinduct) is a Lemma about tol (= itrev). $\wedge$
$\forall t 2:$ term $\in$ induction_term.
$\exists$ to2 : term_occurrence $\in t 2$ : term. ( $\mathrm{to2}=x s$ and $y^{s}$ )
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term.

$$
\wedge
$$

```
 \forallt2 : term \in induction_term.
```

            \(\exists t o 2\) : term_occurrence \(\in t 2\) : term. ( \(602=x s\) and \(y^{s}\) )
                \(\exists n\) : number.
                is_nth_argument_of (to2, \(n, t o 1\) )
                    \(\wedge\)
                        \(t 2\) is_nth_induction_term \(n\)
    LoI "itrev \((x \# x s) y s=i t r e v x s(x \# y s) "\)
                apply(induct xs ys rule:"itrev.induct")
    $\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term.
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to2 : term_occurrence $\in t 2$ : term. ( $\mathrm{EOL}=x s$ and $y^{s}$ )
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
t2 is_nth_induction_term $n$
$\forall t 2:$ term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term. ( $\quad\left(602=x s\right.$ and $\left.y^{s}\right)$
$\exists n$ : number.
is_nth_argument_of (to2, $n$, to1) True for $\times s(n=1)$ !
$t 2$ is_nth_induction_term $n$

$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\mathrm{Co} 1=$ iErev)
$r 1$ is_rule_of to1 True! r1 (=itrev.induct) is a Lemma about tol (=itrev).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term. ( $12=x=2$ and $y s)$
$\exists n$ : number.
is_nth_argument_of (to2, $n$, to1) True for $\times s(n=1)$ !
$t 2$ is_nth_induction_term $n \quad$ True for $y s(n=2)$ !
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$

```
the same LiflEr assertion
 \exists}1\mathrm{ : rule. True
\exists r1 : rule.
 \exists t1 : term.
 to1 : term_occurrence \in t1 : term.
 r1 is_rule_of to1
 ^
 \forall2 : term \in induction_term.
 to2 : term_occurrence \in t2 : term.
 \exists n : number.
 is_nth_argument_of (to2, n, to1)
 \wedge
 t2 is_nth_induction_term n
```

```
the same LiflEr assertion
 \existsr1 : rule. True
\existsr1 : rule.
 t1 : term.
 to1 : term_occurrence \in t1 : term.
 r1 is_rule_of to1
 ^
 \forallt2 : term \in induction_term.
 \existsto2 : term_occurrence }\int2 : term.
 \exists n : number.
 is_nth_argument_of (to2, n, to1)
 \wedge
 t2 is_nth_induction_term n
```

```
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
```

fun exec 1 :: "instr $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exe cl (LOADI n) _ st $=n$ \# st" |
new constants $\rightarrow$
"exp cl (LOAD x) $\bar{s}$ sta $=s(x)$ \# stk" |
"exe cl ADD _ (j\#i\#stk) = (i + j) \# sta"
fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ st = stk" |
the same Lifter assertion "exec (i\#is) s str =exec is s (exec is sta)"
$\exists r 1$ : rule. True
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term.
$r 1$ is_rule_of to 1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oD, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
new types $\rightarrow$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
the same Lifter assertion "exec (i\#is) s stk $=$ exec is $s$ (execl i s stk)"
new Lemma $\rightarrow$ lemma "exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
a model proof $\rightarrow$ apply(induct isl s stk rule:exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number. is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
datatype
type_synonym stack = "val list"

$$
\begin{array}{rlrl}
\text { fun exec1 : : "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "exec1 (LOADI n) } & \text { stk } & =n & \text { \# stk" } \\
\text { "execl (LOAD x) s stk } & =s(x) \quad \# \text { stk" } \\
\text { "execl ADD } & =(j \# i \# s t k) & =(i+j) \# \text { stk" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s stk $=$ exec is $s(e x e c 1$ i s stk)"
new lemma $\rightarrow$ lemma "exec (is1 @ is2) s stk $=$ exec is2 s (exec is1 s stk)"
a model proof $\rightarrow$ apply(induct is1 s stk rule:exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number. is_nth_argument_of (to2, $n, t o 1$ ) $\wedge$
$t 2$ is_nth_induction_term $n$

```
 new lypes }
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
fun exec1 :: "instr }=>\mathrm{ state }=>\mathrm{ stack }=>\mathrm{ stack" where
new constants ->
 "exec1 (LOADI n) _ stk = n # stk"
 "exec1 (LOAD x) s stk = s(x) # stk" |
 "exec1 ADD _ (j#i#stk) = (i + j) # stk"
fun exec :: "instr list }=>\mathrm{ state }=>\mathrm{ stack }=>\mathrm{ stack" where
 "exec [] _ stk = stk" |
 "exec (i#is) s stk = exec is s (execl i s stk)"
 new Lemma }->\mathrm{ lemma "exec (isl @ is2) s stk = exec is s (exec isl s
 a model proof }->\mathrm{ >apply(induct isl s stk
 \existsr1 : rule. True apply auto done
->
 \existsr1 : rule.
 (r1 = exec.induct)
 t1 : term.
 to1 : term_occurrence }\int1: term
 r1 is_rule_of to1
 ^
 \forall2 : term \in induction_term.
 to2 : term_occurrence }\int2 : term.
 \existsn : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```

datatype
type_synonym stack = "val list"

$$
\begin{array}{rlrl}
\text { fun exec1 : : "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "exec1 (LOADI n) } & \text { stk } & =n & \text { \# stk" } \\
\text { "execl (LOAD x) s stk } & =s(x) \quad \# \text { stk" } \\
\text { "execl ADD } & =(j \# i \# s t k) & =(i+j) \# \text { stk" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s stk = exec is s (exec1 i s stk)"
new lemma $\rightarrow$ lemma "exec (is1 @ is2) s stk $=$ exec is2 s (exec is1 s stk)"
a model proof $\rightarrow$ apply(induct is1 s stk rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. $r 1$ is_rule_of to1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number. is_nth_argument_of (to2, $n, t o 1$ ) $\wedge$
$t 2$ is_nth_induction_term $n$

```
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
```


fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ st = stk" |
"exec (i\#is) s sta = exec is s (exec is sta)"
new Lemma $\rightarrow$ lemma "exec (isl @ is) s stk = exec is s (exec is 1 s stg)"
a model proof $\rightarrow$ apply(induct isl s sta rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
( $r_{1}=$ execinduct)
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term.
$r 1$ is_rule_of to 1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oD, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
datatype
type_synonym stack = "val list"

$$
\begin{array}{rlrl}
\text { fun exec 1 : : "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "ext cl (LOADI n) } & \text { st } & =n & \text { \# sta" } \\
\text { "eve cl (LOAD x) s st } & =s(x) \quad \# \text { st" } \\
\text { "exec ADD } & =(j \# i \# s t k) & =(i+j) \# \text { st" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s sta = exec is s (exe cl i s sta)"
new Lemma $\rightarrow$ lemma "exec (isl @ is) s stk = exec is s (exec isl s stg)"
a model proof $\rightarrow$ apply(induct isl s st rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.

new conscancs $\rightarrow$

```
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
```


fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s sta = exec is s (exec is sta)"
new Lemma $\rightarrow$ lemma "exec (isl @ is) s stk = exec is s (exec is 1 s stg)"
a model proof $\rightarrow$ apply(induct isl s sta rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term. ( $\mathrm{El}=$ exec)
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\mathfrak{t o l}=$ exec )
$r 1$ is_rule_of to 1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oD, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
new types $\rightarrow$
datatype
instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"

$$
\begin{array}{llll}
\text { fun exec :: "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "exp cl (LOADI n) } & \text { st } & =n & \# \text { sta" } \\
\text { "exec (LOAD x) s st } & = & s(x) & \# \text { sta" } \\
\text { "exp cl ADD } & (j \# i \# s t k) & =(i+j) \# \text { sta" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s sta $=$ exec is $s(e x e c 1 i \operatorname{stk}) "$
new Lemma $\rightarrow$ lemma "exec (isl @ is) s st = exec is s (exec isl s sta)"
a model proof $\rightarrow$ apply(induct isl s sta rule:exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. (bol = exec) $r 1$ is_rule_of to 1
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oz, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
new types $\rightarrow$
$\begin{array}{ll}\text { datatype } & \text { instr }=\text { LOADI val | LOAD vname | ADD } \\ \text { type_synonym stack }=\text { "val list" }\end{array}$

$$
\begin{aligned}
& \text { fun exec1 :: "instr } \Rightarrow \text { state } \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
& \text { "exec1 ADD _ (j\#i\#stk) = (i + j) \# stk" }
\end{aligned}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s stk = exec is s (execl i s stk)"
new Lemma $\rightarrow$ lemma "exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)"
a model proof $\rightarrow$ apply(induct isl s stk rule:exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. ( $\operatorname{ko1}=$ exec )
$r 1$ is_rule_of tol True! r1 (= exec.induct) is a Lemma about bol (= exec). $\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists t o 2$ : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
new types $\rightarrow$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"

$$
\begin{array}{rlrl}
\text { fun exec 1 :: "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "ext ct (LOADI n) } & \text { st } & = & n \\
\text { "ext cl (LOAD x) s st" } & \text { s sta" } \\
\text { "ext cl ADD } & = & s(x) & \# \text { sta" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s sta $=$ exec is $s(e x e c 1 ~ i ~ s ~ s t k) " ~$
new Lemma $\rightarrow$ lemma "exec (isl @ is) s stk = exec is 2 s (exec is 1 s stg)"
a model proof $\rightarrow$ apply(induct isl s sta rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\mathfrak{b o 1}=$ exec )
$r 1$ is_rule_of to 1 True! rI (= exec.induct) is a Lemma about bol (= exec).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oz, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
new types $\rightarrow$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"

$$
\begin{array}{rlrl}
\text { fun exec 1 :: "instr } \Rightarrow \text { state } & \Rightarrow \text { stack } \Rightarrow \text { stack" where } \\
\text { "exc cl (LOADI n) } & \text { st k } & =n & \text { \# st" | } \\
\text { "exc cl (LOAD x) s st k } & =s(x) & \text { \# st" | } \\
\text { "exp cl ADD } & (j \# i \# s t k) & =(i+j) \# \text { sta" }
\end{array}
$$

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s sta $=$ exec is $s(e x e c 1 i \operatorname{stk}) "$
new Lemma $\rightarrow$ lemma "exec (is @ is) s st = exec is s (exec is 1 s sta)"
a model proof $\rightarrow$ apply(induct isl s sta rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\mathfrak{C o 1}=$ exec) $r 1$ is_rule_of to 1 True! rI (= exec.induct) is a Lemma about bol (= exec). $\wedge$
$\forall t 2$ : term $\in$ induction_term.
$\exists$ to 2 : term_occurrence $\in t 2$ : term.
$\exists n$ : number.
is_nth_argument_of (t oz, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$

```
 new lypes }
datatype instr = LOADI val | LOAD vname | ADD
type_synonym stack = "val list"
fun exec1 :: "instr }=>\mathrm{ state }=>\mathrm{ stack }=>\mathrm{ stack" where
new constants }
 "exec1 (LOADI n) _ stk = n # stk"
 "exec1 (LOAD x) s stk = s(x) # stk" |
 "exec1 ADD _ (j#i#stk) = (i + j) # stk"
fun exec :: "instr list }=>\mathrm{ state }=>\mathrm{ stack }=>\mathrm{ stack" where
"exec [] _ stk = stk" |
"exec (i#is) \overline{s stk = exec is s (execl i s stk)"}
 new lemma }->\mathrm{ lemma "exec (iss1 @ is2) s stk = exec is2 s\(exec is1 s stk)"
 a model proof }->\mathrm{ apply(induct is1 s stk rule:exec.induct)
 \existsr1 : rule. True apply auto done
->
 \exists r1 : rule.
 (r1 = exec.induce)
 t1 : term.
 (E1 = exec)
 to1 : term_occurrence }\int1\mathrm{ : term. (Lo1 = exec)
 r1 is_rule_of to1 True! rI (= exec.inducl) is a Lemma about bol (= exec).
 \wedge
 \forallt2 : term \in induction_term.
 (E2 = isI, s, and stk)
 to2 : term_occurrence }\int2: term
 \existsn : number.
 is_nth_argument_of (to2, n, to1)
 ^
 t2 is_nth_induction_term n
```

new types ->
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"
fun exec 1 : : "instr $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where

```
new conscancs }
```


"exp cl (LOAD x) $\bar{s}$ str $\quad=\mathrm{s}(x) \quad$ \# sta"
"exe ct ADD _ (j\#i\#stk) = (i + j) \# stk"
fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ st = stk" |
"exec (i\#is) s st = exec is s (exp cl is sta)"
new Lemma $\rightarrow$ lemma "exec (i sp @ is) s st k $=$ exec is s (exec is 1 s sta)"
a model proof $\rightarrow$ apply(induct isl s stk rule: exec. induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to 1 : term_occurrence $\in t 1$ : term. ( $\operatorname{ko1}=$ exec )
$r 1$ is_rule_of to 1 True! rI (= exec.induct) is a Lemma about bol (= exec).
$\wedge$
$\forall t 2$ : term $\in$ induction_term. ( $22=i s 1, s$, and ste)
$\exists$ to 2 : term_occurrence $\in t 2$ : term. (t oz $=i s 1, s$, and str)
$\exists n$ : number.
is_nth_argument_of (t oz, $n, t o 1$ )
$\wedge$
$t 2$ is_nth_induction_term $n$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"
fun exec 1 :: "instr $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where

```
new conscancs }
```

    "exe cl (LOADI n) _ st \(=n\) \# sta" |
    "exp cl (LOAD x) s st \(=s(x)\) \# stk"
    "exec ADD _ (j\#i\#stk) = (i + j) \# stk"
            fun exec :: "instr list \(\Rightarrow\) state \(\Rightarrow\) stack \(\Rightarrow\) stack" where
            "exec [] _ st = stk" |
                                "exec (i\#is) s st = exec is s (exp cl is sta)"
        new Lemma \(\rightarrow\) lemma "exec (is 1 @ is) s st \(=\) exec is s (exec isl s sta)"
    a model proof \(\rightarrow\) apply(induct isl s stg rule: exec. induct)
    \(\exists r 1\) : rule. True apply auto done
    \(\exists r 1\) : rule.
    \(\exists t 1\) : term.
        \(\exists\) to 1 : term_occurrence \(\in t 1\) : term. ( \(\operatorname{ko1}=\) exec )
        \(r 1\) is_rule_of to 1 True! rI (= exec.induct) is a Lemma about bol (= exec).
        \(\wedge\)
            \(\forall t 2:\) term \(\in\) induction_term.
                ( \(E_{2}=\) is 1, \(s\), and ste)
                    \(\exists t o 2:\) term_occurrence \(\in t 2:\) term. ( \(\mathrm{koz}=\mathrm{is1}, \mathrm{~s}\), and sk)
                \(\exists n\) : number.
                    is_nth_argument_of (t oz, \(n, t o 1\) )
                \(\wedge\)
                    \(t 2\) is_nth_induction_term \(n\)
    new types $\rightarrow$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"
fun exec1 :: "instr $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where

```
new conscancs }
```


fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" |
"exec (i\#is) s stk = exec is s (execl i s stk)"
new Lemma $\rightarrow$ lemma "exec (is ${ }^{\text {k2 }}$ @ is2) s stk $=$ exec is2 s (exec is1 s stk)"
a model proof $\rightarrow$ apply(induct isl s stk rule: exec.induct)
$\exists r 1$ : rule. True apply auto done
$\exists r 1$ : rule.
$\exists t 1$ : term.
$\exists$ to1 : term_occurrence $\in t 1$ : term. ( $\mathrm{kol}=$ exec )
$r 1$ is_rule_of to1 True! r1 (= exec.induct) is a Lemma about bol (= exec).
$\wedge$
$\forall t 2$ : term $\in$ induction_term.
( $E_{2}=$ is1, $s$, and stk)
$\exists$ to2 : term_occurrence $\in t 2:$ term. ( $\mathrm{koz}=i s 1, \mathrm{~s}$, and stk)
$\exists n$ : number.
is_nth_argument_of (to2, $n, t o 1$ )
$t 2$ is_nth_induction_term $n$
datatype
instr = LOADI val | LOAD vname | ADD type_synonym stack = "val list"
fun exec 1 :: "instr $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where

fun exec :: "instr list $\Rightarrow$ state $\Rightarrow$ stack $\Rightarrow$ stack" where
"exec [] _ stk = stk" | first
"exec (i\#is) $\bar{s}$ st $=$ exec is $s(e x e c 1 ~ i ~ s ~ s t k) " ~(~$
new Lemma $\rightarrow$ lemma "exec (i ss @ is) s st k $=$ exec is ${ }^{\text {ko l }}$ (exec is 1 s sta)"
a model proof $\rightarrow$ apply(induct isl s stg rule: exec.induct)
$\exists r 1$ : rule. True apply auto done]
$\exists r 1$ : rule.
first

```
new conscanes }
```





Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture

## 榃

<- pros: good at ambiguity (heuristics)

## $[[T, F, T][T, T, T],[F, T, T]]$ boolliSt $<$ - simple representation

 by(induction r
lemma "exec (is1 @ is2) s exec is2 s (exec is by(induct isl s stk rule:e

^to simp: step)

- small dataset about different domains
lemma "itrev xs ys = rev xs @ ys" <- one abstract representation by(induct xs ys rule:"itrev.induct") auto


Abstract notion of "good" application of induction. Heuristics that are valid across problem domains.

## Big Picture

## 랄

<- pros: good at ambiguity (heuristics)



Registration is now closed.
Background

## http://aitp-conference.org/2019/

Large-scale semantic processing and strong computer assistance of mathematics and science is our inevitable future. New combinations of Al and reasoning methods and tools deployed over large mathematical and scientific corpora will be instrumental to this task. The AITP conference is the forum for discussing how to get there as soon as possible, and the force driving the progress towards that.

## Topics

- Al and big-data methods in theorem proving and mathematics
- Collaboration between automated and interactive theorem proving
- Common-sense reasoning and reasoning in science
- Alignment and joint processing of formal, semi-formal, and informal libraries
- Methods for large-scale computer understanding of mathematics and science
- Combinations of linguistic/learning-based and semantic/reasoning methods


## Feature extractor?

lemma "map f (sep x xs) = sep (f x) (map f xs)"

## Feature extractor?

fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where "sep a [] = []" | "sep a [x] = [x]" |
"sep a (x\#y\#zs) = x \# a \# sep a (y\#zs)"
automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$

## Feature extractor?

fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where "sep a [] = []" | "sep $a[x]=[x] "$ |
"sep a (x\#y\#zs) = x \# a \# sep a (y\#zs)"
automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$ assertion 27: if the outermost constant is the HOL equality?

## Feature extractor?

fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where "sep a [] = []" | "sep $a[x]=[x] "$ |
"sep a (x\#y\#zs) = x \# a \# sep a (y\#zs)"
automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$ assertion 27: if the outermost constant is the HOL equality?

## Feature extractor?

## fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a }(y \# z s) "
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$
assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier?

## Feature extractor?

## fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a }(y \# z s) "
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$
assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier:

## Feature extractor?

fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep a }[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a }(y \# z s) "
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$
assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?

## Feature extractor?

fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep } a[]=[] " \mid \\
& \text { "sep a }[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a }(y \# z s) "
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x x s)=\operatorname{sep}(f x)(m a p f x s) "$
assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep a }[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a }(y \# z s) "
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.
lemma "map $f(\operatorname{sep} x \times s)=\operatorname{sep}(f x)(m a p f x s) "$
assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule?

## fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep } a[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid
\end{aligned}
$$

"sep a (x\#y\#zs) = x \# a \# sep a (y\#zs)"
automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.

## lemma "map $\mathrm{f}(\operatorname{sep} \mathrm{x} x \mathrm{~s})=\operatorname{sep}(\mathrm{f} x)(\operatorname{map} \mathrm{f} x$ ) "

assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule?

## fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=\text { x \# a \# sep a (y\#zs)" }
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.

## lemma "map $\mathrm{f}(\operatorname{sep} \mathrm{x} x \mathrm{~s})=\operatorname{sep}(\mathrm{f} x)(\operatorname{map} \mathrm{f} x$ ) "

assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule?
fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep } a[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a (y\#zs)" }
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.

## lemma "map $\mathrm{f}(\operatorname{sep} \mathrm{x} x \mathrm{~s})=\operatorname{sep}(\mathrm{f} x)(\operatorname{map} \mathrm{f} x$ ) "

assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule? assertion 58: the context has a constant defined with the "fun" keyword?
fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep } a[]=[] " \mid \\
& \text { "sep } a[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=x \text { \# a \# sep a (y\#zs)" }
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.

## lemma "map $\mathrm{f}(\operatorname{sep} \mathrm{x} x \mathrm{~s})=\operatorname{sep}(\mathrm{f} x)(\operatorname{map} \mathrm{f} x$ ) "

assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule? assertion 58: the context has a constant defined with the "fun" keyword?
fun sep::"'a $\Rightarrow$ 'a list $\Rightarrow$ 'a list" where

$$
\begin{aligned}
& \text { "sep a }[]=[] " \mid \\
& \text { "sep a }[x]=[x] " \mid \\
& \text { "sep a }(x \# y \# z s)=\text { x \# a \# sep a (y\#zs)" }
\end{aligned}
$$

automatically proves and saves many auxiliary lemmas in the context sep.simps, sep.induct, sep.elims, etc.

## lemma "map $\mathrm{f}(\operatorname{sep} \mathrm{x} x \mathrm{~s})=\operatorname{sep}(\mathrm{f} x)(\operatorname{map} \mathrm{f} x$ ) "

assertion 27: if the outermost constant is the HOL equality? assertion 32: if the outermost constant is the HOL existential quantifier: assertion 93: if the goal has a term of type "real"?
assertion 10: the context has a related recursive simplincation rule? assertion 58: the context has a constant defined with the "fun" keyword?
resulting feature vector:


10th 27th 32nd 58th 93rd


[^0]:    I have doubts about various approaches proposed in the paper.

