

Deep Learning for Photoacoustic Tomography Department of Mathematics Research Group: Applied Mathematics Supervisor: Markus Haltmeier

Stephan Antholzer

Table of Content

- 1 Inverse Problem
- Photoacoustic Tomography (PAT)
- 8 Neural Networks
- Deep Learning (DL)
- G Combining DL and PAT
- G Conclusion & Summary
- Outlook

Inverse Problem

An inverse problem is a process of calculating causes from observations.

Inverse problems usually occur if I can not observe something directly for example

- computed tomography
- deconvolution
- B parameter estimation of differential equations

Inverse Problem

Figure: Idealized inverse problem. We know the model and measure the output. Then we want to calculate the causes.

Toy Example

For two numbers find the quadratic polynomial that has them as roots.

$$-1, 2 \Rightarrow (x+1)(x-2) = x^2 - x - 2$$
 or
 $21x^2 - 21x - 42$

If I do not have additional informations (e.g. coefficient of x^2 is 1), then the solution is **not unique**.

III Posed

Definition

A problem is ill posed if one of the following conditions is **violated**

- there is a solution
- the solution is unique
- B the solution depends continuously on the observations

Inverse problems are ill posed.

Photoacoustic Tomography

Figure: Principle of photoacoustic tomography. ©User:Bme591wikiproject / Wikimedia Commons / CC-BY-SA 3.0 / GFDL

Photoacoustic Tomography

Let $p_0: \mathbb{R}^2 \to \mathbb{R}$ denote the PA source (initial pressure distribution). The induced pressure wave satisfies the following equation

$$\partial_t^2 p(\mathbf{r}, t) - \Delta_{\mathbf{r}} p(\mathbf{r}, t) = 0$$

 $p(\mathbf{r}, 0) = p_0(\mathbf{r})$

Photoacoustic Tomography

number of sensors is limited \Rightarrow ill posed

Figure: Left. True image. Right. "Naive" reconstruction.

Neural Networks

- finding parameterized function (learning)
- minimize error on data
- Simple case: Linear Regression

Neural Networks

Neural Networks

$$\mathbf{o}^{(1)} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
$$\mathbf{o}^{(2)} = \sigma_1 \left(\begin{bmatrix} W_{1,1}^{(1)} & W_{1,2}^{(1)} & W_{1,3}^{(1)} \\ W_{2,1}^{(1)} & W_{2,2}^{(1)} & W_{2,3}^{(1)} \\ W_{3,1}^{(1)} & W_{3,2}^{(1)} & W_{3,3}^{(1)} \\ W_{4,1}^{(1)} & W_{4,2}^{(1)} & W_{4,3}^{(1)} \end{bmatrix} \mathbf{o}^{(1)} + \begin{bmatrix} b_1^{(1)} \\ b_1^{(1)} \\ b_2^{(1)} \\ b_3^{(1)} \\ b_4^{(1)} \end{bmatrix} \right)$$
$$\mathbf{o}^{(3)} = \sigma_2 \left(\begin{bmatrix} W_{1,1}^{(2)} & W_{1,2}^{(2)} & W_{1,3}^{(2)} \\ W_{2,1}^{(2)} & W_{2,2}^{(2)} & W_{2,3}^{(2)} \\ W_{2,1}^{(2)} & W_{2,2}^{(2)} & W_{2,4}^{(2)} \end{bmatrix} \mathbf{o}^{(2)} + \begin{bmatrix} b_1^{(2)} \\ b_1^{(2)} \\ b_2^{(2)} \end{bmatrix} \right)$$

- arbitrary weights too complex for images
- use convolutions
- non-linear layers (Max Pooling,...)
- "many" layers

- arbitrary weights too complex for images
- use convolutions
- non-linear layers (Max Pooling,...)
- "many" layers

apply network to simple/naive reconstruction \rightarrow post-processing approach

↑ ... Upsampling followed by 3 × 3 convolutions with ReLU as activation.

→ ...1 × 1 convolution followed by identity activation function.

Figure: U-net architecture used in Antholzer, Schwab, Haltmeier 2019. Deep learning from photoacoustic tomography from sparse data *Inverse problems in science and engineering*.

Figure: Left. Reference methods. Middle. CNN with wrong training data. Right. CNN with right training data.

Trained Regularizer

We consider the following problem

Estimate
$$x \in X$$
 from data $y_{\delta} = \mathcal{A}x + \xi_{\delta}$ (1)

Do this by solving the following problem

$$\mathcal{T}_{\alpha,y_{\delta}}(x) \coloneqq \|\mathcal{A}x - y_{\delta}\|_{2}^{2} + \alpha \mathcal{R}(x) \to \min_{x \in X}$$
(2)

Tikhonov regularization but now \mathcal{R} is a neural network.

 [Li/Schwab/Antholzer/Haltmeier 2018]
NETT: Solving Inverse Problems with Deep Neural Networks. arXiv:1802.00092 (in revision)

Trained Regularizer

[Antholzer/Schwab/Bauer-Marschallinger/Burgholzer/Haltmeier 2019] NETT regularization for compressed sensing photoacoustic tomography. SPIE proceeding.

Figure: From left to right: FBP, ℓ_1 -minimization, U-net and NETT.

Summary and Conclusion

- inverse problem (ill posed)
- photoacoustic tomography (medical imaging, undersampled)
- e neural networks (regression, layers, convolutions)
- Ineural networks as post-processing
- neural networks as regularizers
- neural network useful tool for inverse problems
- lacking theory
- NETT \rightarrow theory

Outlook

- Analysis of compressed sensing photoacoustic tomography
 - number of samples
 - uniqueness
 - convergence
 - sparsifying transform
- More theoretical results (convergence, ...)
- Clinical Applications