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Inverse Problem

An inverse problem is a process of calculating causes from
observations.

Inverse problems usually occur if I can not observe something
directly for example

1 computed tomography

2 deconvolution

3 parameter estimation of differential equations
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Inverse Problem

Model outputcauses

known

Figure: Idealized inverse problem. We know the model and
measure the output. Then we want to calculate the causes.
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Toy Example

For two numbers find the quadratic polynomial that has them
as roots.

−1, 2⇒(x + 1)(x− 2) = x2 − x− 2 or

21x2 − 21x− 42

If I do not have additional informations (e.g. coefficient of x2 is
1), then the solution is not unique.
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Ill Posed

Definition

A problem is ill posed if one of the following conditions is
violated

1 there is a solution

2 the solution is unique

3 the solution depends continuously on the observations

Inverse problems are ill posed.
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Photoacoustic Tomography

Figure: Principle of photoacoustic tomography.
©User:Bme591wikiproject / Wikimedia Commons / CC-BY-SA 3.0 /
GFDL
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Photoacoustic Tomography

Let p0 : R2 → R denote the PA source (initial pressure
distribution). The induced pressure wave satisfies the
following equation

∂2
t p(r, t)−∆rp(r, t) = 0

p(r,0) = p0(r)

(a) (b) (c)
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Photoacoustic Tomography

number of sensors is limited⇒ ill posed
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Figure: Left. True image. Right. "Naive" reconstruction.
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Neural Networks

• finding parameterized function (learning)
• minimize error on data
• Simple case: Linear Regression
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Neural Networks

Hidden
layer

Input
layer

Output
layer
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Neural Networks
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Deep Learning

• arbitrary weights too complex for images

• use convolutions

• non-linear layers (Max Pooling,...)

• "many" layers
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Deep Learning

• arbitrary weights too complex for images

• use convolutions

• non-linear layers (Max Pooling,...)

• "many" layers

apply network to simple/naive reconstruction→
post-processing approach
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Deep Learning

image size: 256× 256
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. . . 3× 3 convolutions followed by ReLU activation.

. . . Downsampling (2× 2 max−pooling).

. . . Upsampling followed by 3× 3 convolutions with ReLU as activation.

. . . 1× 1 convolution followed by identity activation function.

y = M∗

Figure: U-net architecture used in Antholzer, Schwab, Haltmeier
2019. Deep learning from photoacoustic tomography from sparse
data Inverse problems in science and engineering.
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Deep Learning

Figure: Left. Reference methods. Middle. CNN with wrong training
data. Right. CNN with right training data.
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Trained Regularizer

We consider the following problem

Estimate x ∈ X from data yδ = Ax + ξδ (1)

Do this by solving the following problem

Tα,yδ(x) := ‖Ax− yδ‖22 + αR(x)→ min
x∈X

(2)

Tikhonov regularization but now R is a neural network.

[Li/Schwab/Antholzer/Haltmeier 2018]
NETT: Solving Inverse Problems with Deep Neural Networks.
arXiv:1802.00092 (in revision)

Deep Learning for PAT 06.11.2019 11



Trained Regularizer

[Antholzer/Schwab/Bauer-Marschallinger/Burgholzer/Haltmeier
2019]
NETT regularization for compressed sensing photoacoustic
tomography. SPIE proceeding.

Figure: From left to right: FBP, `1-minimization, U-net and NETT.
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Summary and Conclusion

1 inverse problem (ill posed)

2 photoacoustic tomography (medical imaging,
undersampled)

3 neural networks (regression, layers, convolutions)

4 neural networks as post-processing

5 neural networks as regularizers

• neural network useful tool for inverse problems

• lacking theory

• NETT→ theory
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Outlook

• Analysis of compressed sensing photoacoustic
tomography
• number of samples
• uniqueness
• convergence
• sparsifying transform

• More theoretical results (convergence, ...)

• Clinical Applications
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