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Inverse Problems

Given: Observations (measurements) y
Wanted: Cause for the measured observations x

Inverse problems occur in almost all natural sciences, when the
searched for quantity can not be directly observed but has
impact on accessible measurements.



Inverse Problems

In the following:

A denotes the linear forward model, which describes how
the observations emerge. This means for given observations y,
the inverse problem consists in solving the equation

A(x) = y.



Ill-posed Problems

Definition
The problem of solving A(x) = y is called ill-posed, if one of
the following is true:

1) There exists no solution of the equation

2) The solution is not unique

3) The solution does not continuously depend on the data y
(Instability).



2) Non Uniqueness

A masking operator.

A



2) Non Uniqueness

A Radon transform (CT).

A

A



3) Instability
We consider imperfect data yδ, which has distance δ to the
perfect data y (‖yδ − y‖ = δ).
Small perturbations in the data can lead to major deviations in
the reconstruction.

A+

A+(y) ≈ x y

A+

A+(yδ) = xδ yδ



Regularization

Regularization methods adress all the issues of ill-posed
equations by solving a similar but well-posed problem.

Example:

A =

(
1 0
0 ε

)
A−1 =

(
1 0
0 1

ε

)
,

possible regularized inverse: R =

(
1 0
0 0

)



Regularization

The regularized solution is written as

xδ = Rδ(yδ).

Note that the approximate well-posed equation depends on the
level δ of data perturbation.

Rδ

Rδ(yδ) = xδ yδ



Post Processing Networks

Classical post processing networks consist of two steps

I Compute the regularized solution xδ = Rδ(yδ)

I Apply a convolutional neural network (CNN) Φ to
improve the reconstruction x̂ = Φ(xδ).

Typically x̂ is improved visually but it is not guaranteed that
it still explains the data.



Null Space Networks

Idea: Allow the CNN ΦN to only change parts in the solution
that do not change the data

x̂ = Rδ(yδ) + ΦN(Rδ(yδ))︸ ︷︷ ︸
A(ΦN(Rδ(yδ))=0

.

Schwab, J., Antholzer, S. & Haltmeier, M. ”Deep null space learning for inverse
problems: convergence analysis and rates.” Inverse Problems (2018).



Null Space Networks

= +

x̂ Rδ(yδ) ΦN(Rδ(yδ))

where A( ) = 0.



Regularizing Networks

Generalization of deep null space networks. Network depends
on the noise level

x̂ = Rδ(yδ) + Φδ
N(R̃δ(yδ))︸ ︷︷ ︸

A(Φδ
N(R̃δ(yδ))≤ε(δ)

.

Schwab, J., Antholzer, S. & Haltmeier, M. ”Big in Japan: Regularizing Networks
for Solving Inverse Problems.” Journal of Mathematical Imaging and Vision
(2019)



Regularizing Networks

= +

x̂ Rδ(yδ) Φδ
N(R̃δ(yδ))

where A( ) is small depending on the noise level δ.

Schwab, J., Antholzer, S., Nuster, R., Paltauf, G., & Haltmeier, M. ”Deep
Learning of truncated singular values for limited view photoacoustic
tomography.” Photons Plus Ultrasound: Imaging and Sensing 2019



Conclusion and Outlook

I Introduction of data consistent post processing networks

I Convergence analysis of deep learning supported
reconstruction methods

I Quantitative error estimates

Current and future work:

I Generalization to non-linear inverse problems

I Implementation for real tomographic devices


