Starred exercises are optional.

- 1) a) Let $f(n) = n + \sqrt{n}$ and $g(n) = n^3 + 2n^2 + 1$. Use $\limsup_{n \to \infty} \frac{f(n)}{g(n)}$ and $\liminf_{n \to \infty} \frac{f(n)}{g(n)}$ to determine each of $f \in O(g), \Omega(g), \Theta(g)$.
 - b) Let $f, g, h : \mathbb{N} \to [0, \infty)$. Give a proof or a counterexample for the following statements:
 - If $f, g \in \Omega(h)$ and g(n) > 0 for all $n \in \mathbb{N}$, then $\frac{f}{g} \in \Omega(h)$
 - if $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$
- 2) Consider the Haskell function mirror:

mirror :: BinTree a -> BinTree a
mirror Empty = Empty
mirror (Node tL x tR) = Node (mirror tR) x (mirror tL)

Can the Master Theorem be used to determine the runtime of mirror?

- a) Find a counterexample that shows that it is not possible to apply the Master theorem
- b) Propose additional assumptions that allow the application of the theorem
- c) Write the equation for the problem with the additional proposed assumptions, and determine the complexity using the Master theorem
- 3) Suppose to have the following recurrence $T(n) = T(\frac{n}{2}) + 2 \cdot T(\frac{n}{4}) + 1$ for inputs n of shape 2^k where $k \ge 2$, and T(n) = 1 for inputs $n = 2^0 = 1$ and $n = 2^1 = 2$.
 - a) Compute the values of T for inputs $n = 2^k$ where $k \in \{0, 1, \dots, 10\}$.
 - b) Argue that a closed form for T cannot be found by applying the Master Theorem.
 - c) i) Either guess a closed form for T (try to see a pattern in the values computed in a)) and verify that it's correct;
 - ii) Or prove that for all $k, T(2^k) \le 2^k$. Hint: show that if k is even then $T(2^k) \le 2^k$ and if k is odd then $T(2^k) \le 2^k - 1$.

Clearly indicate your choice among these two items.

- 4^{*}) Answer one of the following two items, clearly indicating your choice.
 - i) Give monotonically increasing functions $f, g : \mathbb{N} \to [0, \infty)$ with $f \notin O(g)$ and $g \notin O(f)$, where a function h is monotonically increasing if for all x, y, if $x \leq y$ then $h(x) \leq h(y)$.¹ Are there countably infinitely many such functions? That is, are there monotonically increasing $f_i : \mathbb{N} \to [0, \infty)$ for $i \in \mathbb{N}$ that are all incomparable, i.e. such that if $i \neq j$, then $f_i \notin O(f_i)$? If so, give such functions. If not, argue why.
 - ii) Rivest (the R in RSA) constructed the crypto-puzzle LCS35 in 1999, expecting that it would take 35 years to decrypt. It was decrypted last year (twice, independently, by a person first and one day later by a group of people). Give the exact problem statement, explain what makes/made the problem difficult, and how knowing the factors of the product of primes in it would make the problem easier.

¹Note that the functions $x \mapsto \sin(x) + 1$ and $x \mapsto \cos(x) + 1$ as discussed in the lecture, only satisfy 'half' the specification as they are not monotonically increasing.