
Discrete Structures LVA 703070
Solutions 10th PS Sheet Department of Computer Science

1) a) By definition lim supn→∞
f(n)
g(n) = limn→∞(sup{f(m)

g(m) | m ≥ n}). With high school math

it holds for all n ∈ N that 0 ≤ f(n)
g(n) ≤

n
n3 +

√
n

n3 = 1
n2 + 1√

n5
. Since limn→∞

1
n2 = 0 and

limn→∞
1√
n5

= 0 it follows that lim supn→∞
f(n)
g(n) = lim infn→∞

f(n)
g(n) = 0. Thus, f ∈ O(g)

and f /∈ Ω(g). Hence, f /∈ Θ(g).

b) • Counterexample: Let f(n) = g(n) = h(n) = n + 1. We have f(n) ≥ h(n) and
g(n) ≥ h(n). With the parameters c = 1 and m = 1 from the Big-Omega definition
it follows that f, g ∈ Ω(h). But for all n ∈ N we have f(n)

g(n) = 1 and limn→∞
1

h(n) =

lim infn→∞
1

h(n) = 0, thus, f
g /∈ Ω(h).

• Proof: By definition we have cf , cg > 0 and mf ,mg ∈ N such that f(n) ≤ cf · g(n)
for all n ≥ mf and g(n) ≤ cg ·h(n) for all n ≥ mg. Inserting the second inequality in
the first gives us f(n) ≤ cf · cg · h(n). With c = cf · cg and m = max(mf ,mg) from
the Big-O definition it follows that f ∈ O(h).

2) a) In order to apply the master theorem, a recurrence equation of particular shape is requi-
red. However, no matter how we specify the parameters in the equation of this shape,
we can always find a counterexample tree that is imbalanced in such a way that the
recurrence is not satisfied. Therefore, it is not possible to apply the master theorem.

b) For balanced trees, we can specify a recurrence in the form satisfied by the master theo-
rem. Assuming the allocation of the node takes O(1) and the subtrees can be reused, the
recurrence is:

T (n) = 2T (
n

2
) + O(1)

which allows the application of the master theorem.

c) From the equation:
T (n) = 2T (

n

2
) + O(1)

We specify the parameters to use in the application of the master theorem:

a = 2 b = 2 s = 0

As a > bs, we are in the first case of the theorem. The theorem then states that:

mirror ∈ Θ(nlogba) = Θ(n)

An alternative solution might give a different assumption. For example, a solution might
consider only trees that have only left children, or that are of a limited size. Then different
answers are possible.

3) a) 1, 1, 4, 7, 16, 31, 64, 127, 256, 511, 1024, e.g. by evaluating map tp [0..10] in Haskell for:

t n = if n < 4 then 1 else t (n ‘div‘ 2) + 2 * t (n ‘div‘ 4) + 1
tp k = t (2^k)

1



b) For the Master Theorem to apply to a recurrence, it must have a single recursive call to
the function being defined. Here there are two such calls, namely T (n2 ) and T (n4 ).
Remark: If it is known that T is increasing, one can try to consider an alternative recur-
rence to which the Master Theorem does apply and such that T is bounded (from above)
by it, e.g. here one may consider U(n) = 3 ·U(n2 ) + 1 as T ≤ U , using that T (n4 ) ≤ T (n2 )
for all n. However, U is only an upper bound to T and typically, and also in this case
as a = 3, b = 2 and s = 0 yielding solution nlog2 3, U may be strictly larger (also qua
asymptotic complexity) than T .

c) We choose the first option.1 First observing that the sequence in the first item progresses
almost as powers of 2, and next that the difference is 1 for odd powers, i.e. 20, 21 −
1, 22, 23− 1, . . ., we guess the solution for inputs of shape 2k is the function f that maps
2k to 2k if k is even and to 2k − 1 otherwise.

It remains to show that f is indeed the solution for the recurrence, i.e. that f(2k) =
f(2k−1) + 2 · f(2k−2) + 1 if k ≥ 2, and f(2k) = 1 for k = 0 and k = 1. This we prove
by universal generalisation and case distinction on k. If k = 0 then f(2k) = f(1) = 1 as
desired, since k is even. If k = 1 then f(2k) = f(2) = 2−1 = 1 as desired, since k is odd.
If k ≥ 2 and k is even, then k − 1 is odd and k − 2 is even, so

f(2k) = 2k = 2 · 2k−1 = (2k−1 − 1) + 2 · (2k−2) + 1 = f(2k−1) + 2 · f(2k−2) + 1

If k ≥ 2 and k is odd, then k − 1 is even and k − 2 is odd, so

f(2k) = 2k − 1 = 2 · 2k−1 − 1 = (2k−1) + 2 · (2k−2 − 1) + 1 = f(2k−1) + 2 · f(2k−2) + 1

By f being (almost) the identity function we conclude the asymptotic complexity is in
Θ(n)

4∗) We choose the first option and define

f 0 = 1
f n = if n ‘mod‘ 2 == 0 then f (n-1) + 1 else (n+1) * g n
g n = if n ‘mod‘ 2 == 0 then (n+1) * f n else g (n-1) + 1

with the idea (as given in the lecture) that if for some input n f(n) < g(n), then f(n + 1) >
g(n+1) and vice versa, and moreover the factor by which the one is larger than the other is ever
increasing (here we have taken it to be n+1), so neither is bounded by a constant factor times
the other. Listing the first few values for f yields [1, 4, 5, 64, 65, 1956, 1957, 109600, 109601, 9864100, 9864101]
and for g [1, 2, 15, 16, 325, 326, 13699, 13700, 986409, 986410, 108505111]. Note the alternation
between f and g (for the same input).

That f and g defined in this way are monotonically increasing follows from that both are
defined recursively, with the value for some input n based on the value for n − 1 by adding
1 possibly combined with multiplications by positive numbers. We show f 6∈ O(g) by a proof
by contradiction. Suppose f ∈ O(g), .i.e. suppose f(n) ≤ c · g(n) for all n ≥ m, for some c
and m. Take n′ to be some odd natural number greater than or equal to both c and m. Then
f(n′) = (n′ + 1) · g(n′) > n′ · g(n′) ≥ c · g(n′), contradicting the assumption. That g 6∈ O(f)
follows analogously.

The idea of two functions ‘taking turns’ in becoming either just incremented or multiplied
by an arbitrary factor may be generalised to infinitely many functions. To see this, assume

1The second option boils down to showing the same, but by well-founded induction instead of by universal
generalisation and case distinction.

2



to have a function e on the natural numbers such that for all i, e−1(i) is infinite (intuition:
e(n) determines whose turn it is to be multiplied for input n, with the other functions only
being incremented; the condition expresses that each i gets infinitely many turns; a possibility
for e is to produce ever increasing initial segments [0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .]). Then define
fi(0) = 1 and for n > 0, fi(n) = n ·x if e(n) = i and x otherwise, where x = 1+fe(n−1)(n−1).
Using that fe(k)(k) = maxj fj(k) (the maximum of all fj(k) is attained by the function ‘whose
turn it is’ fe(k)), it follows that this collection of functions satisfies the conditions as above.
In particular, to show fi 6∈ O(fj) we may take for n′ a number such that e(n′) = i with n′

greater than or equal to both constants witnessing the purported fi ∈ O(fj) (such an n′ exists
by the assumption on e).

3


