B universitat Summary last week
™ innsbruck

® ingredients of RSA continued (with proofs):

® Fermat’s Little Theorem: a1 = 1 (mod p) if p prime, pta

* Euler’s Theorem: aP~1)(@=1) =1 (mod p - q) if gcd(a,p-q) =1

e Chinese remainder crt : x — (x mod p, x mod q) bijection if gcd(p,q) = 1,

® 3 methods to compute inverse of crt given pair (a, b):
® search 0 < x < p-q mapped to (a, b) by crt (by bijection; brute force)

Discrete structures ® x =vqga+ upb (mod pq) with u, v s.t. up + vq = 1 (by Bézout; for p, q)
* x=a+p-((p'-(b—a))modq) (mod p-q) (byinverse modulo; p-p’ =1 (mod q))
Cezary Kaliszyk Raoul Schikora * recapitulation of motivation for (technical definition of) complexity; O(n)

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Course themes Discrete structures
dags 4{ trees }7 strings

e directed and undirected graphs
e relations and functions

® orders and induction

1

functions algorithms
® trees and dags
¢ finite and infinite counting
® elementary number theory
® Turing machines, algorithms, and complexity orders }7 ordinals

® decidable and undecidable problem —T

2 3

http://cl-informatik.uibk.ac.at

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

T(n):2-T(g)+c-n

:2-(2-T(%)+C-g)

n
:22-T(?)+2-C-n

FCom

n
:23-T(§)+3-C-n

n
zzk.T(?)ij-c-n
B T(n)=2K-T(&)+k-c-nfor1 <k <?logn
F base case T(n) = cif n = 2K, i.e. if k = logn
El setk :=logn. T(n) =2'°¢".c+logn-c-n=c-n-logn+c-n; closed-form for T(n)
1 asymptotic complexity of solution: T(n) € O(n - log n)

LetT: N — N be defined by recurrence
n
T(n) = aT(B) + f(n)

with a,b € N with b > 1, and such that 3k with n = bX. Then

k-1
T(n) = T(1) + Y () M
i=0

by repeated self-substitution of the recurrence, we see that for all ¢ > 1:

i.n : n N
a'T(E) = a’+1T(bi+1) uE a’f(y)
and therefore T(n) = akT(1) + a* () + - - + af() + f(n) m

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E8 guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F verify by substituting guess f for T in recurrence: (may use induction)

® casen=1:f(1)=c v

¢ casen>1: T(n)=f(n)=c-n-logn+c-n
n
2

n

:|H2'T(E)+C'n v

2-(c D +c n)+c n
f— . .—vo . o—_ .
2 %% 2

using log(%) = (loga) — (logb) , well-founded <-induction on n (5 < nifn > 2) 5

Definition (Divide-and-conquer algorithms)

® the algorithm solves instances up to size m directly

e instances of size n > m are split (divide) into a further instances of sizes [n/b|
and [n/b], solves these recursively; we then combine (conquer) their solutions

* et the time to split and combine be f(n)
* let the total time be T(n), where we assume T(n + 1) > T(n)
® We define
T-(n) = a-T~(ln/b])+f(n) ?fn>m
T(n) ifn<m
T+(n) = a-T™([n/b]) + f(n) ?fn>m
T(n) ifn<m

Example (Recall mergesort)

merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x<=vy) x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Can we give a bound on the complexity of merge sort?

| ’
|)

Observation

® a-T(|n/b])+f(n) <T(n)<a-T([n/b])+ f(n)
® Taking splitting and combining into account, allows asymptotic analysis of Ti(n)

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

T(n):{c n=1

aT()+f(n) n=bK k=1,2,...
wherea >1,b>1,c > 0. Iff € ©(n®) with s > 0, then
O(n'°ex?) jfa > b®
T(n) € ¢ ©(n°logn) ifa=b®
O(n®) ifa < b’

10

Definition (Recapitulation)

® the algorithm solves instances up to size m directly

* instances of size n > m are split into a (divide) further instances of sizes |n/b|
and [n/b], solves these recursively, and then combines (conquer) their solutions

Observation

o Letn=m- bk
® algorithm splits k times, hence there are, for r := log, a:

ak _ (br)k _ (bk)r _ (ﬂ)r ,

m

basic instances
e solving just the basic instances costs ©(n")
® r captures ratio of recursive calls a vs. decrease in size b:

Example (merge sort, continued)

for mergesort a = b = 2 and moreover f € e(nl), as splitting and combining is linear
in n (hence s = 1). The master theorem yields the following bound on the runtime

T(n) € ©(n - logn)

we have a = b®, sincea = b = 2 and s = 1 (second case)

Consider the recurrence:
(m 1
T(n) = 4T(§) +n
thena=4,b=2,r =log,a =2 and a > b®, hence by the first case of the theorem:
T(n) € ©(n?)

Proof of the master theorem

Case f € ©(n°) with a = b®

® setr:=log,a; thenr=s

® we use properties of ©, resp. properties of the exponential function to conclude:
n"

e from which we obtain (as n = b¥)

K Kk
> af(5) = 6(3_n") = 8(kn") = ©(n' logn)
i=0 i=0

nr

)= e(ai(br)i

a’f(%) =0(a)= @(a’g—:) =9(n")

® moreover we already know that
akT(1) € ©(n")

12

T(n) =8-T(5) +n?
*a=28,b=2f(n)=n?
® logya=3,5s=2,8>2%s0bycaselT(n) € O(n3)

T(n)=9-T(3)+n3
® a=09,b=23f(n)=n3
® logya=2,5=3,9 < 3%so by case 3 T(n) € ©(n?)

T(n) =T(%) + 1 (binary search)
ea=1b=2f(n)=1,
® log,a=0,5s=0,1=2°%s0bycase2T(n) € O(logn)

14

Proof (continued)

® recall equation (1)
k—1

T(n) = akT(1) + Za’f(g)
=0

® jts terms can be bounded as follows:
a“T(1) € ©(n")

k—1
Za’f(%) € O(n" logn)
i=0

® and therefore
T(n) € ©(n"logn)

Limitations of Master theorem

® split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating
functions)

e f(n) not of complexity ©(n®) for some s (can be relaxed)

Limitations of algorithms (recall from earlier lecture)

® There are more functions f: N — N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

® No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), ... No interesting
property of programs can be programmed.

® No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

® No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

These limitations will be addressed in the last few weeks of course (i.e. now)

Computable functions

Idea of computability

f: N — N computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

f: N — N computable if it can be defined by a TM

Function defined by a TM (recall from 3rd lecture)

aTM M
® acceptsx € X, ifdy, n:
(s,FxU%,0) = (t,y,n)
® rejectsx € X*,ifdy, n:
(s,FxU>®,0) ﬁ (r,y,n)

halt on input x, if x is accepted or rejected

does not halt on input x, if x is neither accepted nor rejected
e s total, if M halts on all inputs

A function f : A — B is defined by a TM M for every x € A, M accepts input x with f(y)
on the tape (and does not halt or rejects on inputs x ¢ A). v

Examples of computable functions

computability equivalently defined via models of computation: u-recursive functions,
A-calculus, register machines, term rewriting, ...

® any function programmable in some programming language

square root, counting the number of 3s, compression, etc.
o effective # efficient

factorial, Ackermann function (complexity far worse than exponential)
® unbounded search functions

the least number that has property P (need not exist)

® functions defined by finite cases
f(n) = n if n odd, otherwise n?

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem

Limits of computability

there exist functions that are not computable (more functions than programs)

® any program may be encoded by a finite bit-string

* = there are countably many programs; (recall | J;{0, 1} is countable)

* there are uncountably many functions N — N (recall N — {0, 1} is uncountable)
® = some function N — N is not computable |

concrete non-computable functions (diagonalise away from TM behaviours)

To do after Christmas: details of the above: coding, diagonalising way

20

	Week 10

