\square universität
innsbruck

Discrete structures

Cezary Kaliszyk
Raoul Schikora

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Summary last week

- ingredients of RSA continued (with proofs):
- Fermat's Little Theorem: $a^{p-1} \equiv 1(\bmod p)$ if p prime, $p \nmid a$
- Euler's Theorem: $a^{(p-1) \cdot(q-1)} \equiv 1(\bmod p \cdot q)$ if $\operatorname{gcd}(a, p \cdot q)=1$
- Chinese remainder crt : $x \mapsto(x \bmod p, x \bmod q)$ bijection if $\operatorname{gcd}(p, q)=1$,
- 3 methods to compute inverse of crt given pair (a, b) :
- search $0 \leq x<p \cdot q$ mapped to (a, b) by crt (by bijection; brute force)
- $x \equiv v q a+u p b(\bmod p q)$ with u, v s.t. $u p+v q=1$ (by Bézout; for $p, q)$
- $x \equiv a+p \cdot\left(\left(p^{\prime} \cdot(b-a)\right) \bmod q\right)(\bmod p \cdot q)\left(\right.$ by inverse modulo; $\left.p \cdot p^{\prime} \equiv 1(\bmod q)\right)$
- recapitulation of motivation for (technical definition of) complexity; $\mathrm{O}(n)$

Discrete structures

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

$$
\begin{aligned}
T(n) & =2 \cdot T\left(\frac{n}{2}\right)+c \cdot n \\
& =2 \cdot\left(2 \cdot T\left(\frac{n}{2^{2}}\right)+c \cdot \frac{n}{2}\right)+c \cdot n \\
& =2^{2} \cdot T\left(\frac{n}{2^{2}}\right)+2 \cdot c \cdot n \\
& =2^{3} \cdot T\left(\frac{n}{2^{3}}\right)+3 \cdot c \cdot n \\
& =\cdots \\
& =2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c \cdot n
\end{aligned}
$$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n)=c \cdot n \cdot \log n+c \cdot n$ solves $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2, c$ otherwise
2 verify by substituting guess f for T in recurrence: (may use induction)

- case $n=1: f(1)=c \quad \checkmark$
- case $n>1$:

$$
T(n)=f(n)=c \cdot n \cdot \log n+c \cdot n
$$

$$
\begin{aligned}
& =2 \cdot\left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2}+c \cdot \frac{n}{2}\right)+c \cdot n \\
& ={ }_{1 H} 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n
\end{aligned}
$$

$$
\text { using } \log \left(\frac{a}{b}\right)=(\log a)-(\log b), \text { well-founded }<\text {-induction on } n\left(\frac{n}{2}<n \text { if } n \geq 2\right)
$$

$1 T(n)=2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c \cdot n$ for $1 \leq k<? \log n$
2 base case $T(n)=c$ if $n=2^{k}$, i.e. if $k=\log n$
3 set $k:=\log n . T(n)=2^{\log n} \cdot c+\log n \cdot c \cdot n=c \cdot n \cdot \log n+c \cdot n ;$ closed-form for $T(n)$
4 asymptotic complexity of solution: $T(n) \in O(n \cdot \log n)$

Lemma

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

with $a, b \in \mathbb{N}$ with $b>1$, and such that $\exists k$ with $n=b^{k}$. Then

$$
\begin{equation*}
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \tag{1}
\end{equation*}
$$

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$
a^{i} T\left(\frac{n}{b^{i}}\right)=a^{i+1} T\left(\frac{n}{b^{i+1}}\right)+a^{i} f\left(\frac{n}{b^{i}}\right)
$$

and therefore $T(n)=a^{k} T(1)+a^{k-1} f\left(\frac{n}{b^{k-1}}\right)+\cdots+a f\left(\frac{n}{b}\right)+f(n)$

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size m directly
- instances of size $n>m$ are split (divide) into a further instances of sizes $\lfloor n / b\rfloor$ and $\lceil n / b\rceil$, solves these recursively; we then combine (conquer) their solutions

Definition

- let the time to split and combine be $f(n)$
- let the total time be $T(n)$, where we assume $T(n+1) \geqslant T(n)$
- We define

$$
\begin{aligned}
T^{-}(n) & := \begin{cases}a \cdot T^{-}(\lfloor n / b\rfloor)+f(n) & \text { if } n>m \\
T(n) & \text { if } n \leqslant m\end{cases} \\
T^{+}(n) & := \begin{cases}a \cdot T^{+}(\lceil n / b\rceil)+f(n) & \text { if } n>m \\
T(n) & \text { if } n \leqslant m\end{cases}
\end{aligned}
$$

```
Example (Recall mergesort)
merge :: Ord a # [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a = [a] > [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Question
Can we give a bound on the complexity of merge sort?

Observation

- $a \cdot T(\lfloor n / b\rfloor)+f(n) \leqslant T(n) \leqslant a \cdot T(\lceil n / b\rceil)+f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{ \pm}(n)$

Theorem (master theorem)

Let $T(n)$ be an increasing function that satisfies the following recursive equations

$$
T(n)= \begin{cases}c & n=1 \\ a T\left(\frac{n}{b}\right)+f(n) & n=b^{k}, k=1,2, \ldots\end{cases}
$$

where $a \geqslant 1, b>1, c>0$. If $f \in \Theta\left(n^{s}\right)$ with $s \geqslant 0$, then

$$
T(n) \in \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{5} \\ \Theta\left(n^{5} \log n\right) & \text { if } a=b^{5} \\ \Theta\left(n^{5}\right) & \text { if } a<b^{5}\end{cases}
$$

Definition (Recapitulation)

the algorithm solves instances up to size m directly

- instances of size $n>m$ are split into a (divide) further instances of sizes $\lfloor n / b$ and $\lceil n / b\rceil$, solves these recursively, and then combines (conquer) their solutions

Observation

- Let $n=m \cdot b^{k}$
- algorithm splits k times, hence there are, for $r:=\log _{b} a$:

$$
a^{k}=\left(b^{r}\right)^{k}=\left(b^{k}\right)^{r}=\left(\frac{n}{m}\right)^{r},
$$

basic instances

- solving just the basic instances costs $\Theta\left(n^{r}\right)$
- r captures ratio of recursive calls a vs. decrease in size b :

Example (merge sort, continued)

for mergesort $a=b=2$ and moreover $f \in \Theta\left(n^{1}\right)$, as splitting and combining is linear in n (hence $s=1$). The master theorem yields the following bound on the runtime

$$
T(n) \in \Theta(n \cdot \log n)
$$

we have $a=b^{s}$, since $a=b=2$ and $s=1$ (second case)

Example

Consider the recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+n^{1}
$$

then $a=4, b=2, r=\log _{b} a=2$ and $a>b^{5}$, hence by the first case of the theorem: $T(n) \in \Theta\left(n^{2}\right)$

Proof of the master theorem

Case $f \in \Theta\left(n^{s}\right)$ with $a=b^{s}$

- set $r:=\log _{b} a ;$ then $r=s$
- we use properties of Θ, resp. properties of the exponential function to conclude:

$$
a^{i} f\left(\frac{n}{b^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{i}\right)^{r}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{r}\right)^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{a^{i}}\right)=\Theta\left(n^{r}\right)
$$

- from which we obtain (as $n=b^{k}$)

$$
\sum_{i=0}^{k} a^{i} f\left(\frac{n}{b^{i}}\right)=\Theta\left(\sum_{i=0}^{k} n^{r}\right)=\Theta\left(k n^{r}\right)=\Theta\left(n^{r} \log n\right)
$$

- moreover we already know that

$$
a^{k} T(1) \in \Theta\left(n^{r}\right)
$$

Proof (continued)

- recall equation (1)

$$
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- its terms can be bounded as follows:

$$
\begin{gathered}
a^{k} T(1) \in \Theta\left(n^{r}\right) \\
\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \in \Theta\left(n^{r} \log n\right)
\end{gathered}
$$

- and therefore

$$
T(n) \in \Theta\left(n^{r} \log n\right)
$$

Limitations of Master theorem

- split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating functions)
- $f(n)$ not of complexity $\Theta\left(n^{s}\right)$ for some s (can be relaxed)
Ler

Example
$T(n)=T\left(\frac{n}{2}\right)+1$ (binary search)

- $a=1, b=2, f(n)=1$,
- $\log _{b} a=0, s=0,1=2^{0}$ so by case $2 T(n) \in \Theta(\log n)$

Limitations of algorithms (recall from earlier lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

Computable functions

Idea of computability

$f: \mathbb{N} \rightarrow \mathbb{N}$ computable if there is an effective procedure to compute $f(n)$ for input n

Definition (computability via TM)

$f: \mathbb{N} \rightarrow \mathbb{N}$ computable if it can be defined by a TM

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

- accepts $x \in \Sigma^{*}$, if $\exists y, n$:

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{\stackrel{*}{\longrightarrow}}(t, y, n)
$$

- rejects $x \in \Sigma^{*}$, if $\exists y, n$:

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \xrightarrow[M]{*}(r, y, n)
$$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if M halts on all inputs

Definition

A function $f: A \rightarrow B$ is defined by a TM M for every $x \in A, M$ accepts input x with $f(y)$ on the tape (and does not halt or rejects on inputs $x \notin A$).

Examples of computable functions

remark

computability equivalently defined via models of computation: μ-recursive functions, λ-calculus, register machines, term rewriting, ...

Example

- any function programmable in some programming language square root, counting the number of 3 s , compression, etc.
- effective \neq efficient factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions the least number that has property P (need not exist)
- functions defined by finite cases $f(n)=n$ if n odd, otherwise n^{2}

Limits of computability

Lemma

there exist functions that are not computable (more functions than programs)

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_{i}\{0,1\}^{i}$ is countable)
- there are uncountably many functions $\mathbb{N} \rightarrow \mathbb{N}$ (recall $\mathbb{N} \rightarrow\{0,1\}$ is uncountable)
- \Rightarrow some function $\mathbb{N} \rightarrow \mathbb{N}$ is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)
To do after Christmas: details of the above: coding, diagonalising way

