

Discrete structures

Cezary Kaliszyk Raoul Schikora Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Summary last week

- ingredients of RSA continued (with proofs):
- Fermat's Little Theorem: $a^{p-1} \equiv 1 \pmod{p}$ if p prime, $p \nmid a$
- Euler's Theorem: $a^{(p-1)\cdot(q-1)} \equiv 1 \pmod{p \cdot q}$ if $gcd(a, p \cdot q) = 1$
- Chinese remainder crt : $x \mapsto (x \mod p, x \mod q)$ bijection if gcd(p,q) = 1,
- 3 methods to compute inverse of crt given pair (*a*, *b*):
 - search $0 \le x mapped to <math>(a, b)$ by crt (by bijection; brute force)
 - $x \equiv vqa + upb \pmod{pq}$ with u, v s.t. up + vq = 1 (by Bézout; for p, q)
 - $x \equiv a + p \cdot ((p' \cdot (b a)) \mod q) \pmod{p \cdot q}$ (by inverse modulo; $p \cdot p' \equiv 1 \pmod{q}$)

1

• recapitulation of motivation for (technical definition of) complexity; O(n)

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

2

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n$$

= 2 \cdot (2 \cdot T(\frac{n}{2^2}) + c \cdot \frac{n}{2}) + c \cdot n
= 2^2 \cdot T(\frac{n}{2^2}) + 2 \cdot c \cdot n
= 2^3 \cdot T(\frac{n}{2^3}) + 3 \cdot c \cdot n
= \dots
= 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n

1 $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$ for $1 \le k < ? \log n$ 2 base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$ 3 set $k := \log n$. $T(n) = 2^{\log n} \cdot c + \log n \cdot c \cdot n = c \cdot n \cdot \log n + c \cdot n$; closed-form for T(n)4 asymptotic complexity of solution: $T(n) \in O(n \cdot \log n)$

Lemma

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(rac{n}{b^i})$$

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$a^{i}T(\frac{n}{b^{i}}) = a^{i+1}T(\frac{n}{b^{i+1}}) + a^{i}f(\frac{n}{b^{i}})$$

and therefore $T(n) = a^{k}T(1) + a^{k-1}f(\frac{n}{b^{k-1}}) + \dots + af(\frac{n}{b}) + f(n)$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise 2 verify by substituting guess f for T in recurrence: (may use induction) • case n = 1: f(1) = c \checkmark • case n > 1: $T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$ $= 2 \cdot (c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}) + c \cdot n$ $=_{IH} 2 \cdot T(\frac{n}{2}) + c \cdot n$ \checkmark

using $\log(\frac{a}{b}) = (\log a) - (\log b)$, well-founded <-induction on $n (\frac{n}{2} < n \text{ if } n \ge 2)$

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split (divide) into *a* further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively; we then combine (conquer) their solutions

Definition

(1)

- let the time to split and combine be f(n)
- let the total time be T(n), where we assume $T(n+1) \ge T(n)$
- We define

$$T^{-}(n) := \begin{cases} a \cdot T^{-}(\lfloor n/b \rfloor) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$
$$T^{+}(n) := \begin{cases} a \cdot T^{+}(\lceil n/b \rceil) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$

Example (Recall mergesort)

merge :: **Ord** $a \Rightarrow [a] \rightarrow [a]$ merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) | (x <= y) = x:(merge xs (y:ys)) | **otherwise** = y:(merge (x:xs) ys) mergesort :: **Ord** $a \Rightarrow [a] \rightarrow [a]$ mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Question

Can we give a bound on the complexity of merge sort?

Definition (Recapitulation)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split into *a* (divide) further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively, and then combines (conquer) their solutions

Observation

- Let $n = m \cdot b^k$
- algorithm splits k times, hence there are, for $r := \log_b a$:

$$a^{k} = (b^{r})^{k} = (b^{k})^{r} = \left(\frac{n}{m}\right)^{r}$$

basic instances

- solving just the basic instances costs $\Theta(n^r)$
- *r* captures ratio of recursive calls *a* vs. decrease in size *b*:

Observation

- $a \cdot T(\lfloor n/b \rfloor) + f(n) \leq T(n) \leq a \cdot T(\lceil n/b \rceil) + f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{\pm}(n)$

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

$$T(n) = \begin{cases} c & n = 1 \\ aT(\frac{n}{b}) + f(n) & n = b^k, \ k = 1, 2, . \end{cases}$$

where $a \ge 1$, b > 1, c > 0. If $f \in \Theta(n^s)$ with $s \ge 0$, then $\left(\Theta(n^{\log_b a}) \quad \text{if } a > b^s\right)$

$$T(n) \in \begin{cases} \Theta(n^s) & \text{if } a > b^s \\ \Theta(n^s \log n) & \text{if } a = b^s \\ \Theta(n^s) & \text{if } a < b^s \end{cases}$$

Example (merge sort, continued)

for mergesort a = b = 2 and moreover $f \in \Theta(n^1)$, as splitting and combining is linear in n (hence s = 1). The master theorem yields the following bound on the runtime $T(n) \in \Theta(n \cdot \log n)$

we have $a = b^s$, since a = b = 2 and s = 1 (second case)

Example

Consider the recurrence:

$$T(n) = 4T(\frac{n}{2}) + n^{1}$$

then a = 4, b = 2, $r = \log_b a = 2$ and $a > b^s$, hence by the first case of the theorem: $T(n) \in \Theta(n^2)$

Proof of the master theorem

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of $\Theta,$ resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

• from which we obtain (as $n = b^k$)

$$\sum_{i=0}^{k} a^{i} f\left(\frac{n}{b^{i}}\right) = \Theta\left(\sum_{i=0}^{k} n^{r}\right) = \Theta(kn^{r}) = \Theta(n^{r} \log n)$$

moreover we already know that

 $a^k T(1) \in \Theta(n^r)$

Proof (continued)

recall equation (1)

 $T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$

• its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

 $\sum_{i=0}^{k-1} a^i f(rac{n}{b^i}) \in \Theta(n^r \log n)$

and therefore

12

 $T(n) \in \Theta(n^r \log n)$

Example

- $T(n) = 8 \cdot T(\frac{n}{2}) + n^2$
- $a = 8, b = 2, f(n) = n^2,$
- $\log_b a = 3, s = 2, 8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

 $T(n) = 9 \cdot T(\frac{n}{3}) + n^{3}$ • $a = 9, b = 3, f(n) = n^{3},$ • $\log_{b} a = 2, s = 3, 9 < 3^{3}$ so by case $3 T(n) \in \Theta(n^{3})$

Example

 $T(n) = T(\frac{n}{2}) + 1$ (binary search)

- a = 1, b = 2, f(n) = 1,
- $\log_b a = 0, s = 0, 1 = 2^0$ so by case $2 T(n) \in \Theta(\log n)$

Limitations of Master theorem

- split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating functions)
- f(n) not of complexity $\Theta(n^s)$ for some *s* (can be relaxed)

13

Limitations of algorithms (recall from earlier lecture)

- There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

Function defined by a TM (recall from 3rd lecture)

Definition

а ТМ *М*

• accepts $x \in \Sigma^*$, if $\exists y, n$:

$$(s,\vdash_{\mathbf{X}}\sqcup^{\infty},0)\xrightarrow[M]{*}(\mathbf{t},y,n)$$

• rejects $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\boldsymbol{X}} \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (\boldsymbol{r}, y, n)$$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if *M* halts on all inputs

Definition

A function $f : A \to B$ is defined by a TM *M* for every $x \in A$, *M* accepts input *x* with f(y) on the tape (and does not halt or rejects on inputs $x \notin A$).

Computable functions

Idea of computability

 $f: \mathbb{N} \to \mathbb{N}$ computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

 $f: \mathbb{N} \to \mathbb{N}$ computable if it can be defined by a TM

Examples of computable functions

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, ...

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \neq efficient factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions
 the least number that has property P (need not exist)
- functions defined by finite cases f(n) = n if n odd, otherwise n^2

16

Limits of computability

Lemma

there **exist** functions that are **not** computable (more functions than programs)

Proof.

- any program may be **encoded** by a **finite** bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0, 1\}^i$ is countable)
- there are uncountably many functions $\mathbb{N} \to \mathbb{N}$ (recall $\mathbb{N} \to \{0,1\}$ is uncountable)

20

 $\bullet \ \Rightarrow \mbox{some}$ function $\mathbb{N} \ \rightarrow \ \mathbb{N}$ is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

To do after Christmas: details of the above: coding, diagonalising way