
Discrete structures

Cezary Kaliszyk Raoul Schikora
Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Summary last week

• ingredients of RSA continued (with proofs):

• Fermat’s Little Theorem: ap−1 ≡ 1 (mod p) if p prime, p - a

• Euler’s Theorem: a(p−1)·(q−1) ≡ 1 (mod p · q) if gcd(a,p · q) = 1

• Chinese remainder crt : x 7→ (x mod p, x mod q) bijection if gcd(p,q) = 1,
• 3 methods to compute inverse of crt given pair (a,b):

• search 0 ≤ x < p · q mapped to (a,b) by crt (by bijection; brute force)
• x ≡ vqa + upb (mod pq) with u, v s.t. up + vq = 1 (by Bézout; for p,q)
• x ≡ a + p · ((p′ · (b− a)) mod q) (mod p · q) (by inverse modulo; p · p′ ≡ 1 (mod q))

• recapitulation of motivation for (technical definition of) complexity; O(n)

1

Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2

Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders

3

http://cl-informatik.uibk.ac.at

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

T(n) = 2 · T(
n

2
) + c · n

= 2 · (2 · T(
n

22
) + c · n

2
) + c · n

= 22 · T(
n

22
) + 2 · c · n

= 23 · T(
n

23
) + 3 · c · n

= . . .

= 2k · T(
n

2k
) + k · c · n

1 T(n) = 2k · T(n
2k) + k · c · n for 1 ≤ k < ? log n

2 base case T(n) = c if n = 2k, i.e. if k = log n

3 set k := log n. T(n) = 2log n · c + log n · c · n = c · n · log n + c · n; closed-form for T(n)

4 asymptotic complexity of solution: T(n) ∈ O(n · log n)

4

Verifying solutions/solving by guessing

Recall

• recurrence specifies unique function

• method: guess solution, verify solution by substitution/induction

Example

1 guess f(n) = c · n · log n + c · n solves T(n) = 2 · T(n
2) + c · n if n ≥ 2, c otherwise

2 verify by substituting guess f for T in recurrence: (may use induction)
• case n = 1: f(1) = c X
• case n > 1: T(n) = f(n) = c · n · log n + c · n

= 2 · (c · n

2
· log

n

2
+ c · n

2
) + c · n

=IH 2 · T(
n

2
) + c · n X

using log(a
b) = (log a)− (log b) , well-founded <-induction on n (n

2 < n if n ≥ 2) 5

Lemma

Let T : N → N be defined by recurrence

T(n) = aT(
n

b
) + f(n)

with a,b ∈ N with b > 1, and such that ∃k with n = bk. Then

T(n) = akT(1) +
k−1∑
i=0

aif(
n

bi
) (1)

Proof.

by repeated self-substitution of the recurrence, we see that for all ` > 1:

aiT(
n

bi
) = ai+1T(

n

bi+1
) + aif(

n

bi
)

and therefore T(n) = akT(1) + ak−1f(n
bk−1) + · · ·+ af(n

b) + f(n)

6

Definition (Divide-and-conquer algorithms)

• the algorithm solves instances up to size m directly

• instances of size n > m are split (divide) into a further instances of sizes bn/bc
and dn/be, solves these recursively; we then combine (conquer) their solutions

Definition

• let the time to split and combine be f(n)

• let the total time be T(n), where we assume T(n + 1) > T(n)

• We define

T−(n) :=

{
a · T−(bn/bc) + f(n) if n > m

T(n) if n 6 m

T+(n) :=

{
a · T+(dn/be) + f(n) if n > m

T(n) if n 6 m

7

Example (Recall mergesort)

merge : : Ord a => [a] −> [a] −> [a]
merge xs [] = xs
merge [] ys = ys
merge (x : xs) (y : ys)
| (x <= y) = x : (merge xs (y : ys))
| otherwise = y : (merge (x : xs) ys)

mergesort : : Ord a => [a] −> [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fs tha l f xs)) (mergesort (sndhalf xs))

Question

Can we give a bound on the complexity of merge sort?

8

Definition (Recapitulation)

• the algorithm solves instances up to size m directly

• instances of size n > m are split into a (divide) further instances of sizes bn/bc
and dn/be, solves these recursively, and then combines (conquer) their solutions

Observation

• Let n = m · bk

• algorithm splits k times, hence there are, for r := logb a:

ak = (br)k = (bk)r =
(n

m

)r
,

basic instances

• solving just the basic instances costs Θ(nr)

• r captures ratio of recursive calls a vs. decrease in size b:

9

Observation

• a · T(bn/bc) + f(n) 6 T(n) 6 a · T(dn/be) + f(n)

• Taking splitting and combining into account, allows asymptotic analysis of T±(n)

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

T(n) =

{
c n = 1

aT(n
b) + f(n) n = bk, k = 1,2, . . .

where a > 1, b > 1, c > 0. If f ∈ Θ(ns) with s > 0, then

T(n) ∈


Θ(nlogb a) if a > bs

Θ(ns log n) if a = bs

Θ(ns) if a < bs

10

Example (merge sort, continued)

for mergesort a = b = 2 and moreover f ∈ Θ(n1), as splitting and combining is linear
in n (hence s = 1). The master theorem yields the following bound on the runtime

T(n) ∈ Θ(n · log n)

we have a = bs, since a = b = 2 and s = 1 (second case)

Example

Consider the recurrence:

T(n) = 4T(
n

2
) + n1

then a = 4, b = 2, r = logb a = 2 and a > bs, hence by the first case of the theorem:
T(n) ∈ Θ(n2)

11

Proof of the master theorem

Case f ∈ Θ(ns) with a = bs

• set r := logb a; then r = s

• we use properties of Θ, resp. properties of the exponential function to conclude:

aif(
n

bi
) = Θ(ai nr

(bi)r
) = Θ(ai nr

(br)i
) = Θ(ai n

r

ai
) = Θ(nr)

• from which we obtain (as n = bk)
k∑

i=0

aif(
n

bi
) = Θ(

k∑
i=0

nr) = Θ(knr) = Θ(nr log n)

• moreover we already know that

akT(1) ∈ Θ(nr)

12

Proof (continued)

• recall equation (1)

T(n) = akT(1) +
k−1∑
i=0

aif(
n

bi
)

• its terms can be bounded as follows:

akT(1) ∈ Θ(nr)

k−1∑
i=0

aif(
n

bi
) ∈ Θ(nr log n)

• and therefore

T(n) ∈ Θ(nr log n)

13

Example

T(n) = 8 · T(n
2) + n2

• a = 8, b = 2, f(n) = n2,

• logb a = 3, s = 2, 8 > 22 so by case 1 T(n) ∈ Θ(n3)

Example

T(n) = 9 · T(n
3) + n3

• a = 9, b = 3,f(n) = n3,

• logb a = 2, s = 3, 9 < 33 so by case 3 T(n) ∈ Θ(n3)

Example

T(n) = T(n
2) + 1 (binary search)

• a = 1, b = 2,f(n) = 1,

• logb a = 0, s = 0, 1 = 20 so by case 2 T(n) ∈ Θ(log n)

14

Limitations of Master theorem

• split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating
functions)

• f(n) not of complexity Θ(ns) for some s (can be relaxed)

15

Limitations of algorithms (recall from earlier lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

16

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

• accepts x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(t, y,n)

• rejects x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(r, y,n)

• halt on input x, if x is accepted or rejected

• does not halt on input x, if x is neither accepted nor rejected

• is total, if M halts on all inputs

Definition

A function f : A→ B is defined by a TM M for every x ∈ A, M accepts input x with f(y)
on the tape (and does not halt or rejects on inputs x 6∈ A).

17

Computable functions

Idea of computability

f : N → N computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

f : N → N computable if it can be defined by a TM

18

Examples of computable functions

remark

computability equivalently defined via models of computation: µ-recursive functions,
λ-calculus, register machines, term rewriting, . . .

Example

• any function programmable in some programming language
square root, counting the number of 3s, compression, etc.

• effective 6= efficient
factorial, Ackermann function (complexity far worse than exponential)

• unbounded search functions
the least number that has property P (need not exist)

• functions defined by finite cases
f(n) = n if n odd, otherwise n2

19

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem

Limits of computability

Lemma

there exist functions that are not computable (more functions than programs)

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

To do after Christmas: details of the above: coding, diagonalising way
20

	Week 10

