
Functional Programming WS 2020 LVA 703025

Exercise Sheet 1, 10 points Deadline: Wednesday, October 14, 2020, 6am

• Please upload .hs-file(s) for exercises 1.1 and 1.3 in OLAT. You can upload separate files or merge the
solutions into a single .hs-file.

• You can also put all your remaining solutions, e.g., for exercise 1.2 into some .hs-file (using Haskell-
comments) or create a separate .txt-file and upload it.

• You can use a template .hs-file that is provided on the proseminar page.

• Each .hs file must compile with ghci.

• Don’t forget to mark your completed exercises in OLAT.

Exercise 1.1 Functions 4 p.

Below we have given four erroneous functions. Your task is to find the errors and fix them. The functions
are provided in the Haskell file template_01.hs. Update the functions in this file and upload your solution to
OLAT.

1. f :: Integer -> Integer

f x y = (x + y) * 2

2. g :: Integer -> Integer -> Integer

g x z = 2 * Z + x

3. h :: Integer -> Integer

x h = x + 2

4. i :: integer -> integer

i x = 2

Exercise 1.2 Evaluation Strategies 3 p.

In the lecture on slide 2/14, it is shown that a single expression can be evaluated in different ways. For instance,
consider the following expression:
(square 3) + (square (3 * 7))

This expression can be evaluated at three different positions:

1. one can start to evaluate 3 * 7 to 21

2. one can start to evaluate square 3 to 3 * 3

3. one can start to evaluate square (3 * 7) to (3 * 7) * (3 * 7)

Note that one cannot yet evaluate the addition since for built-in operations like +, *, etc., all arguments must
first be fully evaluated to normal form.
Each programming language fixes a certain evaluation strategy, that determines which position to start with.
There are two common ones:

• An innermost strategy always evaluates the arguments before applying the function definition itself. Hence,
an innermost strategy would start with steps (1) or (2), but not with (3), since there the argument 3 * 7

is not yet evaluated.



• An outermost strategy is the opposite. In the evaluation of a function application f exp_1 ... exp_n for
some user-defined function f, none of the arguments exp_i is evaluated, but the function definition of f
is applied. Only arguments of built-in operators like +, *, etc. must be evaluated. Hence, an outermost
strategy would start with steps (2) or (3).

Now consider the following Haskell program.
square :: Integer -> Integer

square x = x * x

three :: Integer -> Integer

three x = 3

bot :: Integer -> Integer

bot x = bot (x + 1)
Your task is to perform step-by-step evaluations of the upcoming three expressions for both innermost- and
outermost-strategy. For each expression, compare which strategy is more efficient.

1. square (5 - 3)

2. three (5 - 3 * 2)

3. three (bot 1)

Can you figure out which evaluation strategy Haskell is using, just by invoking one of these expressions within
ghci?

Exercise 1.3 Reusing functions 3 p.

The previous exercise showed that the evaluation order determines the number of computation steps necessary
to arrive at a result. In this exercise we show that also the function definitions in an Haskell program have an
influence on the number of computations that will be executed.

In this exercise the goal is reuse functions such that the number of multiplications is minimized. Below we
have given a function for calculating x2 and two different implementations for calculating x4:
square :: Integer -> Integer

square x = x * x

pow_4a :: Integer -> Integer

pow_4a x = x * x * x * x

pow_4b :: Integer -> Integer

pow_4b x = square (square x)

1. Show (using an innermost evaluation strategy) that the function pow_4b requires less multiplication steps
than pow_4a.

2. Write a Haskell function pow_16:: Integer -> Integer for calculating x16 that uses the least amount
of multiplication steps. It is not allowed to use the built-in exponentiation operator ^. How many
multiplications are necessary?

Hint: it is possible to define pow_16 without Haskell’s multiplication operator *, but instead reuse the
functions defined above.

3. Write a Haskell function pow_20:: Integer -> Integer for calculating x20 that uses as few multiplica-
tions as possible. Again, it is not allowed to use the built-in exponentiation operator ^, but it is allowed
to define auxiliary functions. How many multiplications are necessary?


