
Functional Programming WS 2020 LVA 703025

Exercise Sheet 4, 10 points Deadline: Wednesday, November 4, 2020, 6am

• Please write all the Haskell code into a single .hs-file and upload it in OLAT.

• You can use the template .hs-file that is provided on the proseminar page.

• Your .hs-file should be compilable with ghci.

• Don’t forget to mark your completed exercises in OLAT.

Exercise 4.1 Divide-and-Conquer 3 p.

The Greatest Common Divider (GCD) of two non-negative integers is the largest integer that divides both
numbers.

For example, the GCD of 12 and 8 is 4 and the GCD of 25 and 20 is 5. As a special case, the GCD of 0 and 0
is defined as 0.

Euclid’s algorithm is an efficient algorithm for computing the GCD of two integers. The algorithms is based on
the principle that the GCD of two numbers does not change if the larger number is replaced by its difference
with the smaller number. This results in two equations:

gcd(a, b) = a if a = b or b = 0 (1)

gcd(a, b) = gcd(a− b, b) if a > b > 0 (2)

1. Write a function gcd :: Integer -> Integer -> Integer that recursively computes the GCD of two
non-negative integers using Equations (1) and (2). (1 point)

2. The gcd implementation of the previous question is not very efficient.

Euclid’s algorithm uses the modulo function instead of subtraction.

gcd(a, b) = gcd(mod(a, b), b) if b 6= 0 (3)

Implement a second function gcd_eff :: Integer -> Integer -> Integer that computes the GCD
recursively using Euclid’s algorithm.

(Hint: think carefully about when to stop the computation; you sometimes need to swap the two arguments
of the GCD.) (1 point)

3. Remember that the modulo of two integers a and b can be written as:

mod(a, b) = a− div(a, b) · b,

where div(a, b) is the integer division of a and b.

Use this equation to argue why it is allowed to replace the subtraction of Equation 2 by the modulo-
operation in Equation 3. (1 point)

Note: Haskell already ships its own version of gcd. To test your program hide these by adding
import Prelude hiding (gcd) at the top of your program (as seen in the template .hs-file).



Exercise 4.2 Divide-and-Conquer 4 p.

The Least Common Multiple (LCM) of two positive integers is the smallest common multiple or positive integer
that is divisible by both numbers.

For example, the LCM of 4 and 10 is 20 and the LCM of 5 and 3 is 15. Check for yourself that this is true.

In this exercise you will implement three algorithms for finding the LCM of two numbers.

1. One method for finding the LCM is by calculating the multiples of each input number until a common
multiple is found. For 4 and 10 we get:

Multiples of 4: 4, 8, 12, 16,20

Multiples of 10: 10,20

Write a function lcm :: Integer -> Integer -> Integer that computes the LCM of inputs a and b

using the above described method. Write and use an auxiliary function
lcm_aux :: Integer -> Integer -> Integer -> Integer -> Integer that recursively calculates the
LCM of a, b. lcm_aux takes four arguments: ma, mb, a, b, where ma, mb are the multiples of a and b

respectively.

(Hint: in each recursion step only calculate the next multiple of the currently smallest multiple, see example
above.) (1 point)

2. Instead of computing the multiple of each input until the LCM is found we can compute the multiple of
one of the two inputs until it is divisible by both inputs. For 5 and 3 we get:

First multiple 1 ∗ 5 = 5 is not divisible by 3

Second multiple 2 ∗ 5 = 10 is not divisible by 3

Third multiple 3 ∗ 5 = 15 is divisible by 3

Write a function lcm2 :: Integer -> Integer -> Integer that computes the LCM of inputs a and b

using the above described method. Write and use an auxiliary function
lcm2_aux :: Integer -> Integer -> Integer -> Integer that recursively calculates the LCM of a,
b. lcm2_aux takes three arguments: m, a, b, where m is the current multiple.

The choice of input to calculate the multiple of (a or b) can have a huge impact on the performance. Make
sure your implementation always uses the most efficient one. (1 point)

3. A third method for computing the LCM is by using the GCD. Write a third function
lcm3 :: Integer -> Integer -> Integer that uses one of the GCD implementations of exercise 4.1.

If you were not able to finish exercise 4.1 you can use the default gcd implementation provided by Prelude,
make sure to remove the line import Prelude hiding (gcd) from your script. (1 point)

4. Which of the three LCM implementations (lcm, lcm2 or lcm3) do you prefer?

In GHCi you can display statistics about time and memory usage of an expression by setting :set +s (you
only have to execute this once). All subsequent evaluations will now display the statistics.

(Hint: execute each of your LCM implementations with sufficiently large inputs to see a clear difference.)
(1 point)

Note: Haskell already ships its own version of lcm. To test your program hide these by adding
import Prelude hiding (lcm) at the top of your program (as seen in the template .hs-file).



Exercise 4.3 Enumeration 3 p.

Some of the tallest mountains on the earth are listed below:

Name Height in m

Everest 8848
K2 8611
Lhotse 8586
Makalu 8481
ChoOyu 8188

1. Define an enumeration type Mountain and implement a function isHigher :: Mountain -> Mountain -> Bool

by using pattern matching on two arguments and where no comparison of heights is performed during ex-
ecution. How many equations does your implementation require roughly if there are n mountains (instead
of just 5)? (2 points)

2. Define a function mapping a mountain to its height in meters altitude :: Mountain -> Integer and
use this function to implement the function isHigher :: Mountain -> Mountain -> Bool in a better
way. How many equations does your implementation require now for n mountains?

(1 point)


