
Functional Programming WS 2020 LVA 703025

Exercise Sheet 10, 10 points Deadline: Wednesday, January 13, 2020, 6am

• Please write all the Haskell code into a single .hs-file and upload it in OLAT.

• You can use the template .hs-file that is provided on the proseminar page.

• Your .hs-file should be compilable with ghci.

• Don’t forget to mark your completed exercises in OLAT.

Exercise 10.1 Lists 3 p.

1. Write a function removeFirst x xs that removes the first occurrence of x in xs. If x is no element of xs,
return the unmodified list.

Examples:

removeFirst 'a' "banana" == "bnana"

removeFirst 5 [1,2,3,4] == [1,2,3,4]

(1 point)

2. Two lists are permutations of each other, if they contain exactly the same elements – also with the same
number of occurrences of each element – but where the order of the elements is irrelevant.

Write a function isPermutation xs ys that returns True if its arguments are permutations of each other.

Examples:

isPermutation [1,2,1] [2,1,1] == True

isPermutation [1,2,1] [2,2,1] == False

Hint: removeFirst from the previous exercise could be useful.

(1 point)

3. Write a function hasDuplicates xs that returns True if xs contains any duplicate elements.

Examples:

hasDuplicates [1,2,1] == True

hasDuplicates [1,2,3] == False

(1 point)

Exercise 10.2 Type Classes 2 p.

1. Suppose that we have the following definition of the member function in Haskell:

member :: Eq a => a -> [a] -> Bool

member x [] = False

member x (y:ys) | x == y = True

| otherwise = member x ys

Circle each type declaration that is a correct type for member.

(a) member :: Integer -> Integer -> Bool

(b) member :: (Ord a) => a -> [a] -> Bool



(c) member :: (Integer -> Integer) -> [Integer -> Integer] -> Bool

(d) member :: (Eq a) => a -> [a] -> Bool

(e) member :: a -> [a] -> Bool

(f) member :: (Eq a) => [a] -> [[a]] -> Bool

(g) member :: Bool -> [Bool] -> Bool

Hint: You likely get the most out of this exercise by only verifying your results with ghci instead of
inferring them from it.

(2 points)

Exercise 10.3 Perfect Numbers 5 p.

A perfect number1 (n :: Integer) is a positive integer whose divisors (excluding n itself) sum to n. Take for
example 6. It’s divisors (excluding 6) are [1,2,3]. Adding these three gives 6, therefore making 6 a perfect
number. In this exercise we will try to find more perfect numbers by implementing the following functions.
Hint: List comprehension or using functions such as map and filter may be usefull for solving this exercise.

1. Implement the function divisors :: Integer -> [Integer], which takes an integer n and returns the
list of its divisors (excluding itself). (1 point)

For example:

divisors 1 == []

divisors 3 == [1]

divisors 6 == [1,2,3]

2. Using this implement a function isPerfectNumber :: Integer -> Bool, which checks if a given number
is a perfect number. (1 point)

For example:

isPerfectNumber 6 == True

isPerfectNumber 10 == False

3. Lastly you should implement a function perfectNumbers :: Integer -> [Integer], which lists all per-
fect numbers up to the given integer. (2 points)

For example:

perfectNumbers 5 == []

perfectNumbers 10 == [6]

4. Using your implementation find all perfect numbers up to 100, 1000 and 10000. Measure the time it
takes to do so by using :set +s in ghci. (Depending on you implementation it may take a few seconds.)
(1 point)

1https://en.wikipedia.org/wiki/Perfect_number

https://en.wikipedia.org/wiki/Perfect_number

