
Constraint Solving WS 2021/22 LVA 703304

Test-Exam January 27, 2022

This is an old exam that consisted of five exercises. The available
points for each item are written in the margin. You needed at least
50 points to pass. Exercise 3(b) was a bonus exercise. Explain your
answers!
Exercises 1 and 2(b) cannot be solved with knowledge of this
course, as these topics have not been treated!

1 (a) Compute the ZDD representationB of the boolean function f(a, b, c) = ab+ ac[5]

with variable ordering [a, b, c].

(b) What is count(B) for the ZDD B of part (a)?[5]

(c) List all binary boolean functions that have no 0 node in their ZDD[10]

representation.

2 (a) Use Cooper’s method to transform the QLIA formula[10]

¬∀x. (3y − 1 > 3x ∨ y = 2x− 6)

into an equivalent quantifier-free formula.

(b) Find all solutions of the (integer) divisibility constraints 4 | 3a+ 2b ∧ 2 | a− b+ 1[10]

with 0 < a, b < 5.

3 In this exercise we consider the logic puzzle Makaro published by Nikoli. The
grid is divided into rooms and the objective is to fill the empty cells in the
rooms with numbers, subject to the following constraints:

• A room with n cells is filled with the numbers 1 to n.

• Neighbouring cells in adjacent rooms may not have the same number.

• The number in a cell pointed to by an arrow must be larger than the
number in every other neighbouring cell of the arrow.

For example, the puzzle on the left has the (unique) solution on the right:

3 3

1 2 1 2
3 1 2 3

1 2 3 4
2 3 1 2
1 2 1 4

(a) Construct a formula ϕ that is satisfiable if and only if the puzzle[20]

1

3

4

4

1

1 1

1

2 1

1

3

2

has a solution. Specify the underlying (SMT) theory and provide suf-
ficiently many details (allowing the instructor to construct the full en-
coding).

(b) Solve the puzzle of part (a). (This is a bonus exercise.)[10]

4 Linear Arithmetic

(a) Consider the following constraints:[11]

2y ≥ −4x− 3 (1)

4y + 8x ≤ −5 (2)

Apply the simplex algorithm to find a rational solution to the con-
straints. Here, you should use s as name of the slack variable that
is introduced for constraint (1) and t as name of the slack variable for
(2). Use Bland’s selection rule with the variable order x < y < s < t.
No preprocessing is allowed (e.g., one that would completely eliminate
one of the four variables). Provide the initial tableau and bounds as well
as intermediate results after each pivoting step and after each update of
the assignment.

(b) The Bellman–Ford algorithm from the lecture works on weighted graphs
G = (V,E,w). It contains a loop with |V | − 1 iterations of distance-[9]

updates, where |V | is the number of nodes (not counting the fresh start-
ing node s). Consider a modified algorithm with only |V | − 2 iterations.
Figure out which of the following three problematic situations can oc-
cur. For each situation either provide a concrete witness with four nodes
(V = {a, b, c, d}, just the graph suffices), or provide a brief justification
why the situation cannot arise.

(1) It can happen that G does not contain a negative cycle, but the
modified algorithm reports a negative cycle.

(2) It can happen that G does not contain a negative cycle, the modi-
fied algorithm returns a distance array, but at least some computed
distance is not correct.

(3) It can happen that G contains a negative cycle, but the modified
algorithm returns a distance array.

5 Arrays

Consider the following program to compute Fibonacci numbers for arbitrary
N ≥ 0:

int a[N+1]; // entries a[0], ..., a[N]

a[0] = 0;

a[1] = 1;

int i = 1;

while (i < N) {

a[i+1] = a[i] + a[i-1];

i = i+1;

}

return a[N];

(a) Think of a suitable invariant which permits to prove that all array ac-[4]

cesses within the loop-body are within bounds. Write down the invariant
and all formulas that have to be validated.

(b) In order to prove soundness of the program, the following formula ϕ(a, i)[10]

might serve as an invariant:

ϕ(a, i) := (∀k. 0 ≤ k ≤ i −→ a[k] = fib(k))

Then the formula ψ expresses that the invariant is maintained after a
loop iteration:

ψ := ϕ(a, i) ∧ i < N ∧ b = a{i+ 1← a[i] + a[i− 1]} ∧ j = i+ 1 −→ ϕ(b, j)

Transform the negated formula ¬ψ into an equisatisfiable quantifier-
free formula χ which does not contain any array-operations. Provide
intermediate formulas.

(c) Try to prove unsatisfiability of χ. To this end you can of course use the[6]

specification of Fibonacci-numbers, in particular the equation:

∀n. n ≥ 1 −→ fib(n+ 1) = fib(n) + fib(n− 1)

Either complete the proof or indicate why your attempt got stuck and
how the invariant might be adapted.

