

WS 2021 lecture 11

Outline

UNIVERSITAS LEOPOLDINO - LERANCISCEA

Constraint Solving

Cezary Kaliszyk René Thiemann based on a previous course by Aart Middeldorp

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA
- 5. Further Reading

universität WS 2021 Constraint Solving lecture 11

Properties of DPLL(T) Simplex Algorithm

- termination ensured via Bland's rule: choose x_i and x_j for pivoting in a way that (x_i, x_j) ∈ B × N is lexicographically smallest
- worst-case complexity is exponential, but only on artificial examples
- provides incremental interface (activation flags for bounds) and unsatisfiable cores (Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)
- strict inequalities supported, but requires arithmetic using \mathbb{Q}_δ

 $\begin{array}{ccc} \mathbf{x} < \mathbf{c} & \Longrightarrow & \mathbf{x} \leq \mathbf{c} - \delta \\ \mathbf{x} > \mathbf{c} & \Longrightarrow & \mathbf{x} \geq \mathbf{c} + \delta \end{array}$

- decides quantifier-free conjunctions for LRA
- not well suited for linear programming, i.e., optimization problems

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA
- 5. Further Reading

Example (Application of Linear Arithmetic: Termination Proving)

consider program (assuming that int behaves like mathematical integers)

```
int factorial(int n) {
    int i = 1;
    int r = 1;
    while (i < n) {
        i = i + 1;
        r = r * i; }
    return r; }</pre>
```

• φ describes one iteration of loop (primed variables store values after iteration)

$$\varphi := i < n \land i' = i + 1 \land r' = r \cdot (i + 1) \land n' = n$$

• proving termination: find expression e(i, n, r) and integer c such that

•	$arphi \longrightarrow {f e}(i,n,r) \ge {f e}(i',n',r') + 1$	(expression
•	$\varphi \longrightarrow e(i',n',r') \ge c$	(expression

xpression decreases in every iteration) expression is bounded from below by c)

universität WS 2021 Constraint Solving lecture 11 2. Application, Motivating LIA

5/28

Example (Termination Proof Continued)

- loop iteration $\varphi := i < n \land i' = i + 1 \land r' = r \cdot (i + 1) \land n' = n$
- proving termination by validity of formulas

$$\varphi \longrightarrow e(i, n, r) \ge e(i', n', r') + 1$$
 $\varphi \longrightarrow e(i', n', r') \ge c$

• is equivalent to unsatisfiability of negated formulas

$$\varphi \wedge e(i, n, r) < e(i', n', r') + 1$$
 $\varphi \wedge e(i', n', r') < c$

 choosing e(i, n, r) := n - i and c := -1, and dropping all non-linear constraints yields two LIA problems:

•
$$i < n \land i' = i + 1 \land n' = n \land n - i < n' - i' + 1$$
 (¬ decrease)

•
$$i < n \land i' = i + 1 \land n' = n \land n' - i' < -1$$
 (¬ bounded

both problems are unsatisfiable over ${\mathbb R}$ (just run simplex), so termination is proved

universität	WS 2021	Constraint Solving	lecture 11	2. Application, Motivating LIA
-------------	---------	--------------------	------------	--------------------------------

• consider another program int log2(int x) { int n := 0; while (x > 0) { x := x div 2; n := n + 1; } return n; } • $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	.	
int log2(int x) { int n := 0; while (x > 0) { x := x div 2; n := n + 1; } return n; } • $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	consider another program	
int n := 0; while (x > 0) { x := x div 2; n := n + 1; } return n; } • $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	<pre>int log2(int x) {</pre>	
while $(x > 0)$ { $x := x \operatorname{div} 2;$ $n := n + 1;$ } return n; } • $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	int n := 0;	
$\begin{array}{ll} x \ := \ x \ div \ 2; \\ n \ := \ n \ + \ 1; \ \end{array} \\ \hline return \ n; & \end{array} \\ \bullet \ \varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1 \\ \bullet \ choose \ e(x, n) = x \ and \ c = -1; \ obtain \ two \ LIA \ problems \ that \ should \ be \ unsatisfiable \\ \bullet \ \varphi \land x < x' + 1 & (\neg \ decrease) \\ \bullet \ \varphi \land x' < -1 & (\neg \ bounded) \\ \bullet \ (\neg \ bounded) \ is \ unsatisfiable \ over \ \mathbb{R} \\ \bullet \ (\neg \ decrease) \ is \ unsatisfiable \ over \ \mathbb{Z}, \ but \ not \ over \ \mathbb{R} \implies require \ LIA \ solver \end{array}$	while $(x > 0)$ {	
$\begin{array}{l} {\rm n} := {\rm n} + 1; \ \} \\ {\rm return} \ {\rm n}; \qquad \} \\ \bullet \ \varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1 \\ \bullet \ {\rm choose} \ e(x,n) = x \ {\rm and} \ c = -1; \ {\rm obtain} \ {\rm two} \ {\rm LIA} \ {\rm problems} \ {\rm that} \ {\rm should} \ {\rm be} \ {\rm unsatisfiable} \\ \bullet \ \varphi \land x < x' + 1 \qquad (\neg \ {\rm decrease}) \\ \bullet \ \varphi \land x' < -1 \qquad (\neg \ {\rm bounded}) \\ \bullet \ (\neg \ {\rm bounded}) \ {\rm is} \ {\rm unsatisfiable} \ {\rm over} \ \mathbb{R} \\ \bullet \ (\neg \ {\rm decrease}) \ {\rm is} \ {\rm unsatisfiable} \ {\rm over} \ \mathbb{Z}, \ {\rm but} \ {\rm not} \ {\rm over} \ \mathbb{R} \Longrightarrow \ {\rm require} \ {\rm LIA} \ {\rm solver} \end{array}$	x := x div 2;	
return n; } • $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	n := n + 1; }	
• $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$ • choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable • $\varphi \land x < x' + 1$ (¬ decrease) • $\varphi \land x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	return n; }	
 choose e(x, n) = x and c = −1; obtain two LIA problems that should be unsatisfiable φ ∧ x < x' + 1 (¬ decrease) φ ∧ x' < −1 (¬ bounded) (¬ bounded) is unsatisfiable over ℝ (¬ decrease) is unsatisfiable over ℤ, but not over ℝ ⇒ require LIA solver 	• $\varphi := x > 0 \land 2x' \le x \land x \le 2x' + 1 \land n' = n + 1$	
• $\varphi \wedge x < x' + 1$ (¬ decrease) • $\varphi \wedge x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	• choose $e(x, n) = x$ and $c = -1$; obtain two LIA problems that should be unsatisfiable	e
• $\varphi \wedge x' < -1$ (¬ bounded) • (¬ bounded) is unsatisfiable over \mathbb{R} • (¬ decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \implies$ require LIA solver	• $\varphi \wedge x < x' + 1$ (¬ decreas	e)
 (¬ bounded) is unsatisfiable over ℝ (¬ decrease) is unsatisfiable over ℤ, but not over ℝ ⇒ require LIA solver 	• $\varphi \wedge x' < -1$ (¬ bounde	d)
• (\neg decrease) is unsatisfiable over \mathbb{Z} , but not over $\mathbb{R} \Longrightarrow$ require LIA solver	• (\neg bounded) is unsatisfiable over $\mathbb R$	
	• (\neg decrease) is unsatisfiable over $\mathbb Z$, but not over $\mathbb R \Longrightarrow$ require LIA solver	
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;	• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;	

Example (Application of Linear Integer Arithmetic: Termination Proving)

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA

3. Branch and Bound

- 4. Proof of Small Model Property of LIA
- 5. Further Reading

satisfiable, simplex can return (2, 1)

• C ∧ x ≥ 2

universität innsbruck

```
WS 2021 Constraint Solving lecture 11 3. Branch and Bound
```

9/28

Algorithm BranchAndBound(φ)

Input: Output:	LIA formula $arphi$, a conjunction of linear inequalities unsatisfiable, or satisfying assignment	
let <i>res</i> b	e result of deciding $arphi$ over $\mathbb R$	▷ e.g. by simplex
if <i>res</i> is return	unsatisfiable then n unsatisfiable	
else if r	<i>es</i> is solution over \mathbb{Z} then	
returi	n res	
else		
let x l	be variable assigned non-integer value <i>q</i> in <i>res</i>	
res =	$\mathbb{P} = BranchAndBound(arphi \wedge x \leq \lfloor q floor)$	
if res	eq unsatisfiable then	
re	turn <i>res</i>	
else		
re	turn BranchAndBound $(arphi \wedge x \geq \lceil q ceil)$	

```
universität WS 2021 Constraint Solving lecture 11 3. Branch and Bound
Institute
```

10/28

universität WS 2021 Constraint Solving lecture 11 3. Branch and Bound

Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over $\mathbb Z$ then it has a solution v with

$$|v(x)| \leq bound(\psi) := (n+1)! \cdot c^{4}$$

for all x where

- n: number of variables in ψ
- c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP

 ${ extsf{BranchAndBound}}\left(\psi\wedge igwedge_{oldsymbol{x}\in { extsf{vars}}(\psi)} - { extsf{bound}}(\psi)\leq oldsymbol{x}\leq { extsf{bound}}(\psi)
ight)$

to decide solvability of ψ over $\mathbb Z$

• bound is quite tight: $c \le x_1 \land c \cdot x_1 \le x_2 \land \ldots \land c \cdot x_{n-1} \le x_n$ implies $x_n \ge c^n$

universität
 WS 2021 Constraint Solving lecture 11
 S. Branch and Bound

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound

4. Proof of Small Model Property of LIA

5. Further Reading

universität WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA
 Innsbruck

Geometric Objects

• polytope: convex hull of finite set of points *X*

$$hull(X) = \{\lambda_1 \vec{v}_1 + \ldots + \lambda_m \vec{v}_m \mid \{\vec{v}_1, \ldots, \vec{v}_m\} \subseteq X \land \lambda_1, \ldots, \lambda_m \ge 0 \land \sum \lambda_i = 1\}$$

• finitely generated cone: non-negative linear combinations of finite set of vectors V

$$cone(V) = \{\lambda_1 \vec{v}_1 + \ldots + \lambda_m \vec{v}_m \mid \{\vec{v}_1, \ldots, \vec{v}_m\} \subseteq V \land \lambda_1, \ldots, \lambda_m \ge 0\}$$

• polyhedron: polytope + finitely generated cone

$$hull(X) + cone(V) = \{ \vec{x} + \vec{v} \mid \vec{x} \in hull(X) \land \vec{v} \in cone(V) \}$$

13/28

More Geometric Objects

Example

• *C* is polyhedral cone iff $C = {\vec{x} | A\vec{x} \le \vec{0}}$ for some matrix *A* iff *C* is intersection of finitely many half-spaces

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

14/28

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set $P \subseteq \mathbb{R}^n$ can be described as a polyhedron P = hull(X) + cone(V) for finite X and V iff $P = \{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ for some matrix A and vector \vec{b} . Moreover, given X and V one can compute A and \vec{b} , and vice versa.

Proof Idea of Small Model Property

- **1** convert conjunctive LIA formula ψ into form $A\vec{x} \leq \vec{b}$
- **2** represent polyhedron $\{\vec{x} \mid A\vec{x} \leq \vec{b}\}$ as polyhedron P = hull(X) + cone(V)
- \odot show that P has small integral solutions, depending on X and V
- $\mathbf{0}$ approximate size of entries of vectors in X and V to obtain small model property

Remark

S

- given ψ , one can compute X and V instead of using approximations
- however, this would be expensive: decomposition theorem requires exponentially many steps (in n, m) for input $A \in \mathbb{Z}^{m \times n}$ and $\vec{b} \in \mathbb{Z}^m$

universität WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA

18/28

Step 1: Conjunctive LIA Formula into Matrix Form $Aec{x} \leq b$					
• (variable renamed) for	rmula				
$x_1 > 0$	$2x_2 \leq x_1$	$x_1 \leq 2x_2 + 1$	$x_1 < x_2 + 1$		
• eliminate strict inequa	lities (only valid i	n LIA)			
$x_1 \ge 0 + 1$	$2x_2 \leq x_1$	$x_1 \leq 2x_2 + 1$	$x_1 + 1 \le x_2 + 1$		
• normalize (only \leq , cor	istant to the right	-hand-side)			
$-x_1 \leq -1$	$-x_1+2x_2\leq 0$	$x_1-2x_2\leq 1$	$x_1 - x_2 \le 0$		
• matrix form	$\begin{pmatrix} -1 & 0 \\ -1 & 2 \\ 1 & -2 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$			

tep 3: Small Integral Solutions of Polyhedrons	
consider finite sets $X\subseteq \mathbb{R}^n$ and $V\subseteq \mathbb{Z}^n$ define	
$B = \{\lambda_1 \vec{v_1} + \ldots + \lambda_n \vec{v_n} \mid \{\vec{v_1}, \ldots, \vec{v_n}\} \subseteq V \land 1 \ge \lambda_1, \ldots, \lambda_n \ge 0\} \subseteq cone(V)$	
heorem	
$hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \longleftrightarrow (hull(X) + B) \cap \mathbb{Z}^n = \emptyset$	
orollary	
ssume $ c \leq b \in \mathbb{Z}$ for all entries c of all vectors in $X \cup V$. Define Bnd $:= b \cdot (1 + n)$. Then	
$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$	
\longleftrightarrow (null(x) + cone(v)) $\cap \{-Bnd, \dots, Bnd\}'' = \emptyset$	

universität WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA

Theorem $(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \longleftrightarrow (hull(X) + B) \cap \mathbb{Z}^n = \emptyset$ Proof $(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \longleftrightarrow (hull(X) + B) \cap \mathbb{Z}^n = \emptyset$

Step 2a: Decomposing Polyhedron $P = \{\vec{u} \mid A\vec{u} \leq \vec{b}\}$ into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of
$$\begin{cases} \vec{v} \mid \begin{pmatrix} A & -\vec{b} \\ \vec{0} & -1 \end{pmatrix} \vec{v} \leq \vec{0} \end{cases}$$
 into $cone(C)$ for integral vectors $C = \begin{cases} \begin{pmatrix} \vec{y}_1 \\ \tau_1 \end{pmatrix}, \dots, \begin{pmatrix} \vec{y}_\ell \\ \tau_\ell \end{pmatrix}, \begin{pmatrix} \vec{z}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \vec{z}_k \\ 0 \end{pmatrix} \end{cases}$ with $\tau_i > 0$ for all $1 \leq i \leq \ell$
2 define $\vec{x}_i := \frac{1}{\tau_i} \vec{y}_i$
3 return $X := \{\vec{x}_1, \dots, \vec{x}_\ell\}$ and $V := \{\vec{z}_1, \dots, \vec{z}_k\}$

Theorem

P = hull(X) + cone(V)

Bounds

- the absolute values of the numbers in *X* ∪ *V* are all bounded by the absolute values of the numbers in *C*
- hence, bounds on C can be reused to bound vectors in $X \cup V$

universität innsbruck	WS 2021	Constraint Solving	lecture 11	4.	Proof of Small Model Property of LIA
--------------------------	---------	--------------------	------------	----	--------------------------------------

22/28

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

- consider *cone* (*V*) for $V = {\vec{v}_1, ..., \vec{v}_m} \subseteq \mathbb{R}^n$
- consider every set $W \subseteq V$ of linearly independent vectors with |W| = n 1
- obtain integral normal vector \vec{c} of hyper-space spanned by W
- next check whether *V* is contained in hyper-space $\{\vec{v} \mid \vec{v} \cdot \vec{c} \le 0\}$ or $\{\vec{v} \mid \vec{v} \cdot (-\vec{c}) \le 0\}$
 - if $\vec{v}_i \cdot \vec{c} \leq 0$ for all *i*, then add \vec{c} as row to A
 - if $\vec{v}_i \cdot \vec{c} \ge 0$ for all *i*, then add $-\vec{c}$ as row to A
- cone (V) = { $\vec{x} \mid A\vec{x} \leq \vec{0}$ }
- bounds
- each normal vector \vec{c} can be computed via determinants
- \implies obtain bound on numbers in $ec{c}$ by using known bounds on determinants, cf. slide 25

Example: Construction of Polyhedral Cone from Finitely Generated Cone

Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

- consider $\{\vec{x} \mid A\vec{x} \leq \vec{0}\}$
- define *W* as the set of row vectors of *A*
- by first direction obtain integral matrix *B* such that $cone(W) = \{\vec{x} \mid B\vec{x} \leq \vec{0}\}$
- define V as the set of row vectors of B
- $\{\vec{x} \mid A\vec{x} \le \vec{0}\} = cone(V)$
- bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let $C \subseteq \mathbb{R}^n$ be a polyhedral cone, given via an integral matrix A. Let b be a bound for all matrix entries, $b \ge |A_{ij}|$. Then C is generated by a finite set of integral vectors V whose entries are at most $\pm (n-1)! \cdot b^{n-1}$.

universität WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA

25/28

Outline

- **1. Summary of Previous Lecture**
- 2. Application, Motivating LIA
- 3. Branch and Bound
- 4. Proof of Small Model Property of LIA
- 5. Further Reading

universität WS 2021 Constraint Solving lecture 11 5. Further Reading Instruct

Kröning and Strichmann

Section 5.3

Further Reading

Alexander Schrijver Theory of linear and integer programming, Chapters 7, 16, 17, and 24 Wiley, 1998.

Important Concepts

- branch-and-bound
- cone (finitely generated or polyhedral)
- decomposition theorem for polyhedra
- Farkas–Minkowski–Weyl theorem
- polyhedron
- small model property of LIA
- termination of program via two validity proofs: decrease and boundedness