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Properties of DPLL(T) Simplex Algorithm

• termination ensured via Bland’s rule:
choose xi and xj for pivoting in a way that (xi, xj) ∈ B× N is lexicographically smallest

• worst-case complexity is exponential, but only on artificial examples

• provides incremental interface (activation flags for bounds) and unsatisfiable cores
(Haskell: initSimplex, assert i, check, solution, checkpoint, backtrack cp)

• strict inequalities supported, but requires arithmetic using Qδ

x < c =⇒ x ≤ c− δ
x > c =⇒ x ≥ c + δ

• decides quantifier-free conjunctions for LRA

• not well suited for linear programming, i.e., optimization problems
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http://cl-informatik.uibk.ac.at/teaching/ws21/cs
http://cl-informatik.uibk.ac.at/cek
http://cl-informatik.uibk.ac.at/~thiemann


Example (Application of Linear Arithmetic: Termination Proving)

• consider program (assuming that int behaves like mathematical integers)

int factorial(int n) {

int i = 1;

int r = 1;

while (i < n) {

i = i + 1;

r = r * i; }

return r; }

• ϕ describes one iteration of loop (primed variables store values after iteration)

ϕ := i < n ∧ i′ = i + 1 ∧ r′ = r · (i + 1) ∧ n′ = n

• proving termination: find expression e(i,n, r) and integer c such that
• ϕ −→ e(i,n, r) ≥ e(i′,n′, r′) + 1 (expression decreases in every iteration)
• ϕ −→ e(i′,n′, r′) ≥ c (expression is bounded from below by c)
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Example (Termination Proof Continued)

• loop iteration ϕ := i < n ∧ i′ = i + 1 ∧ r′ = r · (i + 1) ∧ n′ = n
• proving termination by validity of formulas

ϕ −→ e(i,n, r) ≥ e(i′,n′, r′) + 1 ϕ −→ e(i′,n′, r′) ≥ c

• is equivalent to unsatisfiability of negated formulas

ϕ ∧ e(i,n, r) < e(i′,n′, r′) + 1 ϕ ∧ e(i′,n′, r′) < c

• choosing e(i,n, r) := n− i and c := −1, and dropping all non-linear constraints yields
two LIA problems:
• i < n ∧ i′ = i + 1 ∧ n′ = n ∧ n− i < n′ − i′ + 1 (¬ decrease)
• i < n ∧ i′ = i + 1 ∧ n′ = n ∧ n′ − i′ < −1 (¬ bounded)

both problems are unsatisfiable over R (just run simplex), so termination is proved
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Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider another program

int log2(int x) {

int n := 0;

while (x > 0) {

x := x div 2;

n := n + 1; }

return n; }

• ϕ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ n′ = n + 1
• choose e(x,n) = x and c = −1; obtain two LIA problems that should be unsatisfiable
• ϕ ∧ x < x′ + 1 (¬ decrease)
• ϕ ∧ x′ < −1 (¬ bounded)

• (¬ bounded) is unsatisfiable over R
• (¬ decrease) is unsatisfiable over Z, but not over R =⇒ require LIA solver
• remark: LIA reasoning is crucial, the problem is not wrong choice of expression e;

program does not terminate when executed with real number arithmetic
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Example

3x− 2y≥ −1

y≤ 4

2x + y≥ 5

3x− y≤ 7

• looking for solution in Z2

• infinite R2 solution space, six solutions in Z2

• simplex returns (9
7 ,

17
7 ) 2 4 6

2

4

6

Branch and Bound, a Solver for LIA Formulas – Idea

• add constraints that exclude current solution in R2 \ Z2 but do not change solutions in Z2

• in current solution 1 < x < 2, so use simplex on two augmented problems:

• C ∧ x 6 1 unsatisfiable
• C ∧ x > 2 satisfiable, simplex can return (2,1)
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Algorithm BranchAndBound(ϕ)

Input: LIA formula ϕ, a conjunction of linear inequalities
Output: unsatisfiable, or satisfying assignment

let res be result of deciding ϕ over R . e.g. by simplex
if res is unsatisfiable then

return unsatisfiable
else if res is solution over Z then

return res
else

let x be variable assigned non-integer value q in res
res = BranchAndBound(ϕ ∧ x ≤ bqc)
if res 6= unsatisfiable then

return res
else

return BranchAndBound(ϕ ∧ x ≥ dqe)
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Example (Termination Proof of log2, Continued)

• problematic formula (satisfiable over R)

ψ := x > 0 ∧ 2x′ ≤ x ∧ x ≤ 2x′ + 1 ∧ x < x′ + 1 (¬ decrease)

• execution of BranchAndBound on ψ (short notation: BB(ψ))

• simplex: v(x) = 1, v(x′) = 1
2

• invoke BB(ψ ∧ x′ ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0), simplex: v(x) = 1

2 , v(x
′) = −1

4
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≥ 1), simplex: unsatisfiable
• invoke BB(ψ ∧ x′ ≤ 0 ∧ x ≤ 0), simplex: unsatisfiable

• return unsatisfiable
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Example (Branch and Bound – Problem)

consider ψ := 1 ≤ 3x− 3y ∧ 3x− 3y ≤ 2

• v(x) = 1
3 , v(y) = 0, add x ≤ 0 or x ≥ 1

• for ψ ∧ x ≥ 1: v(x) = 1, v(y) = 1
3 , add y ≤ 0 or y ≥ 1

• . . . BranchAndBound is not terminating, since search space is unbounded
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Theorem (Small Model Property of LIA)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n + 1)! · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers occurring in ψ

Consequences and Remarks

• satisfiability of ψ for LIA formula is in NP
• invoke

BranchAndBound

ψ ∧ ∧
x∈vars(ψ)

−bound(ψ) ≤ x ≤ bound(ψ)


to decide solvability of ψ over Z
• bound is quite tight: c ≤ x1 ∧ c · x1 ≤ x2 ∧ . . . ∧ c · xn−1 ≤ xn implies xn ≥ cn
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Geometric Objects

• polytope: convex hull of finite set of points X

hull(X) = {λ1~v1 + . . .+ λm~vm | {~v1, . . . ,~vm} ⊆ X ∧ λ1, . . . , λm ≥ 0 ∧
∑

λi = 1}

• finitely generated cone: non-negative linear combinations of finite set of vectors V

cone(V) = {λ1~v1 + . . .+ λm~vm | {~v1, . . . ,~vm} ⊆ V ∧ λ1, . . . , λm ≥ 0}

• polyhedron: polytope + finitely generated cone

hull(X) + cone(V) = {~x + ~v | ~x ∈ hull(X) ∧ ~v ∈ cone(V)}
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More Geometric Objects

• C is polyhedral cone iff C = {~x | A~x ≤ ~0} for some matrix A
iff C is intersection of finitely many half-spaces

Example

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.
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Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Theorem (Decomposition Theorem for Polyhedra)

A set P ⊆ Rn can be described as a polyhedron P = hull(X) + cone(V) for finite X and V
iff P = {~x | A~x ≤ ~b} for some matrix A and vector ~b.
Moreover, given X and V one can compute A and ~b, and vice versa.

Example
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Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form A~x ≤ ~b
2 represent polyhedron {~x | A~x ≤ ~b} as polyhedron P = hull(X) + cone(V)

3 show that P has small integral solutions, depending on X and V

4 approximate size of entries of vectors in X and V to obtain small model property

Remark

• given ψ, one can compute X and V instead of using approximations
• however, this would be expensive: decomposition theorem requires exponentially

many steps (in n,m) for input A ∈ Zm×n and ~b ∈ Zm

WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA 18/28

Step 1: Conjunctive LIA Formula into Matrix Form A~x ≤ ~b
• (variable renamed) formula

x1 > 0 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 < x2 + 1

• eliminate strict inequalities (only valid in LIA)

x1 ≥ 0 + 1 2x2 ≤ x1 x1 ≤ 2x2 + 1 x1 + 1 ≤ x2 + 1

• normalize (only ≤, constant to the right-hand-side)

−x1 ≤ −1 −x1 + 2x2 ≤ 0 x1 − 2x2 ≤ 1 x1 − x2 ≤ 0

• matrix form 
−1 0

−1 2

1 −2

1 −1


(

x1

x2

)
≤


−1

0

1

0


WS 2021 Constraint Solving lecture 11 4. Proof of Small Model Property of LIA 19/28

Step 3: Small Integral Solutions of Polyhedrons

• consider finite sets X ⊆ Rn and V ⊆ Zn

• define

B = {λ1 ~v1 + . . .+ λn~vn | {~v1, . . . ,~vn} ⊆ V ∧ 1 ≥ λ1, . . . , λn ≥ 0} ⊆ cone(V)

Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Corollary

Assume |c| ≤ b ∈ Z for all entries c of all vectors in X ∪ V.
Define Bnd := b · (1 + n). Then

(hull(X) + cone(V)) ∩ Zn = ∅
←→ (hull(X) + cone(V)) ∩ {−Bnd, . . . ,Bnd}n = ∅
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Theorem

(hull(X) + cone(V)) ∩ Zn = ∅ ←→ (hull(X) + B) ∩ Zn = ∅

Proof
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Step 2a: Decomposing Polyhedron P = {~u | A~u ≤ ~b} into hull(X) + cone(V)

1 use FMW to convert polyhedral cone of

{
~v

∣∣∣∣∣
(

A −~b
~0 −1

)
~v ≤ ~0

}
into cone(C) for integral

vectors C =

{(
~y1

τ1

)
, . . . ,

(
~y`
τ`

)
,

(
~z1

0

)
, . . . ,

(
~zk

0

)}
with τi > 0 for all 1 ≤ i ≤ `

2 define ~xi :=
1
τi
~yi

3 return X := {~x1, . . . ,~x`} and V := {~z1, . . . ,~zk}

Theorem

P = hull(X) + cone(V)

Bounds
• the absolute values of the numbers in X ∪ V are all bounded by the absolute values

of the numbers in C
• hence, bounds on C can be reused to bound vectors in X ∪ V
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

First direction: finitely generated implies polyhedral

• consider cone (V) for V = {~v1, . . . ,~vm} ⊆ Rn

• consider every set W ⊆ V of linearly independent vectors with |W| = n− 1
• obtain integral normal vector ~c of hyper-space spanned by W
• next check whether V is contained in hyper-space {~v | ~v ·~c ≤ 0} or {~v | ~v · (−~c) ≤ 0}
• if ~vi ·~c ≤ 0 for all i, then add ~c as row to A
• if ~vi ·~c ≥ 0 for all i, then add −~c as row to A

• cone (V) = {~x | A~x ≤ ~0}
• bounds
• each normal vector ~c can be computed via determinants

=⇒ obtain bound on numbers in ~c by using known bounds on determinants, cf. slide 25
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Example: Construction of Polyhedral Cone from Finitely Generated Cone

V =

{(
−3

−2

)
,

(
−2

−2

)
,

(
−1

−2

)}

A =

(
− 2 3

2 −1

)

• pick W = {~w}, ~w =

(
−3

−2

)
and consider span W

• compute normal vector ~c =
(
−2 3

)
• if V is in same half-space, add ±~c to A
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Step 2b: Theorem of Farkas, Minkowski, Weyl

A cone is polyhedral iff it is finitely generated.

Second direction: polyhedral implies finitely generated

• consider {~x | A~x ≤ ~0}
• define W as the set of row vectors of A
• by first direction obtain integral matrix B such that cone (W) = {~x | B~x ≤ ~0}
• define V as the set of row vectors of B
• {~x | A~x ≤ ~0} = cone (V)
• bounds carry over from first direction

Step 4: Theorem of Farkas, Minkowski, Weyl (bounded version)

Let C ⊆ Rn be a polyhedral cone, given via an integral matrix A. Let b be a bound for
all matrix entries, b ≥ |Aij|. Then C is generated by a finite set of integral vectors V
whose entries are at most ± (n− 1)! · bn−1.
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Kröning and Strichmann

• Section 5.3

Further Reading

Alexander Schrijver
Theory of linear and integer programming, Chapters 7, 16, 17, and 24
Wiley, 1998.
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Important Concepts

• branch-and-bound
• cone (finitely generated or polyhedral)
• decomposition theorem for polyhedra
• Farkas–Minkowski–Weyl theorem
• polyhedron
• small model property of LIA
• termination of program via two validity proofs: decrease and boundedness
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