
WS 2021 lecture 12

Constraint Solving

Cezary Kaliszyk René Thiemann

based on a previous course by Aart Middeldorp

Outline

1. Summary of Previous Lecture

2. Cutting Planes

3. Difference Logic

4. Further Reading

WS 2021 Constraint Solving lecture 12 2/27

Example (Application of Linear Integer Arithmetic: Termination Proving)

• consider program
• model loop-iteration as formula ϕ using pre-variables ~x and post-variables ~x′

• prove termination by choosing expression e and integer constant c and show that
two LIA problems are unsatisfiable
• ϕ ∧ e(~x) < e(~x′) + 1 (¬ decrease)
• ϕ ∧ e(~x′) < c (¬ bounded)

• for certain programs, reasoning over integers is essential

Branch-and-Bound Algorithm

• core idea for finding integral solution
• simplex algorithm is used to find rational solution v or detect unsat in Q
• whenever q := v(x) /∈ Z, add x ≤ bqc ∨ dqe ≤ x and consider both possibilities

• small model property is required for termination: obtain finite search space

WS 2021 Constraint Solving lecture 12 1. Summary of Previous Lecture 3/27

Theorem (Small Model Property)

if LIA formula ψ has solution over Z then it has a solution v with

|v(x)| ≤ bound(ψ) := (n+ 1)! · cn

for all x where

• n: number of variables in ψ
• c: maximal absolute value of numbers in ψ

WS 2021 Constraint Solving lecture 12 1. Summary of Previous Lecture 4/27

http://cl-informatik.uibk.ac.at/teaching/ws21/cs
http://cl-informatik.uibk.ac.at/cek
http://cl-informatik.uibk.ac.at/~thiemann

Proof Idea of Small Model Property

1 convert conjunctive LIA formula ψ into form A~x ≤ ~b
2 represent polyhedron {~x | A~x ≤ ~b}︸ ︷︷ ︸

yellow

as polyhedron P = hull(X)︸ ︷︷ ︸
red

+ cone(V)︸ ︷︷ ︸
green

3 show that P has small integral solutions (orange), depending on X and V

4 approximate entries of vectors in X and V to obtain small model property

WS 2021 Constraint Solving lecture 12 1. Summary of Previous Lecture 5/27

Outline

1. Summary of Previous Lecture

2. Cutting Planes

3. Difference Logic

4. Further Reading

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 6/27

Limitations of Branch-and-Bound

• global bounds for solution can be derived from formula, but are often too high for efficient
practical procedures

• shape of case analysis is quite restricted: x ≤ c ∨ c+ 1 ≤ x for some variable x and c ∈ Z
• =⇒ use cutting planes to restrict solution space more effectively

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 7/27

Example

2 4

2

4

Definition (Cut)

given solution v to problem over Rn, cut is inequality a1x1 + · · ·+ anxn ≤ b
which is not satisfied by v but by every Zn-solution

Method

like in Branch-and-Bound, keep adding cuts until integer solution found

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 8/27

Gomory Cuts: Assumptions

• DPLL(T) simplex returned solution v to

A~xN = ~xB (1) −∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

• for some i ∈ B variable xi is assigned v(xi) 6∈ Z
• for all j ∈ N value v(xj) is lj or uj

Notation

• write c = v(xi)− bv(xi)c
• by assumption all nonbasic variables are assigned bounds, so we can split

L = { j ∈ N | v(xj) = lj } U = { j ∈ N | v(xj) = uj } \ L
L+ = { j ∈ L | Aij ≥ 0 } U+ = { j ∈ U | Aij ≥ 0 }
L− = { j ∈ L | Aij < 0 } U− = { j ∈ U | Aij < 0 }

Lemma (Gomory Cut)

cut is given by inequality
1

1 − c
·
∑
j∈L+

Aij(xj − lj)−
1

1 − c
·
∑
j∈U−

Aij(uj − xj)−
1

c
·
∑
j∈L−

Aij(xj − lj) +
1

c
·
∑
j∈U+

Aij(uj − xj) ≥ 1

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 9/27

Example

2 4

2

4

−2x− 3y≤ −6

−2x+ y≤ 0

x− 2y≤ −1

5x+ 4y≤ 25

• infinite R2-solution space

• four solutions in Z2

• Simplex solution search

s1

s2

s3

s4

x y

−2 −3

−2 1

1 −2

5 4

s1 ≤ −6

s2 ≤ 0

s3 ≤ −1

s4 ≤ 25

−→

s3

x

y

s4

s2 s1

−7
8

3
8

−3
8 −1

8
1
4 −1

4

−7
8 −

13
8

x= 3

4 s1 = −6

y= 3
2 s2 = 0

s3 = −21
4

s4 = 93
4

initial tableau final tableau solution

• nonbasic variables s2 = 0 and s1 = −6 at bounds, basic x is assigned 3
4 6∈ Z

• from c = 3
4 obtain Gomory cut 1/(1− 3

4) · (
3
8 (0− s2) +

1
8 (−6− s1)) ≥ 1

• corresponds to −3(−2x+ y)− (−2x− 3y) ≥ 8, simplified x ≥ 1

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 10/27

A~xN = ~xB (1) −∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

Proof (1)

• consider potential integer solution ~x to (1) and (2)

• ~x satisfies i-th row of (1):
xi =

∑
j∈N

Aijxj (3)

• because v is solution have
v(xi) =

∑
j∈N

Aijv(xj) (4)

• subtract (4) from (3):
xi − v(xi) =

∑
j∈N

Aij(xj − v(xj))

=
∑
j∈L

Aij(xj − lj)−
∑
j∈U

Aij(uj − xj) (5)

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 11/27

Proof (2)

• have xi − v(xi) =
∑
j∈L

Aij(xj − lj)︸ ︷︷ ︸
L

−
∑
j∈U

Aij(uj − xj)︸ ︷︷ ︸
U

(5)

• for c = v(xi)− bv(xi)c have 0 < c < 1, can write v(xi) = bv(xi)c+ c, so

xi − bv(xi)c = c+ L − U (6)

• for integer solution ~x left-hand side must be integer, so also right-hand side

• abbreviate
L+ =

∑
j∈L+

Aij(xj − lj) U+ =
∑
j∈U+

Aij(uj − xj)

L− =
∑
j∈L−

Aij(xj − lj) U− =
∑
j∈U−

Aij(uj − xj)

so L = L+ + L− and U = U+ + U−

• have L+ ≥ 0, U+ ≥ 0 and L− ≤ 0, U− ≤ 0

• distinguish L ≥ U or L < U
WS 2021 Constraint Solving lecture 12 2. Cutting Planes 12/27

Proof (3)

• both sides are integer in equation
xi − bv(xi)c = c+ L − U (6)

• if L ≥ U
• have c+ L − U ≥ 1 because integer, so L − U ≥ 1− c
• in particular L+ − U− ≥ 1− c
• 1

1− c
(L+ − U−) ≥ 1 (7)

• if L < U
• have c+ L − U ≤ 0 because integer, so U − L ≥ c
• in particular U+ − L− ≥ c
• 1

c
(U+ − L−) ≥ 1 (8)

• terms L+, U+, −L− and −U− always non-negative, as well as c and 1− c

• add (7) and (8) to obtain cut 1

1− c
(L+ − U−) + 1

c
(U+ − L−) ≥ 1

since L+ ≥ L
and U− ≤ U

since U+ ≥ U
and L− ≤ L

desired

inequality!

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 13/27

Gomory Cuts Assumptions

for some i ∈ B variable xi is assigned v(xi) 6∈ Z, and for all j ∈ N value v(xj) is lj or uj

Example (tableau s = 3x− 3y and bounds 1 ≤ s ≤ 2)

• simplex: B = {x}, N = {y, s} and v(x) = 1/3, v(y) = 0, v(s) = 1, y has no bounds
• consequence: branch-and-cut, combine cutting planes with branch-and-bound
• branch-and-bound: add x ≥ 1 (and later on try x ≤ 0)
• simplex: B = {y}, N = {x, s} and v(x) = 1, v(y) = 2/3, v(s) = 1
• now Gomory assumptions are satisfied; compute c = 2/3, L+ = {x}, L− = {s}, U = ∅

and add cut which can be simplified to s+ 6x ≥ 9, i.e., 3x− y ≥ 3
• add new slack variable t, tableau equation t = s+ 6x and bound t ≥ 9 with v(t) = 7

• have , next , . . . still not terminating without global bounds

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 14/27

Summary on LIA-solving

• branch-and-bound
• additional constraints are trivial: x ≤ brc ∨ dre ≤ x for v(x) = r /∈ Z
• pruning of search space is limited

• cutting planes via Gomory cuts
• calculation of cut is more complex, but still a simple algorithm
• more effective pruning of search space, no branching
• disadvantage: simplex invocations become more and more costly, since every cut

increases size of tableau
• combination: branch-and-cut
• run branch-and-bound with in-between additions of cuts

• further methods
• unit cube test (Bromberger, Weidenbach)
• improved bounds for small model property, depending on constraint structure

(Bromberger)
• mixed integer linear arithmetic where only some variables have to be integral

WS 2021 Constraint Solving lecture 12 2. Cutting Planes 15/27

Outline

1. Summary of Previous Lecture

2. Cutting Planes

3. Difference Logic

4. Further Reading

WS 2021 Constraint Solving lecture 12 3. Difference Logic 16/27

Difference Logic

conjunction of constraints of the form

• x− y 6 c

• x− y < c

Remarks

• difference logic is fragment of linear arithmetic; advantage: faster decision procedure

• domains: rational numbers (polynomial time) and integers (polynomial time)

• x− y = c ⇐⇒ x− y 6 c ∧ y− x 6 −c
• x− y > c ⇐⇒ y− x 6 −c
• x− y > c ⇐⇒ y− x < −c
• x < c ⇐⇒ x− x0 < c where x0 is fresh variable that must be assigned 0

WS 2021 Constraint Solving lecture 12 3. Difference Logic 17/27

Example Job -Shop Scheduling

• m machines (M1, . . . ,Mm) and n jobs (J1, . . . , Jn)

• each job Ji is sequence (Mi
1,d

i
i), . . . , (M

i
ni ,d

i
ni) of operations consisting of machine and

duration (rational number; τ(M,d) = d)

• O is multiset of all operations from all jobs

• schedule is function S that defines for each operation v ∈ O its starting time S(v) on
machine specified by v

• schedule S is feasible if

S(v) > 0 for all v ∈ O

S(vi) + τ(vi) 6 S(vj) for all consecutive vi, vj in same job

S(vi) + τ(vi) 6 S(vj) ∨ S(vj) + τ(vj) 6 S(vi)

for every pair of different operations vi, vj scheduled on same machine

• length of schedule S is max {S(v) + τ(v) | v ∈ O}

WS 2021 Constraint Solving lecture 12 3. Difference Logic 18/27

Definition Inequality Graph

conjunction ϕ of nonstrict difference constraints

• inequality graph of ϕ contains edge from x to y with weight c for every constraint x− y 6 c
in ϕ

Theorem

conjunction ϕ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of ϕ has no negative cycle

Example

x− y 6 2

y− z 6 − 3

z − x 6 2

x y
2

z
−3

2 satisfiable

WS 2021 Constraint Solving lecture 12 3. Difference Logic 19/27

Theorem

conjunction ϕ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of ϕ has no negative cycle

Proof

⇒ negative cycle x1
k1−−→ x2

k2−−→ x3 −−→ · · · −−→ xn
kn−−→ x1

in inequality graph of ϕ corresponds to conjuction

x1 − x2 6 k1 ∧ x2 − x3 6 k2 ∧ · · · ∧ xn − x1 6 kn

adding these literals gives

0 6 k1 + k2 + · · ·+ kn

with k1 + k2 + · · ·+ kn < 0 �

WS 2021 Constraint Solving lecture 12 3. Difference Logic 20/27

Theorem

conjunction ϕ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of ϕ has no negative cycle

Proof

⇐ assume inequality graph of ϕ has no negative cycle

construct satisfying assignment for ϕ as follows

• add additional starting node s in graph, add edges s→ x with weight 0 for all variables x
• define v(x) = −distance(s, x); well-defined, since there are no negative cycles
• v satisfies ϕ

Example

x y
2

z
−3

2

s
0

0
v(x) = 1, v(y) = 0, v(z) = 3

WS 2021 Constraint Solving lecture 12 3. Difference Logic 21/27

Algorithms for Distance Computation and Negative Cycle Detection

• Dijkstra

• computes distances from a single source to all other nodes
• complexity: O(|V| · log(|V|) + |E|)
• restriction: no negative cycles allowed

• Bellman-Ford

• computes distances from a single source to all other nodes
• complexity: O(|V| · |E|)
• can also detect negative cycles

• Floyd-Warshall

• computes distances between all nodes
• complexity: O(|V|3)
• can also detect negative cycles

⇒ use Bellman-Ford algorithm for difference logic

WS 2021 Constraint Solving lecture 12 3. Difference Logic 22/27

Bellman-Ford Algorithm for Inequality Graphs

Input inequality graph (V,E,w) with fresh starting node s

Output ∃ negative cycle or distances to node s

1 distance[v] := 0 for all nodes v ∈ V (this step is special for inequality graphs)

2 repeat |V| − 1 times

for all (u, v) ∈ E do

if distance[v] > distance[u] + w(u, v) then

distance[v] := distance[u] + w(u, v)

predecessor[v] := u

3 for all (u, v) ∈ E do

if distance[v] > distance[u] + w(u, v) then

return “∃ negative cycle ”

which can be reconstructed using predecessor array

4 return distance array, shortest paths available via predecessor array

WS 2021 Constraint Solving lecture 12 3. Difference Logic 23/27

Example Bellman-Ford in Action

a b

c d

e f

g h

s

0

0

0

0

0

0

0

0

2

-5

1

4
2 -89

4
-7

5

1

iteration a b c d e f g h

0 0 0 0 0 0 0 0 0

1 0 0 0 -5 -8 -7 0 0

2 -1 0 -4 -5 -8 -7 0 -4

3 -2 0 -4 -5 -8 -11 0 -4

4 -2 0 -4 -5 -10 -11 0 -4

5 -2 0 -4 -5 -10 -11 -1 -6
. . . 2 more iterations, then negative cycle is detected

WS 2021 Constraint Solving lecture 12 3. Difference Logic 24/27

Outline

1. Summary of Previous Lecture

2. Cutting Planes

3. Difference Logic

4. Further Reading

WS 2021 Constraint Solving lecture 12 4. Further Reading 25/27

Kröning and Strichmann

• Sections 5.3 and 5.7

Further Reading

Martin Bromberger
A Reduction from Unbounded Linear Mixed Arithmetic Problems into Bounded Problems
Proc. IJCAR 2018, volume 10900 of LNCS, pages 329-–345, 2018

Martin Bromberger and Christoph Weidenbach
New techniques for linear arithmetic: cubes and equalities
Formal Methods in System Design, volume 51, pages 433-–461, 2017

Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI–CSL–06–01, SRI International, 2006

WS 2021 Constraint Solving lecture 12 4. Further Reading 26/27

Important Concepts

• Bellman-Ford algorithm
• cutting planes
• difference logic
• Gomory cut
• inequality graph

WS 2021 Constraint Solving lecture 12 4. Further Reading 27/27

https://doi.org/10.1007/978-3-319-94205-6_22
https://doi.org/10.1007/978-3-319-94205-6_22
https://doi.org/10.1007/978-3-319-94205-6_22
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/s10703-017-0278-7
https://doi.org/10.1007/s10703-017-0278-7
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf
http://yices.csl.sri.com/papers/sri-csl-06-01.pdf

	lecture 12
	Summary of Previous Lecture
	Cutting Planes
	Difference Logic
	Further Reading

