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Example (Application of Linear Integer Arithmetic: Termination Proving)
® consider program

* model loop-iteration as formula ¢ using pre-variables X and post-variables x’

® prove termination by choosing expression e and integer constant ¢ and show that
two LIA problems are unsatisfiable

e phe(X)<e(X)+1
s pne(X)<c
e for certain programs, reasoning over integers is essential

e core idea for finding integral solution
® simplex algorithm is used to find rational solution v or detect unsat in Q
® whenever q := v(x) ¢ Z, add x < |g] V [q] < x and consider both possibilities
® small model property is required for termination: obtain finite search space

(— decrease)
(— bounded)
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Theorem (Small Model Property)

if LIA formula 1) has solution over Z then it has a solution v with
[v(x)| < bound(v) := (n+ 1)!-c"

for all x where

® n: number of variables in 1
® c: maximal absolute value of numbers in ¥
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Proof Idea of Small Model Property

@ convert conjunctive LIA formula v into form AX < b
© represent polyhedron {X | AX < b} as polyhedron P = hull(X) + cone(V)
N—_——— ——— N——
yellow red green
© show that P has small integral solutions (orange), depending on X and V
@ approximate entries of vectors in X and V to obtain small model property
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Limitations of Branch-and-Bound

® global bounds for solution can be derived from formula, but are often too high for efficient
practical procedures

® shape of case analysis is quite restricted: x < cV c+ 1 < x for some variable x and c € Z
® — use cutting planes to restrict solution space more effectively
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Definition (Cut)

given solution v to problem over R", cut is inequality aijx; + -+ apx, < b
which is not satisfied by v but by every Z"-solution

like in Branch-and-Bound, keep adding cuts until integer solution found
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Gomory Cuts: Assumptions
® DPLL(T) simplex returned solution v to
AXy = Xp (1)
e for some i € B variable x; is assigned v(x;) ¢ Z
e forallj € N value v(x;) is /; or u;

e write ¢ = v(x;) — [v(xi)]

® by assumption all nonbasic variables are assigned bounds, so we can split
L={jeN]|vix) =1} U={jeN|vix)=u}\L
L"={jeL|A;>0} Ut={jeU|A;>0}
L~ ={jel|A;j<0} U ={jeU|A;<0}

Lemma (Gomory Cut)
cut is given by inequality

1 1 1 1
¢ D Al —1h) - Ep=. DAy —x) — o DAl — 1) + o D Ay —x) > 1
jeLt jeu— JEL— jeut
u f’nnn“s'ﬁﬂctél WS 2021 Constraint Solving lecture 12 2. Cutting Planes 927
AXy = Xp (1) —00 < <X < U < 400 (2)

e consider potential integer solution X to (1) and (2)

Xi = ZA,'/'XJ' (3)

® X satisfies i-th row of (1):

jEN
® because v is solution have

v(x;) = ZA,‘]‘V(X]’) (4)

JEN
® subtract (4) from (3):
Xi—v(x) =Y Aj(x — v(x))
JjEN
=Y Al — ) = > Ay — X)) (5)
JjEL jeu
':Jn"n“;g{ﬂ(tgl WS 2021 Constraint Solving  lecture 12 2. Cutting Planes 11/27

* infinite R2-solution space

—-2x+y<0
x—2y< -1 e four solutions in Z?2
5x+4y <25 ® Simplex solution search
S? S1

s1 (-2 -3\ s51<-6 ss (-3 3 x=3 s55=-6

s |2 1| s<0  x |[-3 3 y=3 5= 0

s3 1 -2 | s5<-1 y : -3 s3=-21

S4 5 4 s < 25 S4 7% 7%3 S4 = 9%

initial tableau final tableau solution
® nonbasic variables s, = 0 and s; = —6 at bounds, basic x is assigned % Z 7

* from ¢ = 2 obtain Gomory cut 1/(1 — 2) - (3(0 —s2) + §(—6 —51)) > 1

e corresponds to —3(—2x + y) — (—2x — 3y) > 8, simplified x > 1
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Proof (2)

O e X —v(x) =Y A=) =D Ay(u—x) (5)

jeL jeu

c u
e for c = v(x;) — |v(x;)| have 0 < ¢ < 1, can write v(x;) = |[v(x;)| + ¢, so

xi— |v(x)| =c+L-U (6)

e for integer solution X left-hand side must be integer, so also right-hand side

® abbreviate
Lr=3 Ajlx—1) Ut =3y Ajlu;—x)
jeL+ jeut
L™= Ajlx—1) U =y Aju—x)
jeL jeu
soL=Lt+L-andU =UT+U"
e have LT >0, Ut >0and L= <0, U~ <0
e distinguish L>Uor L <U
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Proof (3)

® both sides are integer in equation
Xi— V(X)) =c+L-U

(6)
since LT > L
o ifL>U and /- <U
® havec+ £ —U > 1 because integer,so L —U >1—c¢
® inparticular LT —U~>1-c

° 1

) since U > U
e ifL<u and £~ <[
® havec+ £ —U < 0 because integer,sold — L > ¢
® in particulard™ — L~ > ¢

’ %(u+—c—)z1

desired

e terms £*, U, —£~ and -/~ always non-negative, as wellas cand 1 — ¢ | inequality!
® add (7) and (8) to obtain cut 1
1-c
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Summary on LIA-solving

® branch-and-bound
® additional constraints are trivial: x < |r|V [r] < xforv(x)=r ¢ Z
® pruning of search space is limited
e cutting planes via Gomory cuts
® calculation of cut is more complex, but still a simple algorithm
® more effective pruning of search space, no branching

® disadvantage: simplex invocations become more and more costly, since every cut
increases size of tableau

® combination: branch-and-cut

® run branch-and-bound with in-between additions of cuts
e further methods

® unit cube test (Bromberger, Weidenbach)

® improved bounds for small model property, depending on constraint structure
(Bromberger)

®* mixed integer linear arithmetic where only some variables have to be integral
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Gomory Cuts Assumptions

for some i € B variable X; is assigned v(x;) € Z, and for all j € N value v(x;) is I; or u;

Example (tableau s = 3x — 3y and bounds 1 < s < 2)

simplex: B = {x}, N = {y,s} and v(x) = 1/3,v(y) = 0,v(s) = 1, y has no bounds
consequence: branch-and-cut, combine cutting planes with branch-and-bound
branch-and-bound: add x > 1 (and later on try x < 0)

simplex: B = {y}, N = {x,s} and v(x) = 1,v(y) = 2/3,v(s) =1

now Gomory assumptions are satisfied; compute c =2/3,L" = {x}, L= ={s}, U=10
and add cut which can be simplified tos + 6x > 9,i.e.,3x —y > 3

add new slack variable t, tableau equation t = s 4 6x and bound t > 9 with v(t) =7

have , hext ’ —, ...still not terminating without global bounds
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3. Difference Logic
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Difference Logic

conjunction of constraints of the form
® x—y<c
® x—y<c

® difference logic is fragment of linear arithmetic; advantage: faster decision procedure
® domains: rational numbers (polynomial time) and integers (polynomial time)

e X—y=C <<= X—-Yys<CcAy—x<-cC

e X—y=2C <+ y—XxX<—C

® X—y>Cc <+ y—x<-C

® X< C <= x-—Xy<cwhere xq is fresh variable that must be assigned 0
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Definition Inequality Graph

conjunction ¢ of nonstrict difference constraints

® inequality graph of ¢ contains edge from x to y with weight c for every constraint x —y < ¢
in @

conjunction ¢ of nonstrict difference constraints is satisfiable <~
inequality graph of ¢ has no negative cycle

N
N

|
w

2 satisfiable

NN A
N
w

N < X
[
X N <
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Example Job-Shop Scheduling

® m machines (M4, ..., Mp) and njobs (J1,...,/n)

* each job J; is sequence (M}, d)),..., (M, d: ) of operations consisting of machine and
duration (rational number; 7(M, d) = d)

® O is multiset of all operations from all jobs

® schedule is function S that defines for each operation v € O its starting time S(v) on
machine specified by v

® schedule S is feasible if
S(v) >0 forallve O
S(vi) + 7(vi) < S(v)) for all consecutive v;, v; in same job
S(vi) +7(vi) <S(vj) Vv S(vj) +7(v;) < S(v))
for every pair of different operations v;, v; scheduled on same machine

® |length of schedule S is max {S(v) + 7(v) | v € O}
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conjunction ¢ of nonstrict difference constraints is satisfiable <~
inequality graph of ¢ has no negative cycle

i K k k
= negative cycle AL I X =75 Xy

in inequality graph of ¢ corresponds to conjuction
X1 —X2 < ki A X2 —Xx3<ka Ao A Xp—X1 < Ky

adding these literals gives
0< ks +ky+---+kpn

withky + ko +---+k, <0 4
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conjunction ¢ of nonstrict difference constraints is satisfiable —
inequality graph of ¢ has no negative cycle

< assume inequality graph of ¢ has no negative cycle
construct satisfying assignment for ¢ as follows
® add additional starting node s in graph, add edges s — x with weight 0 for all variables x

* define v(x) = —distance(s, x); well-defined, since there are no negative cycles
® v satisfies ¢

2 -3 0
X W ® V) =1uy)=0,v(z) =3
2
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Bellman-Ford Algorithm for Inequality Graphs

Input inequality graph (V, E, w) with fresh starting node s
Output  negative cycle or distances to node s

@ distance[v] := 0 for all nodes v € V (this step is special for inequality graphs)

@ repeat |V|—1 times
for all (u,v) € E do
if distance[v] > distance[u] + w(u, v) then
distance[v] := distance[u] + w(u, v)
predecessor[v] := u

© forall (u,v) € Edo
if distance[v] > distance[u] + w(u, v) then
return “ 3 negative cycle”
which can be reconstructed using predecessor array

@ return distance array, shortest paths available via predecessor array
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Algorithms for Distance Computation and Negative Cycle Detection

® Dijkstra
® computes distances from a single source to all other nodes
® complexity: O(|V| - log(|V|) + |E|)
® restriction: no negative cycles allowed

® Bellman-Ford
® computes distances from a single source to all other nodes
® complexity: O(|V| - |EJ)
® can also detect negative cycles
® Floyd-Warshall
® computes distances between all nodes
° complexity: O(|V|?)
® can also detect negative cycles

= use Bellman-Ford algorithm for difference logic
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Example Bellman-Ford in Action

iteration a b ¢ d e f g h
0 0O 0 0 O 0 0 o0
1 o 0 o -5 -8 -7 0O O
2 -1 0 4 5 -8 -7 0 -4
B 2 0 4 5 -8 -11 0 -4
4 2 0 -4 5 -10 -11 0 -4

5 -2 0 4 -5 -10 -11 -1 -6
...2 more iterations, then negative cycle is detected
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® Sections 5.3 and 5.7

Further Reading

@ Martin Bromberger
A Reduction from Unbounded Linear Mixed Arithmetic Problems into Bounded Problems
Proc. IJCAR 2018, volume 10900 of LNCS, pages 329--345, 2018

4. Further Readin
9 @ Martin Bromberger and Christoph Weidenbach

New techniques for linear arithmetic: cubes and equalities
Formal Methods in System Design, volume 51, pages 433--461, 2017

@ Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006
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Bellman-Ford algorithm
® cutting planes
difference logic

® Gomory cut

® inequality graph
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