innsbruck

Constraint Solving

Cezary Kaliszyk René Thiemann
based on a previous course by Aart Middeldorp

1. Summary of Previous Lecture
2. Cutting Planes
3. Difference Logic
4. Further Reading

Example (Application of Linear Integer Arithmetic: Termination Proving)

- consider program
- model loop-iteration as formula φ using pre-variables \vec{x} and post-variables \vec{x}^{\prime}
- prove termination by choosing expression e and integer constant c and show that two LIA problems are unsatisfiable
- $\varphi \wedge e(\vec{x})<e\left(\vec{x}^{\prime}\right)+1$
(\neg decrease)
- $\varphi \wedge e\left(\vec{x}^{\prime}\right)<c$
(\neg bounded)
- for certain programs, reasoning over integers is essential

Branch-and-Bound Algorithm

- core idea for finding integral solution
- simplex algorithm is used to find rational solution v or detect unsat in \mathbb{Q}
- whenever $q:=v(x) \notin \mathbb{Z}$, add $x \leq\lfloor q\rfloor \vee\lceil q\rceil \leq x$ and consider both possibilities
- small model property is required for termination: obtain finite search space

Theorem (Small Model Property)

if LIA formula ψ has solution over \mathbb{Z} then it has a solution v with

$$
|v(x)| \leq \operatorname{bound}(\psi):=(n+1)!\cdot c^{n}
$$

for all x where

- n: number of variables in ψ
- c: maximal absolute value of numbers in ψ

Proof Idea of Small Model Property

(1) convert conjunctive LIA formula ψ into form $A \vec{x} \leq \vec{b}$
(2) represent polyhedron $\underbrace{\{\vec{x} \mid A \vec{x} \leq \vec{b}\}}_{\text {yellow }}$ as polyhedron $P=\underbrace{\text { hull }(X)}_{\text {red }}+\underbrace{\text { cone }(V)}_{\text {green }}$
(3) show that P has small integral solutions (orange), depending on X and V
(4) approximate entries of vectors in X and V to obtain small model property

Limitations of Branch-and-Bound

- global bounds for solution can be derived from formula, but are often too high for efficient practical procedures
- shape of case analysis is quite restricted: $x \leq c \vee c+1 \leq x$ for some variable x and $c \in \mathbb{Z}$
- \Longrightarrow use cutting planes to restrict solution space more effectively

Outline

1. Summary of Previous Lecture
2. Cutting Planes
3. Difference Logic
4. Further Reading

- iniverititat	WS 2021 Constraint Solving	lecture 12	2. Cutting Planes	$6 / 27$

Example

Definition (Cut)

given solution v to problem over \mathbb{R}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b$ which is not satisfied by v but by every \mathbb{Z}^{n}-solution

Method

like in Branch-and-Bound, keep adding cuts until integer solution found

Gomory Cuts: Assumptions

- DPLL(T) simplex returned solution v to
$A \vec{x}_{N}=\vec{x}_{B}$
(1)
$-\infty \leq I_{i} \leq x_{i} \leq u_{i} \leq+\infty$
(2)
- for some $i \in B$ variable x_{i} is assigned $v\left(x_{i}\right) \notin \mathbb{Z}$
- for all $j \in N$ value $v\left(x_{j}\right)$ is l_{j} or u_{j}

Notation

- write $c=v\left(x_{i}\right)-\left\lfloor v\left(x_{i}\right)\right\rfloor$
- by assumption all nonbasic variables are assigned bounds, so we can split

$$
\begin{aligned}
L & =\left\{j \in N \mid v\left(x_{j}\right)=I_{j}\right\} & U & =\left\{j \in N \mid v\left(x_{j}\right)=u_{j}\right\} \backslash L \\
L^{+} & =\left\{j \in L \mid A_{i j} \geq 0\right\} & U^{+} & =\left\{j \in U \mid A_{i j} \geq 0\right\} \\
L^{-} & =\left\{j \in L \mid A_{i j}<0\right\} & U^{-} & =\left\{j \in U \mid A_{i j}<0\right\}
\end{aligned}
$$

Lemma (Gomory Cut)

cut is given by inequality
$\frac{\frac{1}{1-c} \cdot \sum_{j \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right)-\frac{1}{1-c} \cdot \sum_{j \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)-\frac{1}{c} \cdot \sum_{j \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right)+\frac{1}{c} \cdot \sum_{j \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \geq 1}{\text { 2. cutting Planes }}$
$A \vec{x}_{N}=\vec{x}_{B}$
(1)
$-\infty \leq I_{i} \leq x_{i} \leq u_{i} \leq+\infty$
(2)

Proof (1)

- consider potential integer solution \vec{x} to (1) and (2)
- \vec{x} satisfies i-th row of (1):

$$
\begin{equation*}
x_{i}=\sum_{j \in N} A_{i j} x_{j} \tag{3}
\end{equation*}
$$

- because v is solution have

$$
\begin{equation*}
v\left(x_{i}\right)=\sum_{j \in N} A_{i j} v\left(x_{j}\right) \tag{4}
\end{equation*}
$$

- subtract (4) from (3):

$$
\begin{align*}
x_{i}-v\left(x_{i}\right) & =\sum_{j \in N} A_{i j}\left(x_{j}-v\left(x_{j}\right)\right) \\
& =\sum_{j \in L} A_{i j}\left(x_{j}-I_{j}\right)-\sum_{j \in U} A_{i j}\left(u_{j}-x_{j}\right) \tag{5}
\end{align*}
$$

Example

$$
\begin{aligned}
-2 x-3 y & \leq-6 & & \text { - infinite } \mathbb{R}^{2} \text {-solution space } \\
-2 x+y & \leq 0 & & \text { - four solutions in } \mathbb{Z}^{2}
\end{aligned}
$$

$$
5 x+4 y \leq 25
$$

- Simplex solution search
$x \quad y$
$S_{2} \quad S_{1}$

initial tableau
final tableau
solution
- nonbasic variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $1 /\left(1-\frac{3}{4}\right) \cdot\left(\frac{3}{8}\left(0-s_{2}\right)+\frac{1}{8}\left(-6-s_{1}\right)\right) \geq 1$
- corresponds to $-3(-2 x+y)-(-2 x-3 y) \geq 8$, simplified $x \geq 1$

Haniverivititit
innsbrick WS 2021 Constraint Solving lecture $12 \quad$ 2. Cutting Planes

Proof (2)

- have $x_{i}-v\left(x_{i}\right)=\underbrace{\sum_{j \in L} A_{i j}\left(x_{j}-I_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{j \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}}$
- for $c=v\left(x_{i}\right)-\left\lfloor v\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $v\left(x_{i}\right)=\left\lfloor v\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor v\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \vec{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{j \in L^{+}} A_{i j}\left(x_{j}-l_{j}\right) & \mathcal{U}^{+}=\sum_{j \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{j \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{j \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geq 0, \mathcal{U}^{+} \geq 0$ and $\mathcal{L}^{-} \leq 0, \mathcal{U}^{-} \leq 0$
- distinguish $\mathcal{L} \geq \mathcal{U}$ or $\mathcal{L}<\mathcal{U}$

Proof (3)

- both sides are integer in equation

$$
x_{i}-\left\lfloor v\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U}
$$

- if $\mathcal{L} \geq \mathcal{U}$
- have $c+\mathcal{L}-\mathcal{U} \geq 1$ because integer, so $\mathcal{L}-\mathcal{U} \geq 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geq 1-c$
-

$$
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geq 1
$$

- if $\mathcal{L}<\mathcal{U}$
since $\mathcal{L}^{+} \geq \mathcal{L}$
and $\mathcal{U}^{-} \leq \mathcal{U}$
\square

Gomory Cuts Assumptions

for some $i \in B$ variable x_{i} is assigned $v\left(x_{i}\right) \notin \mathbb{Z}$, and for all $j \in N$ value $v\left(x_{j}\right)$ is l_{j} or u_{j}

Example (tableau $s=3 x-3 y$ and bounds $1<s<2$)

- simplex: $B=\{x\}, N=\{y, s\}$ and $v(x)=1 / 3, v(y)=0, v(s)=1, y$ has no bounds
- consequence: branch-and-cut, combine cutting planes with branch-and-bound
- branch-and-bound: add $x \geq 1$ (and later on try $x \leq 0$)
- simplex: $B=\{y\}, N=\{x, s\}$ and $v(x)=1, v(y)=2 / 3, v(s)=1$
- now Gomory assumptions are satisfied; compute $c=2 / 3, L^{+}=\{x\}, L^{-}=\{s\}, U=\emptyset$ and add cut which can be simplified to $s+6 x \geq 9$, i.e., $3 x-y \geq 3$
- add new slack variable t, tableau equation $t=s+6 x$ and bound $t \geq 9$ with $v(t)=7$
- have

. . still not terminating without global bounds
Mniveritit
Unisbrick WS 2021 Constraint Solving lecture 12 2. Cutting Planes

Outline

1. Summary of Previous Lecture
2. Cutting Planes
3. Difference Logic
4. Further Reading

Summary on LIA-solving

- branch-and-bound

- additional constraints are trivial: $x \leq\lfloor r\rfloor \vee\lceil r\rceil \leq x$ for $v(x)=r \notin \mathbb{Z}$
- pruning of search space is limited
- cutting planes via Gomory cuts
- calculation of cut is more complex, but still a simple algorithm
- more effective pruning of search space, no branching
- disadvantage: simplex invocations become more and more costly, since every cut increases size of tableau
- combination: branch-and-cut
- run branch-and-bound with in-between additions of cuts
- further methods
- unit cube test (Bromberger, Weidenbach)
- improved bounds for small model property, depending on constraint structure (Bromberger)
- mixed integer linear arithmetic where only some variables have to be integra

Difference Logic

conjunction of constraints of the form

- $x-y \leqslant c$
- $x-y<c$

Remarks

- difference logic is fragment of linear arithmetic; advantage: faster decision procedure
- domains: rational numbers (polynomial time) and integers (polynomial time)
$x-y=c \quad \Longleftrightarrow \quad x-y \leqslant c \wedge y-x \leqslant-c$
$x-y \geqslant c \quad \Longleftrightarrow \quad y-x \leqslant-c$
- $x-y>c \Longleftrightarrow y-x<-c$
$\bullet x<c \Longleftrightarrow x-x_{0}<c$ where x_{0} is fresh variable that must be assigned 0

Definition Inequality Graph

conjunction φ of nonstrict difference constraints

- inequality graph of φ contains edge from x to y with weight c for every constraint $x-y \leqslant c$ in φ

Theorem

conjunction φ of nonstrict difference constraints is satisfiable inequality graph of φ has no negative cycle

Example

$$
\begin{array}{lc}
x-y \leqslant 2 \\
y-z \leqslant-3 \\
z-x \leqslant 2 & x \stackrel{2}{\longleftrightarrow} y \xrightarrow{-3} z \\
2
\end{array}
$$

Example Job -Shop Scheduling

- m machines $\left(M_{1}, \ldots, M_{m}\right)$ and n jobs $\left(J_{1}, \ldots, J_{n}\right)$
- each job J_{i} is sequence $\left(M_{1}^{i}, d_{i}^{i}\right), \ldots,\left(M_{n_{i}}^{i}, d_{n_{i}}^{i}\right)$ of operations consisting of machine and duration (rational number; $\tau(M, d)=d$)
- O is multiset of all operations from all jobs
- schedule is function S that defines for each operation $v \in O$ its starting time $S(v)$ on machine specified by v
- schedule S is feasible if

$$
\begin{array}{rr}
S(v) \geqslant 0 & \text { for all } v \in O \\
S\left(v_{i}\right)+\tau\left(v_{i}\right) \leqslant S\left(v_{j}\right) & \text { for all consecutive } v_{i}, v_{j} \text { in same job } \\
S\left(v_{i}\right)+\tau\left(v_{i}\right) \leqslant S\left(v_{j}\right) \vee S\left(v_{j}\right)+\tau\left(v_{j}\right) \leqslant S\left(v_{i}\right) &
\end{array}
$$

for every pair of different operations v_{i}, v_{j} scheduled on same machine

- length of schedule S is $\max \{S(v)+\tau(v) \mid v \in O\}$

Theorem

conjunction φ of nonstrict difference constraints is satisfiable
inequality graph of φ has no negative cycle

Proof

\Rightarrow negative cycle $\quad x_{1} \xrightarrow{k_{1}} x_{2} \xrightarrow{k_{2}} x_{3} \longrightarrow \cdots \longrightarrow x_{n} \xrightarrow{k_{n}} x_{1}$
in inequality graph of φ corresponds to conjuction

$$
x_{1}-x_{2} \leqslant k_{1} \wedge x_{2}-x_{3} \leqslant k_{2} \wedge \cdots \wedge x_{n}-x_{1} \leqslant k_{n}
$$

adding these literals gives

$$
0 \leqslant k_{1}+k_{2}+\cdots+k_{n}
$$

with $k_{1}+k_{2}+\cdots+k_{n}<0$

- univeritatt	WS 2021	Constraint Solving	lecture 12	3. Difference Logic
insbruck				

Theorem

conjunction φ of nonstrict difference constraints is satisfiable
inequality graph of φ has no negative cycle

Proof

\Leftarrow assume inequality graph of φ has no negative cycle
construct satisfying assignment for φ as follows

- add additional starting node s in graph, add edges $s \rightarrow x$ with weight 0 for all variables x
- define $v(x)=$-distance (s, x); well-defined, since there are no negative cycles
- v satisfies φ

Example

Algorithms for Distance Computation and Negative Cycle Detection

- Dijkstra
- computes distances from a single source to all other nodes
- complexity: $\mathcal{O}(|V| \cdot \log (|V|)+|E|)$
- restriction: no negative cycles allowed
- Bellman-Ford
- computes distances from a single source to all other nodes
- complexity: $\mathcal{O}(|V| \cdot|E|)$
- can also detect negative cycles
- Floyd-Warshall
- computes distances between all nodes
- complexity: $\mathcal{O}\left(|V|^{3}\right)$
- can also detect negative cycles
\Rightarrow use Bellman-Ford algorithm for difference logic
E. univerititat
innsbbruck WS 2021 constraint Solving lecture $12 \quad$ 3. Difference Logic

Bellman-Ford Algorithm for Inequality Graphs

input inequality graph (V, E, w) with fresh starting node s
Output \exists negative cycle or distances to node s
(1) distance $[v]:=0$ for all nodes $v \in V$
(this step is special for inequality graphs)
(2) repeat $|V|-1$ times
for all $(u, v) \in E$ do
if distance $[v]>$ distance $[u]+w(u, v)$ then
distance $[v]:=$ distance $[u]+w(u, v)$
predecessor $[v]:=u$
(3) for all $(u, v) \in E$ do
if distance $[v]>$ distance $[u]+w(u, v)$ then
return " \exists negative cycle"
which can be reconstructed using predecessor array
(4) return distance array, shortest paths available via predecessor array

Example Bellman-Ford in Action

Outline

1. Summary of Previous Lecture
2. Cutting Planes
3. Difference Logic
4. Further Reading

\#univerititat	WS 2021 Constraint Solving	lecture 12	4. Further Reading	$25 / 27$

Important Concepts

- Bellman-Ford algorithm
- cutting planes
- difference logic
- Gomory cut
- inequality graph

Kröning and Strichmann

- Sections 5.3 and 5.7

Further Reading

R Martin Bromberger
A Reduction from Unbounded Linear Mixed Arithmetic Problems into Bounded Problems Proc. IJCAR 2018, volume 10900 of LNCS, pages 329--345, 2018
. Martin Bromberger and Christoph Weidenbach
New techniques for linear arithmetic: cubes and equalities Formal Methods in System Design, volume 51, pages 433--461, 2017
Bruno Dutertre and Leonardo de Moura Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006
$\begin{array}{lllll}- \text { Hiverititat } & \text { WS 2021 } & \text { Constraint Solving } & \text { lecture 12 } & \text { 4. Further Reading }\end{array}$

