

## Constraint Solving

Cezary Kaliszyk René Thiemann
based on a previous course by Aart Middeldorp

## Outline

1. Summary of Previous Lecture
2. Checking Array Bounds
3. Array Logic
4. Array Properties
5. Summary and Further Reading

## Gomory Cuts: Assumptions

- $\operatorname{DPLL}(T)$ simplex returned solution $v$ to

$$
\begin{equation*}
A \vec{x}_{N}=\vec{x}_{B} \quad \text { (1) } \quad-\infty \leq I_{i} \leq x_{i} \leq u_{i} \leq+\infty \tag{1}
\end{equation*}
$$

- for some $i \in B$ variable $x_{i}$ is assigned $v\left(x_{i}\right) \notin \mathbb{Z}$
- for all $j \in N$ value $v\left(x_{j}\right)$ is $l_{j}$ or $u_{j}$


## Notation

- write $c=v\left(x_{i}\right)-\left\lfloor v\left(x_{i}\right)\right\rfloor$
- by assumption all nonbasic variables are assigned bounds, so we can split

$$
\begin{aligned}
L & =\left\{j \in N \mid v\left(x_{j}\right)=I_{j}\right\} & U & =\left\{j \in N \mid v\left(x_{j}\right)=u_{j}\right\} \backslash L \\
L^{+} & =\left\{j \in L \mid A_{i j} \geq 0\right\} & U^{+} & =\left\{j \in U \mid A_{i j} \geq 0\right\} \\
L^{-} & =\left\{j \in L \mid A_{i j}<0\right\} & U^{-} & =\left\{j \in U \mid A_{i j}<0\right\}
\end{aligned}
$$

## Lemma (Gomory Cut)

cut is given by inequality

$$
\frac{1}{1-c} \cdot \sum_{j \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right)-\frac{1}{1-c} \cdot \sum_{j \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)-\frac{1}{c} \cdot \sum_{j \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right)+\frac{1}{c} \cdot \sum_{j \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \geq 1
$$

## Difference Logic

conjunction of constraints of the form $x-y \leqslant c$ or $x-y<c$

## Definition Inequality Graph

conjunction $\varphi$ of nonstrict difference constraints

- inequality graph of $\varphi$ contains edge from $x \xrightarrow{c} y$ for every constraint $x-y \leqslant c$ in $\varphi$


## Theorem

conjunction $\varphi$ of nonstrict difference constraints is satisfiable inequality graph of $\varphi$ has no negative cycle

## Bellman-Ford Algorithm

computes distances in graphs from single source; detects negative cycles

## Outline

1. Summary of Previous Lecture
2. Checking Array Bounds
3. Array Logic
4. Array Properties
5. Summary and Further Reading

## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(2) does the array store the intended values?
(this section)
(upcoming sections)


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
2 does the array store the intended values?


## Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
(2) does the array store the intended values?


## Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problems


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
2 does the array store the intended values?


## Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problems
(1) $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
(2) does the array store the intended values?


## Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problems
(1) $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
(2) $\forall i .0<i<N \longrightarrow a^{\prime}[i-1]=a[i]$ where a refers to original array, and $a^{\prime}$ to array after execution
(LIA formula) (array formula)


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(this section)
(2) does the array store the intended values?


## Moving Array Elements

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problems
(1) $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
(2) $\forall i .0<i<N \longrightarrow a^{\prime}[i-1]=a[i]$
(LIA formula)
where a refers to original array, and $a^{\prime}$ to array after execution (array formula)


## Consequence

Checking array bounds does not need special logic about arrays; integer arithmetic suffices

## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a [N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant - adding invariant (such as $i \geq 0$ ) is crucial for proving lower bounds in this example


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant - adding invariant (such as $i \geq 0$ ) is crucial for proving lower bounds in this example - invariant can be used as additional assumption, i.e., formula above becomes $i<n \wedge i \geq 0 \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant
- adding invariant (such as $i \geq 0$ ) is crucial for proving lower bounds in this example
- invariant can be used as additional assumption, i.e., formula above becomes
$i<n \wedge i \geq 0 \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
- loop invariant itself has to be proven
- when entering the loop: $i=0 \longrightarrow i \geq 0$
- after each loop iteration: $i<N \wedge i \geq 0 \longrightarrow i^{\prime}=i+1 \longrightarrow i^{\prime} \geq 0$


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a[N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant
- adding invariant (such as $i \geq 0$ ) is crucial for proving lower bounds in this example
- invariant can be used as additional assumption, i.e., formula above becomes
$i<n \wedge i \geq 0 \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
- loop invariant itself has to be proven
- when entering the loop: $i=0 \longrightarrow i \geq 0$
- after each loop iteration: $i<N \wedge i \geq 0 \longrightarrow i^{\prime}=i+1 \longrightarrow i^{\prime} \geq 0$
- second problem: even with loop invariant, formula is not valid
- violating assignment shows real bug in program, e.g., $\mathrm{N}=5$, i $=4$


## Example (Checking Array-Bounds)

```
int a[N]; // an array with entries a[0], ..., a [N-1]
int i = 0;
while (i < N) { a[i] = a[i+1]; i = i+1; }
```

- problem: formula $i<N \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$ is not valid
- first problem: spurious counter-example ( $i=-3, N=7$ ) $\Longrightarrow$ add loop invariant
- adding invariant (such as $i \geq 0$ ) is crucial for proving lower bounds in this example
- invariant can be used as additional assumption, i.e., formula above becomes
$i<n \wedge i \geq 0 \longrightarrow 0 \leq i<N \wedge 0 \leq i+1<N$
- loop invariant itself has to be proven
- when entering the loop: $i=0 \longrightarrow i \geq 0$
- after each loop iteration: $i<N \wedge i \geq 0 \longrightarrow i^{\prime}=i+1 \longrightarrow i^{\prime} \geq 0$
- second problem: even with loop invariant, formula is not valid
- violating assignment shows real bug in program, e.g., $\mathrm{N}=5$, $\mathrm{i}=4$ - correct while ( $i<N$ ) to while ( $i+1<N$ ) in program


## Outline

1. Summary of Previous Lecture
2. Checking Array Bounds

## 3. Array Logic

4. Array Properties
5. Summary and Further Reading

## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(2) does the array store the intended values?
(previous section, now assumed)
(this section)
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values?
(this section)
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values?
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values?
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$
(here: always $\mathbb{Z}$ )
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values?
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$
(here: always $\mathbb{Z}$ )
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )
- array type $T_{A}$ is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values?
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$ (here: always $\mathbb{Z}$ )
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )
- array type $T_{A}$ is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type
- new primitives in logic (in addition to what is available in index theory and element theory)


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values? (this section)
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$ (here: always $\mathbb{Z}$ )
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )
- array type $T_{A}$ is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type
- new primitives in logic (in addition to what is available in index theory and element theory)
- array write (array update): $a\{i \leftarrow e\} \quad$ modified array a where $e$ is written at index $i$


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values? (this section)
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )
- array type $T_{A}$ is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type
- new primitives in logic (in addition to what is available in index theory and element theory)
- array write (array update): $a\{i \leftarrow e\} \quad$ modified array a where $e$ is written at index $i$
- array read (array index): a[i] read array a at index $i$


## Arrays

- when reasoning on arrays, there are two problems
(1) are the array accesses within bounds?
(previous section, now assumed)
(2) does the array store the intended values? (this section)
- for the second problem, we actually need a logic that permits us to describe properties of arrays, in particular basic operations on arrays


## Array Logic

- array logic is parametrised by
- index theory with index type $T_{I}$ (here: always $\mathbb{Z}$ )
- element theory with element type $T_{E}$ : content of arrays (here: $\mathbb{Z}, \mathbb{B}, \ldots$ )
- array type $T_{A}$ is just the type $T_{I} \rightarrow T_{E}$, i.e., maps from index type to element type
- new primitives in logic (in addition to what is available in index theory and element theory)
- array write (array update): $a\{i \leftarrow e\} \quad$ modified array a where $e$ is written at index $i$
- array read (array index): a[i]
- array equality: $a=a^{\prime}$ read array a at index $i$


## Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)

```
bool a[N];
int i = 0;
while (i < N) { a[i] = true ; i = i+1; }
```


## Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)
bool a[N];
int i $=0$;
while (i < N) \{ a[i] = true ; i = i+1; \}
- verification via invariant in this example requires array logic ( $T_{I}=\mathbb{Z}, T_{E}=\mathbb{B}$ )

$$
\underbrace{(\forall x \in \mathbb{Z} .0 \leq x<i \longrightarrow a[x])}_{\text {precondition }=\text { invariant }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\} \wedge i^{\prime}=i+1}_{\text {loop iteration }} \longrightarrow \underbrace{\left(\forall x \in \mathbb{Z} .0 \leq x<i^{\prime} \longrightarrow a^{\prime}[x]\right)}_{\text {postcondition = invariant for '-variables }}
$$

## Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)
bool a[N];
int i $=0$;
while (i < N) \{ a[i] = true ; i = i+1; \}
- verification via invariant in this example requires array logic ( $T_{I}=\mathbb{Z}, T_{E}=\mathbb{B}$ )

$$
\underbrace{(\forall x \in \mathbb{Z} .0 \leq x<i \longrightarrow a[x])}_{\text {precondition }=\text { invariant }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\} \wedge i^{\prime}=i+1}_{\text {loop iteration }} \longrightarrow \underbrace{\left(\forall x \in \mathbb{Z} .0 \leq x<i^{\prime} \longrightarrow a^{\prime}[x]\right)}_{\text {postcondition = invariant for '-variables }}
$$

## Observations

- reasoning about array logic formulas requires theories about indices and elements


## Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)
bool a[N];
int i $=0$;
while (i < N) \{ a[i] = true ; i = i+1; \}
- verification via invariant in this example requires array logic ( $T_{1}=\mathbb{Z}, T_{E}=\mathbb{B}$ )

$$
\underbrace{(\forall x \in \mathbb{Z} .0 \leq x<i \longrightarrow a[x])}_{\text {precondition = invariant }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\} \wedge i^{\prime}=i+1}_{\text {loop iteration }} \longrightarrow \underbrace{\left(\forall x \in \mathbb{Z} .0 \leq x<i^{\prime} \longrightarrow a^{\prime}[x]\right)}_{\text {postcondition }=\text { invariant for '-variables }}
$$

## Observations

- reasoning about array logic formulas requires theories about indices and elements
- index theory usually requires quantifiers (each/some array element satisfies property)


## Example (Setting up Verification Conditions)

- program for initializing an array with "true" (T in mathematical notation)
bool a[N];
int i $=0$;
while (i < N) \{ a[i] = true ; i = i+1; \}
- verification via invariant in this example requires array logic ( $T_{I}=\mathbb{Z}, T_{E}=\mathbb{B}$ )

$$
\underbrace{(\forall x \in \mathbb{Z} .0 \leq x<i \longrightarrow a[x])}_{\text {precondition }=\text { invariant }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\} \wedge i^{\prime}=i+1}_{\text {loop iteration }} \longrightarrow \underbrace{\left(\forall x \in \mathbb{Z} .0 \leq x<i^{\prime} \longrightarrow a^{\prime}[x]\right)}_{\text {postcondition }=\text { invariant for '-variables }}
$$

## Observations

- reasoning about array logic formulas requires theories about indices and elements
- index theory usually requires quantifiers (each/some array element satisfies property)
- suitable choice: Presburger arithmetic (linear arithmetic over $\mathbb{Z}$ with quantifiers)


## Semantics of Array Logic (meaning of array-index, -update, -equality)

- array congruence: if arrays are equal and indices are equal, then identical elements are obtained when reading from an array

$$
\begin{equation*}
\forall a, b \in T_{A}, i, j \in T_{I} . a=b \longrightarrow i=j \longrightarrow a[i]=b[j] \tag{1}
\end{equation*}
$$

## Semantics of Array Logic (meaning of array-index, -update, -equality)

- array congruence: if arrays are equal and indices are equal, then identical elements are obtained when reading from an array

$$
\begin{equation*}
\forall a, b \in T_{A}, i, j \in T_{I} . a=b \longrightarrow i=j \longrightarrow a[i]=b[j] \tag{1}
\end{equation*}
$$

- array-updates: read-over-write axiom

$$
\forall a \in T_{A}, e \in T_{E}, i, j \in T_{I} . a\{i \leftarrow e\}[j]= \begin{cases}e, & \text { if } i=j  \tag{2}\\ a[j], & \text { otherwise }\end{cases}
$$

## Semantics of Array Logic (meaning of array-index, -update, -equality)

- array congruence: if arrays are equal and indices are equal, then identical elements are obtained when reading from an array

$$
\begin{equation*}
\forall a, b \in T_{A}, i, j \in T_{I} . a=b \longrightarrow i=j \longrightarrow a[i]=b[j] \tag{1}
\end{equation*}
$$

- array-updates: read-over-write axiom

$$
\forall a \in T_{A}, e \in T_{E}, i, j \in T_{I} . a\{i \leftarrow e\}[j]= \begin{cases}e, & \text { if } i=j  \tag{2}\\ a[j], & \text { otherwise }\end{cases}
$$

- optional extensionality rule: two arrays are equal if they store the same elements

$$
\begin{equation*}
\forall a, b \in T_{A} \cdot\left(\forall i \in T_{1} \cdot a[i]=b[i]\right) \longrightarrow a=b \tag{3}
\end{equation*}
$$

## Eliminating the Array Terms

- aim: translate formula in array logic to formula over
- index theory,
- element theory, and
- uninterpreted functions
in order to use decision procedure for this combination for array logic formulas


## Eliminating the Array Terms

- aim: translate formula in array logic to formula over
- index theory,
- element theory, and
- uninterpreted functions
in order to use decision procedure for this combination for array logic formulas
- main idea


## Eliminating the Array Terms

- aim: translate formula in array logic to formula over
- index theory,
- element theory, and
- uninterpreted functions
in order to use decision procedure for this combination for array logic formulas
- main idea
- arrays behave like uninterpreted functions: according to (1), reading an array at the same index yields same elements; function invocations on same inputs return same result


## Eliminating the Array Terms

- aim: translate formula in array logic to formula over
- index theory,
- element theory, and
- uninterpreted functions
in order to use decision procedure for this combination for array logic formulas
- main idea
- arrays behave like uninterpreted functions: according to (1), reading an array at the same index yields same elements; function invocations on same inputs return same result
- translation
- for each array a introduce corresponding unary uninterpreted function $A$
- array read access $a[i]$ is translated to function application $A(i)$


## Example (Eliminating Array Terms)

- consider array logic formula with element type being characters

$$
i=j \longrightarrow a[j]={ }^{\prime} c^{\prime} \longrightarrow a[i]={ }^{\prime} c^{\prime}
$$

## Example (Eliminating Array Terms)

- consider array logic formula with element type being characters

$$
i=j \longrightarrow a[j]={ }^{\prime} c^{\prime} \longrightarrow a[i]={ }^{\prime} c^{\prime}
$$

- elimination results in formula

$$
i=j \longrightarrow A(j)={ }^{\prime} c^{\prime} \longrightarrow A(i)={ }^{\prime} C^{\prime}
$$

## Example (Eliminating Array Terms)

- consider array logic formula with element type being characters

$$
i=j \longrightarrow a[j]={ }^{\prime} c^{\prime} \longrightarrow a[i]={ }^{\prime} c^{\prime}
$$

- elimination results in formula

$$
i=j \longrightarrow A(j)={ }^{\prime} C^{\prime} \longrightarrow A(i)={ }^{\prime} C^{\prime}
$$

- validity of formula can be shown by decision procedure for equality and uninterpreted functions (EUF)


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$
- write rule is an equivalence preserving transformation


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$
- write rule is an equivalence preserving transformation


## Example (requiring first constraint)

- formula a $\{i \leftarrow e\}[i]+2 \geq e$ is translated into


## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$
- write rule is an equivalence preserving transformation


## Example (requiring first constraint)

- formula a $\{i \leftarrow e\}[i]+2 \geq e$ is translated into

$$
b[i]=e \wedge(\forall j . j \neq i \longrightarrow b[j]=a[j]) \longrightarrow b[i]+2 \geq e
$$

## Eliminating the Array Terms - Array Updates

- aim: translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$
- write rule is an equivalence preserving transformation


## Example (requiring first constraint)

- formula a $\{i \leftarrow e\}[i]+2 \geq e$ is translated into

$$
b[i]=e \wedge(\forall j . j \neq i \longrightarrow b[j]=a[j]) \longrightarrow b[i]+2 \geq e
$$

whose validity is easily proven:
apply equality $b[i]=e$ and prove resulting LIA constraint $e+2 \geq e$

## Eliminating the Array Terms - Array Updates, continued

- translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$


## Example (requiring second constraint)

## Eliminating the Array Terms - Array Updates, continued

- translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$


## Example (requiring second constraint)

- formula $a[0]=5 \longrightarrow a\{7 \leftarrow x+1\}[0]=5$ is translated into

$$
b[7]=x+1 \wedge(\forall j . j \neq 7 \longrightarrow b[j]=a[j]) \wedge a[0]=5 \longrightarrow b[0]=5
$$

## Eliminating the Array Terms - Array Updates, continued

- translate $a\{i \leftarrow e\}$ via write rule:
- replace an occurrence of $a\{i \leftarrow e\}$ by a fresh array variable $b$
- add two constraints that describe relationship between $a$ and $b$ by using (2)
- $b[i]=e$
- $\forall j . j \neq i \longrightarrow b[j]=a[j]$


## Example (requiring second constraint)

- formula $a[0]=5 \longrightarrow a\{7 \leftarrow x+1\}[0]=5$ is translated into

$$
b[7]=x+1 \wedge(\forall j . j \neq 7 \longrightarrow b[j]=a[j]) \wedge a[0]=5 \longrightarrow b[0]=5
$$

whose validity can easily be proven in EUF + LIA after its translation

$$
B(7)=x+1 \wedge(\forall j . j \neq 7 \longrightarrow B(j)=A(j)) \wedge A(0)=5 \longrightarrow B(0)=5
$$

## Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions


## Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions
- problem: even if
- index theory + quantification
- element theory
is decidable, the combination with uninterpreted functions is not necessarily decidable


## Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions
- problem: even if
- index theory + quantification
- element theory
is decidable, the combination with uninterpreted functions is not necessarily decidable
- example
- choose index theory $=$ element theory $=$ Presburger arithmetic


## Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions
- problem: even if
- index theory + quantification
- element theory
is decidable, the combination with uninterpreted functions is not necessarily decidable
- example
- choose index theory = element theory = Presburger arithmetic
- when adding uninterpreted functions, this becomes undecidable


## Elimination of Array Terms - A Problem

- array terms can easily be eliminated; resulting formulas are combination of
- index theory + quantification
- element theory
- uninterpreted functions
- problem: even if
- index theory + quantification
- element theory
is decidable, the combination with uninterpreted functions is not necessarily decidable
- example
- choose index theory = element theory = Presburger arithmetic
- when adding uninterpreted functions, this becomes undecidable
- potential solution: do not allow all array logic formulas, but a decidable fragment


## Outline

1. Summary of Previous Lecture
2. Checking Array Bounds
3. Array Logic

## 4. Array Properties

## 5. Summary and Further Reading

## Array Properties

- restricted class of array logic formulas; decidable fragment


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{V}\left(i_{1}, \ldots, i_{k}\right)
$$

where

## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{V}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{v}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via $\leq$ or $=$


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{v}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via $\leq$ or $=$
- iterm is either $i_{1}, \ldots, i_{k}$ or a linear integer expression e with vars(e) disjoint from $i_{1}, \ldots, i_{k}$


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{v}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via $\leq$ or $=$
- iterm is either $i_{1}, \ldots, i_{k}$ or a linear integer expression e with vars(e) disjoint from $i_{1}, \ldots, i_{k}$
- $i_{i}, \ldots, i_{k}$ may only be used in array read accesses of form $a\left[i_{j}\right]$ within value constraint


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{v}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via $\leq$ or $=$
- iterm is either $i_{1}, \ldots, i_{k}$ or a linear integer expression e with vars(e) disjoint from $i_{1}, \ldots, i_{k}$
- $i_{i}, \ldots, i_{k}$ may only be used in array read accesses of form $a\left[i_{j}\right]$ within value constraint
- fragment restricts formulas to Boolean combination of array properties


## Array Properties

- restricted class of array logic formulas; decidable fragment
- formula is array property if it is of the form

$$
\forall i_{1}, \ldots, i_{k} \in T_{l} . \phi_{l}\left(i_{1}, \ldots, i_{k}\right) \longrightarrow \phi_{v}\left(i_{1}, \ldots, i_{k}\right)
$$

where

- $\phi_{I}$ is called index guard, $\phi_{V}$ is value constraint, both are quantifier-free
- index guard is formula consisting of Boolean disjunction, conjunction, and comparison of iterms via $\leq$ or $=$
- iterm is either $i_{1}, \ldots, i_{k}$ or a linear integer expression e with vars(e) disjoint from $i_{1}, \ldots, i_{k}$
- $i_{i}, \ldots, i_{k}$ may only be used in array read accesses of form $a\left[i_{j}\right]$ within value constraint
- fragment restricts formulas to Boolean combination of array properties
- free variables are implicitly existentially quantified


## Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

$$
\underbrace{(\forall x \in \mathbb{Z} . x<i \longrightarrow a[x])}_{\text {precondition }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\}}_{\text {loop iteration }} \wedge \underbrace{\neg\left(\forall x \in \mathbb{Z} . x<i+1 \longrightarrow a^{\prime}[x]\right)}_{\text {negated postcondition }}
$$

## Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

$$
\underbrace{(\forall x \in \mathbb{Z} . x<i \longrightarrow a[x])}_{\text {precondition }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\}}_{\text {loop iteration }} \wedge \underbrace{\neg\left(\forall x \in \mathbb{Z} . x<i+1 \longrightarrow a^{\prime}[x]\right)}_{\text {negated postcondition }}
$$

- loop iteration is already array property


## Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

$$
\underbrace{(\forall x \in \mathbb{Z} . x<i \longrightarrow a[x])}_{\text {precondition }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\}}_{\text {loop iteration }} \wedge \underbrace{\neg\left(\forall x \in \mathbb{Z} . x<i+1 \longrightarrow a^{\prime}[x]\right)}_{\text {negated postcondition }}
$$

- loop iteration is already array property
- precondition and postcondition are nearly array properties, just need to eliminate $<$


## Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

$$
\underbrace{(\forall x \in \mathbb{Z} . x<i \longrightarrow a[x])}_{\text {precondition }} \wedge \underbrace{a^{\prime}=a\{i \leftarrow \top\}}_{\text {loop iteration }} \wedge \underbrace{\neg\left(\forall x \in \mathbb{Z} . x<i+1 \longrightarrow a^{\prime}[x]\right)}_{\text {negated postcondition }}
$$

- loop iteration is already array property
- precondition and postcondition are nearly array properties, just need to eliminate <
- resulting formula within fragment

$$
(\forall x \in \mathbb{Z} . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x \in \mathbb{Z} . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

## Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability


- loop iteration is already array property
- precondition and postcondition are nearly array properties, just need to eliminate $<$
- resulting formula within fragment

$$
(\forall x \in \mathbb{Z} . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x \in \mathbb{Z} . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- note that replacing $x<i$ by $x+1 \leq i$ does not work, since $x+1$ is no iterm; reason: $x$ is universally quantified


## Reduction Algorithm for $T_{I}=L I A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF


## Reduction Algorithm for $T_{I}=L I A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm


## Reduction Algorithm for $T_{l}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$


## Reduction Algorithm for $T_{l}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties


## Reduction Algorithm for $T_{I}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties
(3) remove each existential quantifier by introducing a fresh variable; result is formula $\phi$


## Reduction Algorithm for $T_{l}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties

3 remove each existential quantifier by introducing a fresh variable; result is formula $\phi$
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula $\phi$ by finite conjunction $\bigwedge i \in \mathcal{I}(\phi) . P(i)$ where $\mathcal{I}(\phi)$ is set of index terms that $i$ might possibly equal to

## Reduction Algorithm for $T_{l}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties

3 remove each existential quantifier by introducing a fresh variable; result is formula $\phi$
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula $\phi$ by finite conjunction $\bigwedge i \in \mathcal{I}(\phi) . P(i)$ where $\mathcal{I}(\phi)$ is set of index terms that $i$ might possibly equal to

- if $a[e]$ is an array read access in $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$


## Reduction Algorithm for $T_{l}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm
(1) convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties

3 remove each existential quantifier by introducing a fresh variable; result is formula $\phi$
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula $\phi$ by finite conjunction $\bigwedge i \in \mathcal{I}(\phi) . P(i)$ where $\mathcal{I}(\phi)$ is set of index terms that $i$ might possibly equal to

- if $a[e]$ is an array read access in $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$
- if $e$ is an iterm in the index guard of $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$


## Reduction Algorithm for $T_{I}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm

1. convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
(2) replace all array updates via write rule and transform constraints into array properties

3 remove each existential quantifier by introducing a fresh variable; result is formula $\phi$
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula $\phi$ by finite conjunction $\bigwedge i \in \mathcal{I}(\phi) . P(i)$ where $\mathcal{I}(\phi)$ is set of index terms that $i$ might possibly equal to

- if $a[e]$ is an array read access in $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$
- if $e$ is an iterm in the index guard of $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$
- if the previous two rules are not applicable, then define $\mathcal{I}(\phi)=\{0\}$ to have a non-empty set


## Reduction Algorithm for $T_{I}=L / A$

- translates formula in array logic fragment into equisatisfiable quantifier-free formula over index theory and element theory combined with EUF
- algorithm

1. convert Boolean formula over array properties to negation normal form (NNF); further convert $\neg \forall$ into $\exists \neg$
2 replace all array updates via write rule and transform constraints into array properties
3 remove each existential quantifier by introducing a fresh variable; result is formula $\phi$
(4) replace each universal quantification $\forall i \in T_{i} . P(i)$ within formula $\phi$ by finite conjunction $\bigwedge i \in \mathcal{I}(\phi) . P(i)$ where $\mathcal{I}(\phi)$ is set of index terms that $i$ might possibly equal to

- if $a[e]$ is an array read access in $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$
- if $e$ is an iterm in the index guard of $\phi$ and $e$ is not a quantified variable, then add $e$ to $\mathcal{I}(\phi)$
- if the previous two rules are not applicable, then define $\mathcal{I}(\phi)=\{0\}$ to have a non-empty set
(5) replace array read access operations by uninterpreted functions


## Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

## Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- conversion to NNF:
(push negations inside quantifiers)

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

## Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- conversion to NNF:
(push negations inside quantifiers)

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- apply write rule:
(eliminate $a^{\prime}=a\{i \leftarrow T\}$, use $a^{\prime}[i]$ instead of official $a^{\prime}[i]=T$ )

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \neq i \longrightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

## Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- conversion to NNF:
(push negations inside quantifiers)

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- apply write rule:
(eliminate $a^{\prime}=a\{i \leftarrow T\}$, use $a^{\prime}[i]$ instead of official $a^{\prime}[i]=T$ )

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \neq i \longrightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- convert constraint to array property:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

## Example Reduction Algorithm

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- conversion to NNF:
(push negations inside quantifiers)

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- apply write rule:
(eliminate $a^{\prime}=a\{i \leftarrow T\}$, use $a^{\prime}[i]$ instead of official $a^{\prime}[i]=T$ )

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \neq i \longrightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- convert constraint to array property:
(eliminate $\neq$ )

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge\left(\exists x . x \leq i \wedge \neg a^{\prime}[x]\right)
$$

- remove existential quantifier:
(eliminate $\exists x$ by fresh $z$ )

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)$
- add $i$ because of $a^{\prime}[i]$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)$
- add $i$ because of $a^{\prime}[i]$
- add $z$ because of $a^{\prime}[z]$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)$
- add $i$ because of $a^{\prime}[i]$
- add $z$ because of $a^{\prime}[z]$
- add $i-1$ because of $x \leq i-1$ and $j \leq i-1$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)$
- add $i$ because of $a^{\prime}[i]$
- add $z$ because of $a^{\prime}[z]$
- add $i-1$ because of $x \leq i-1$ and $j \leq i-1$
- add $i+1$ because of $i+1 \leq j$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$
- add $i$ because of $a^{\prime}[i]$
- add $z$ because of $a^{\prime}[z]$
- add $i-1$ because of $x \leq i-1$ and $j \leq i-1$
- add $i+1$ because of $i+1 \leq j$


## Example Reduction Algorithm, continued

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- result of step 3 is formula $\phi$

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}[i] \wedge\left(\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- construct $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$
- add $i$ because of $a^{\prime}[i]$
- add $z$ because of $a^{\prime}[z]$
- add $i-1$ because of $x \leq i-1$ and $j \leq i-1$
- add $i+1$ because of $i+1 \leq j$
- replace universal quantifier:

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

- unsatisfiability now decidable: consider cases $z \leq i-1 \vee z=i \vee z \geq i+1$ via LIA reasoning


## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

- unsatisfiability now decidable: consider cases $z \leq i-1 \vee z=i \vee z \geq i+1$ via LIA reasoning
- case $z=i$ : show unsatisfiability using $A^{\prime}(i)$ and $\neg A^{\prime}(z)$ via EUF


## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

- unsatisfiability now decidable: consider cases $z \leq i-1 \vee z=i \vee z \geq i+1$ via LIA reasoning
- case $z=i$ : show unsatisfiability using $A^{\prime}(i)$ and $\neg A^{\prime}(z)$ via EUF
- case $z \leq i-1$ : since $z \in \mathcal{I}(\phi)$, obtain $A(z), A^{\prime}(z)=A(z)$, and $\neg A^{\prime}(z)$ and use EUF


## Example Reduction Algorithm, completed

- input:

$$
(\forall x . x \leq i-1 \longrightarrow a[x]) \wedge a^{\prime}=a\{i \leftarrow \top\} \wedge \neg\left(\forall x . x \leq i \longrightarrow a^{\prime}[x]\right)
$$

- formula after quantifier elimination, where $\mathcal{I}(\phi)=\{i, z, i-1, i+1\}$ :

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow a[x]\right) \wedge a^{\prime}[i] \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]\right) \wedge z \leq i \wedge \neg a^{\prime}[z]
$$

- final formula: replace array read access by uninterpreted functions

$$
\left(\bigwedge_{x \in \mathcal{I}(\phi)} x \leq i-1 \longrightarrow A(x)\right) \wedge A^{\prime}(i) \wedge\left(\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow A^{\prime}(j)=A(j)\right) \wedge z \leq i \wedge \neg A^{\prime}(z)
$$

- unsatisfiability now decidable: consider cases $z \leq i-1 \vee z=i \vee z \geq i+1$ via LIA reasoning
- case $z=i$ : show unsatisfiability using $A^{\prime}(i)$ and $\neg A^{\prime}(z)$ via EUF
- case $z \leq i-1$ : since $z \in \mathcal{I}(\phi)$, obtain $A(z), A^{\prime}(z)=A(z)$, and $\neg A^{\prime}(z)$ and use EUF
- case $z \geq i+1$ : show unsatisfiability in combination with $z \leq i$ via LIA


## Theorem (Correctness of Reduction Algorithm)

The input formula and the result of the reduction algorithm are equisatisfiable.

## Corollary

If satisfiability of quantifier-free $T_{E U F} \cup T_{L I A} \cup T_{E}$ formulas is decidable, then so is satisfiability of the fragment of array logic for $T_{E}$.

## A Problem and its Solution

- in the reduction algorithm, the universal part of the write rule

$$
\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

is turned into a finite conjunction

$$
\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

- problem: this formula often gets (too) large


## A Problem and its Solution

- in the reduction algorithm, the universal part of the write rule

$$
\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

is turned into a finite conjunction

$$
\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

- problem: this formula often gets (too) large
- observation: implications are often only required for a few index terms within $\mathcal{I}(\phi)$ (in previous example, only the index term $z$ was required to prove unsatisfiability)


## A Problem and its Solution

- in the reduction algorithm, the universal part of the write rule

$$
\forall j . j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

is turned into a finite conjunction

$$
\bigwedge_{j \in \mathcal{I}(\phi)} j \leq i-1 \vee i+1 \leq j \longrightarrow a^{\prime}[j]=a[j]
$$

- problem: this formula often gets (too) large
- observation: implications are often only required for a few index terms within $\mathcal{I}(\phi)$ (in previous example, only the index term $z$ was required to prove unsatisfiability)
- solution: use a lazy encoding procedure, that generates instances only on demand, and can be combined with DPLL(T)
- details: see literature, in particular Section 7.4 of Decision Procedures book


## Outline

```
1. Summary of Previous Lecture
2. Checking Array Bounds
3. Array Logic
4. Array Properties
```

5. Summary and Further Reading

## Summary

- checking array bounds is easily encoded via LIA, does not require extension of logic
- array logic provides primitives for array read- and write-accesses
- arrays are easily modeled as uninterpreted functions
- array logic is often undecidable, even for decidable index- and element-theories such as Presburger arithmetic
- array properties define a fragment of array logic; the fragment can be translated to quantifier-free formulas by adding EUF
- optimization: lazy encoding creates instances of the write rule on demand


## Kröning and Strichmann

- Sections 7.1-7.3
- warning: mistake in example at end of Section 7.3 (over-simplification)
- problem: < not eliminated
- result of mistake: smaller set of index terms $\mathcal{I}(\phi)=\{i, z\}$, but correct set is $\{i, i-1, z\}$
- incorrect set does not cause problems in example, but in general elimination of $<$ is essential


## Further Reading

國 Aaron R. Bradley, Zohar Manna, Henny B. Sipma What's Decidable About Arrays?
Proc. VMCAI 2006, volume 3855 of LNCS, pages 427--442, 2006

## Important Concepts

- array logic
- array property
- checking array bounds via LIA
- invariants
- reduction algorithm
- spurious counterexample
- write rule

