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Gomory Cuts: Assumptions

• DPLL(T) simplex returned solution v to

A~xN = ~xB (1) −∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

• for some i ∈ B variable xi is assigned v(xi) 6∈ Z
• for all j ∈ N value v(xj) is lj or uj

Notation

• write c = v(xi)− bv(xi)c
• by assumption all nonbasic variables are assigned bounds, so we can split

L = { j ∈ N | v(xj) = lj } U = { j ∈ N | v(xj) = uj } \ L
L+ = { j ∈ L | Aij ≥ 0 } U+ = { j ∈ U | Aij ≥ 0 }
L− = { j ∈ L | Aij < 0 } U− = { j ∈ U | Aij < 0 }

Lemma (Gomory Cut)

cut is given by inequality
1

1− c
·
∑
j∈L+

Aij(xj − lj)−
1

1− c
·
∑
j∈U−

Aij(uj − xj)−
1

c
·
∑
j∈L−

Aij(xj − lj) +
1

c
·
∑
j∈U+

Aij(uj − xj) ≥ 1
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Difference Logic

conjunction of constraints of the form x− y 6 c or x− y < c

Definition Inequality Graph

conjunction ϕ of nonstrict difference constraints

• inequality graph of ϕ contains edge from x
c−→ y for every constraint x− y 6 c in ϕ

Theorem

conjunction ϕ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of ϕ has no negative cycle

Bellman-Ford Algorithm

computes distances in graphs from single source; detects negative cycles
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Arrays

• when reasoning on arrays, there are two problems

1 are the array accesses within bounds? (this section)
2 does the array store the intended values? (upcoming sections)

Moving Array Elements

int a[N]; // an array with entries a[0], ..., a[N-1]

int i = 0;

while (i < N) { a[i] = a[i+1]; i = i+1; }

• problems

1 i < N −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N (LIA formula)
2 ∀i. 0 < i < N −→ a′[i− 1] = a[i] (array formula)

where a refers to original array, and a′ to array after execution

Consequence

Checking array bounds does not need special logic about arrays; integer arithmetic suffices
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Example (Checking Array-Bounds)

int a[N]; // an array with entries a[0], ..., a[N-1]

int i = 0;

while (i < N) { a[i] = a[i+1]; i = i+1; }

• problem: formula i < N −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N is not valid
• first problem: spurious counter-example (i = -3, N = 7) =⇒ add loop invariant
• adding invariant (such as i ≥ 0) is crucial for proving lower bounds in this example
• invariant can be used as additional assumption, i.e., formula above becomes
i < n ∧ i ≥ 0 −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N

• loop invariant itself has to be proven
• when entering the loop: i = 0 −→ i ≥ 0
• after each loop iteration: i < N ∧ i ≥ 0 −→ i′ = i+ 1 −→ i′ ≥ 0

• second problem: even with loop invariant, formula is not valid
• violating assignment shows real bug in program, e.g., N = 5, i = 4
• correct while (i < N) to while (i + 1 < N) in program
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Arrays

• when reasoning on arrays, there are two problems

1 are the array accesses within bounds? (previous section, now assumed)
2 does the array store the intended values? (this section)

• for the second problem, we actually need a logic that permits us to describe properties of
arrays, in particular basic operations on arrays

Array Logic

• array logic is parametrised by

• index theory with index type TI (here: always Z)
• element theory with element type TE: content of arrays (here: Z, B, . . . )

• array type TA is just the type TI → TE, i.e., maps from index type to element type

• new primitives in logic (in addition to what is available in index theory and element theory)

• array write (array update): a{i← e} modified array a where e is written at index i
• array read (array index): a[i] read array a at index i
• array equality: a = a′ compare two arrays
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Example (Setting up Verification Conditions)

• program for initializing an array with “true” (> in mathematical notation)

bool a[N];

int i = 0;

while (i < N) { a[i] = true ; i = i+1; }

• verification via invariant in this example requires array logic (TI = Z, TE = B)

(∀x ∈ Z.0 ≤ x < i −→ a[x])︸ ︷︷ ︸
precondition = invariant

∧ a′ = a{i← >} ∧ i′ = i+ 1︸ ︷︷ ︸
loop iteration

−→ (∀x ∈ Z.0 ≤ x < i′ −→ a′[x])︸ ︷︷ ︸
postcondition = invariant for ′-variables

Observations

• reasoning about array logic formulas requires theories about indices and elements

• index theory usually requires quantifiers (each/some array element satisfies property)
• suitable choice: Presburger arithmetic (linear arithmetic over Z with quantifiers)
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Semantics of Array Logic (meaning of array-index, -update, -equality)

• array congruence: if arrays are equal and indices are equal, then identical elements are
obtained when reading from an array

∀a,b ∈ TA, i, j ∈ TI. a = b −→ i = j −→ a[i] = b[j] (1)

• array-updates: read-over-write axiom

∀a ∈ TA, e ∈ TE, i, j ∈ TI. a{i← e} [j] =

{
e, if i = j

a[j], otherwise
(2)

• optional extensionality rule: two arrays are equal if they store the same elements

∀a,b ∈ TA. (∀i ∈ TI. a[i] = b[i]) −→ a = b (3)
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Eliminating the Array Terms

• aim: translate formula in array logic to formula over

• index theory,
• element theory, and
• uninterpreted functions

in order to use decision procedure for this combination for array logic formulas

• main idea

• arrays behave like uninterpreted functions: according to (1), reading an array at the same
index yields same elements; function invocations on same inputs return same result

• translation
• for each array a introduce corresponding unary uninterpreted function A
• array read access a[i] is translated to function application A(i)
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Example (Eliminating Array Terms)

• consider array logic formula with element type being characters

i = j −→ a[j] = ’c’ −→ a[i] = ’c’

• elimination results in formula

i = j −→ A(j) = ’c’ −→ A(i) = ’c’

• validity of formula can be shown by decision procedure for equality and uninterpreted
functions (EUF)

WS 2021 Constraint Solving lecture 13 3. Array Logic 13/29



Eliminating the Array Terms – Array Updates

• aim: translate a{i← e} via write rule:

• replace an occurrence of a{i← e} by a fresh array variable b
• add two constraints that describe relationship between a and b by using (2)
• b[i] = e
• ∀j. j 6= i −→ b[j] = a[j]

• write rule is an equivalence preserving transformation

Example (requiring first constraint)

• formula a{i← e}[i] + 2 ≥ e is translated into

b[i] = e ∧ (∀j. j 6= i −→ b[j] = a[j]) −→ b[i] + 2 ≥ e

whose validity is easily proven:
apply equality b[i] = e and prove resulting LIA constraint e+ 2 ≥ e
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Eliminating the Array Terms – Array Updates, continued

• translate a{i← e} via write rule:

• replace an occurrence of a{i← e} by a fresh array variable b
• add two constraints that describe relationship between a and b by using (2)
• b[i] = e
• ∀j. j 6= i −→ b[j] = a[j]

Example (requiring second constraint)

• formula a[0] = 5 −→ a{7← x+ 1} [0] = 5 is translated into

b[7] = x+ 1 ∧ (∀j. j 6= 7 −→ b[j] = a[j]) ∧ a[0] = 5 −→ b[0] = 5

whose validity can easily be proven in EUF + LIA after its translation

B(7) = x+ 1 ∧ (∀j. j 6= 7 −→ B(j) = A(j)) ∧ A(0) = 5 −→ B(0) = 5
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Elimination of Array Terms – A Problem

• array terms can easily be eliminated; resulting formulas are combination of

• index theory + quantification
• element theory
• uninterpreted functions

• problem: even if

• index theory + quantification
• element theory

is decidable, the combination with uninterpreted functions is not necessarily decidable

• example

• choose index theory = element theory = Presburger arithmetic (decidable)
• when adding uninterpreted functions, this becomes undecidable

• potential solution: do not allow all array logic formulas, but a decidable fragment
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Array Properties

• restricted class of array logic formulas; decidable fragment

• formula is array property if it is of the form

∀ i1, . . . , ik ∈ TI. φI(i1, . . . , ik) −→ φV(i1, . . . , ik)

where

• φI is called index guard, φV is value constraint, both are quantifier-free
• index guard is formula consisting of Boolean disjunction, conjunction, and comparison of

iterms via ≤ or =
• iterm is either i1, . . . , ik or a linear integer expression e with vars(e) disjoint from i1, . . . , ik
• ii, . . . , ik may only be used in array read accesses of form a[ij] within value constraint

• fragment restricts formulas to Boolean combination of array properties

• free variables are implicitly existentially quantified
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Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

(∀x ∈ Z. x < i −→ a[x])︸ ︷︷ ︸
precondition

∧ a′ = a{i← >}︸ ︷︷ ︸
loop iteration

∧¬(∀x ∈ Z. x < i+ 1 −→ a′[x])︸ ︷︷ ︸
negated postcondition

• loop iteration is already array property

• precondition and postcondition are nearly array properties, just need to eliminate <

• resulting formula within fragment

(∀x ∈ Z. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x ∈ Z. x ≤ i −→ a′[x])

• note that replacing x < i by x+ 1 ≤ i does not work, since x+ 1 is no iterm;
reason: x is universally quantified
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Reduction Algorithm for TI = LIA

• translates formula in array logic fragment into equisatisfiable quantifier-free formula over
index theory and element theory combined with EUF

• algorithm

1 convert Boolean formula over array properties to negation normal form (NNF);
further convert ¬∀ into ∃¬

2 replace all array updates via write rule and transform constraints into array properties
3 remove each existential quantifier by introducing a fresh variable; result is formula φ
4 replace each universal quantification ∀i ∈ Ti. P(i) within formula φ by finite conjunction∧

i ∈ I(φ). P(i) where I(φ) is set of index terms that i might possibly equal to
• if a[e] is an array read access in φ and e is not a quantified variable, then add e to I(φ)
• if e is an iterm in the index guard of φ and e is not a quantified variable, then add e to I(φ)
• if the previous two rules are not applicable, then define I(φ) = {0} to have a non-empty set

5 replace array read access operations by uninterpreted functions
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Example Reduction Algorithm

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• conversion to NNF: (push negations inside quantifiers)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ (∃x. x ≤ i ∧ ¬a′[x])

• apply write rule: (eliminate a′ = a{i← >}, use a′[i] instead of official a′[i] = >)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j 6= i −→ a′[j] = a[j]) ∧ (∃x. x ≤ i ∧ ¬a′[x])

• convert constraint to array property: (eliminate 6=)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ (∃x. x ≤ i ∧ ¬a′[x])

• remove existential quantifier: (eliminate ∃x by fresh z)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]
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Example Reduction Algorithm, continued

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• result of step 3 is formula φ

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

• construct I(φ) = {i, z, i− 1, i+ 1}
• add i because of a′[i]
• add z because of a′[z]
• add i− 1 because of x ≤ i− 1 and j ≤ i− 1
• add i+ 1 because of i+ 1 ≤ j

• replace universal quantifier:

(
∧

x∈I(φ)

x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]
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Example Reduction Algorithm, completed

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• formula after quantifier elimination, where I(φ) = {i, z, i− 1, i+ 1}:

(
∧

x∈I(φ)

x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

• final formula: replace array read access by uninterpreted functions

(
∧

x∈I(φ)

x ≤ i− 1 −→ A(x)) ∧ A′(i) ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ A′(j) = A(j)) ∧ z ≤ i ∧ ¬A′(z)

• unsatisfiability now decidable: consider cases z ≤ i− 1 ∨ z = i ∨ z ≥ i+ 1 via LIA reasoning

• case z = i: show unsatisfiability using A′(i) and ¬A′(z) via EUF
• case z ≤ i− 1: since z ∈ I(φ), obtain A(z), A′(z) = A(z), and ¬A′(z) and use EUF
• case z ≥ i+ 1: show unsatisfiability in combination with z ≤ i via LIA
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Theorem (Correctness of Reduction Algorithm)

The input formula and the result of the reduction algorithm are equisatisfiable.

Corollary

If satisfiability of quantifier-free TEUF ∪ TLIA ∪ TE formulas is decidable, then so is satisfiability of
the fragment of array logic for TE.
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A Problem and its Solution

• in the reduction algorithm, the universal part of the write rule

∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]

is turned into a finite conjunction∧
j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]

• problem: this formula often gets (too) large

• observation: implications are often only required for a few index terms within I(φ)
(in previous example, only the index term z was required to prove unsatisfiability)

• solution: use a lazy encoding procedure, that generates instances only on demand, and can
be combined with DPLL(T)

• details: see literature, in particular Section 7.4 of Decision Procedures book
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Summary

• checking array bounds is easily encoded via LIA, does not require extension of logic

• array logic provides primitives for array read- and write-accesses

• arrays are easily modeled as uninterpreted functions

• array logic is often undecidable, even for decidable index- and element-theories such as
Presburger arithmetic

• array properties define a fragment of array logic;
the fragment can be translated to quantifier-free formulas by adding EUF

• optimization: lazy encoding creates instances of the write rule on demand
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Kröning and Strichmann

• Sections 7.1–7.3

• warning: mistake in example at end of Section 7.3 (over-simplification)

• problem: < not eliminated
• result of mistake: smaller set of index terms I(φ) = {i, z}, but correct set is {i, i− 1, z}
• incorrect set does not cause problems in example, but in general elimination of < is

essential

Further Reading

Aaron R. Bradley, Zohar Manna, Henny B. Sipma
What’s Decidable About Arrays?
Proc. VMCAI 2006, volume 3855 of LNCS, pages 427-–442, 2006
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Important Concepts

• array logic
• array property
• checking array bounds via LIA
• invariants
• reduction algorithm
• spurious counterexample
• write rule
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