
WS 2021 lecture 13

Constraint Solving

Cezary Kaliszyk René Thiemann

based on a previous course by Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ws21/cs
http://cl-informatik.uibk.ac.at/cek
http://cl-informatik.uibk.ac.at/~thiemann

Outline

1. Summary of Previous Lecture

2. Checking Array Bounds

3. Array Logic

4. Array Properties

5. Summary and Further Reading

WS 2021 Constraint Solving lecture 13 2/29

Gomory Cuts: Assumptions

• DPLL(T) simplex returned solution v to

A~xN = ~xB (1) −∞ ≤ li ≤ xi ≤ ui ≤ +∞ (2)

• for some i ∈ B variable xi is assigned v(xi) 6∈ Z
• for all j ∈ N value v(xj) is lj or uj

Notation

• write c = v(xi)− bv(xi)c
• by assumption all nonbasic variables are assigned bounds, so we can split

L = { j ∈ N | v(xj) = lj } U = { j ∈ N | v(xj) = uj } \ L
L+ = { j ∈ L | Aij ≥ 0 } U+ = { j ∈ U | Aij ≥ 0 }
L− = { j ∈ L | Aij < 0 } U− = { j ∈ U | Aij < 0 }

Lemma (Gomory Cut)

cut is given by inequality
1

1− c
·
∑
j∈L+

Aij(xj − lj)−
1

1− c
·
∑
j∈U−

Aij(uj − xj)−
1

c
·
∑
j∈L−

Aij(xj − lj) +
1

c
·
∑
j∈U+

Aij(uj − xj) ≥ 1

WS 2021 Constraint Solving lecture 13 1. Summary of Previous Lecture 3/29

Difference Logic

conjunction of constraints of the form x− y 6 c or x− y < c

Definition Inequality Graph

conjunction ϕ of nonstrict difference constraints

• inequality graph of ϕ contains edge from x
c−→ y for every constraint x− y 6 c in ϕ

Theorem

conjunction ϕ of nonstrict difference constraints is satisfiable ⇐⇒
inequality graph of ϕ has no negative cycle

Bellman-Ford Algorithm

computes distances in graphs from single source; detects negative cycles

WS 2021 Constraint Solving lecture 13 1. Summary of Previous Lecture 4/29

Outline

1. Summary of Previous Lecture

2. Checking Array Bounds

3. Array Logic

4. Array Properties

5. Summary and Further Reading

WS 2021 Constraint Solving lecture 13 2. Checking Array Bounds 5/29

Arrays

• when reasoning on arrays, there are two problems

1 are the array accesses within bounds? (this section)
2 does the array store the intended values? (upcoming sections)

Moving Array Elements

int a[N]; // an array with entries a[0], ..., a[N-1]

int i = 0;

while (i < N) { a[i] = a[i+1]; i = i+1; }

• problems

1 i < N −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N (LIA formula)
2 ∀i. 0 < i < N −→ a′[i− 1] = a[i] (array formula)

where a refers to original array, and a′ to array after execution

Consequence

Checking array bounds does not need special logic about arrays; integer arithmetic suffices

WS 2021 Constraint Solving lecture 13 2. Checking Array Bounds 6/29

Example (Checking Array-Bounds)

int a[N]; // an array with entries a[0], ..., a[N-1]

int i = 0;

while (i < N) { a[i] = a[i+1]; i = i+1; }

• problem: formula i < N −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N is not valid
• first problem: spurious counter-example (i = -3, N = 7) =⇒ add loop invariant
• adding invariant (such as i ≥ 0) is crucial for proving lower bounds in this example
• invariant can be used as additional assumption, i.e., formula above becomes
i < n ∧ i ≥ 0 −→ 0 ≤ i < N ∧ 0 ≤ i+ 1 < N

• loop invariant itself has to be proven
• when entering the loop: i = 0 −→ i ≥ 0
• after each loop iteration: i < N ∧ i ≥ 0 −→ i′ = i+ 1 −→ i′ ≥ 0

• second problem: even with loop invariant, formula is not valid
• violating assignment shows real bug in program, e.g., N = 5, i = 4
• correct while (i < N) to while (i + 1 < N) in program

WS 2021 Constraint Solving lecture 13 2. Checking Array Bounds 7/29

Outline

1. Summary of Previous Lecture

2. Checking Array Bounds

3. Array Logic

4. Array Properties

5. Summary and Further Reading

WS 2021 Constraint Solving lecture 13 3. Array Logic 8/29

Arrays

• when reasoning on arrays, there are two problems

1 are the array accesses within bounds? (previous section, now assumed)
2 does the array store the intended values? (this section)

• for the second problem, we actually need a logic that permits us to describe properties of
arrays, in particular basic operations on arrays

Array Logic

• array logic is parametrised by

• index theory with index type TI (here: always Z)
• element theory with element type TE: content of arrays (here: Z, B, . . .)

• array type TA is just the type TI → TE, i.e., maps from index type to element type

• new primitives in logic (in addition to what is available in index theory and element theory)

• array write (array update): a{i← e} modified array a where e is written at index i
• array read (array index): a[i] read array a at index i
• array equality: a = a′ compare two arrays

WS 2021 Constraint Solving lecture 13 3. Array Logic 9/29

Example (Setting up Verification Conditions)

• program for initializing an array with “true” (> in mathematical notation)

bool a[N];

int i = 0;

while (i < N) { a[i] = true ; i = i+1; }

• verification via invariant in this example requires array logic (TI = Z, TE = B)

(∀x ∈ Z.0 ≤ x < i −→ a[x])︸ ︷︷ ︸
precondition = invariant

∧ a′ = a{i← >} ∧ i′ = i+ 1︸ ︷︷ ︸
loop iteration

−→ (∀x ∈ Z.0 ≤ x < i′ −→ a′[x])︸ ︷︷ ︸
postcondition = invariant for ′-variables

Observations

• reasoning about array logic formulas requires theories about indices and elements

• index theory usually requires quantifiers (each/some array element satisfies property)
• suitable choice: Presburger arithmetic (linear arithmetic over Z with quantifiers)

WS 2021 Constraint Solving lecture 13 3. Array Logic 10/29

Semantics of Array Logic (meaning of array-index, -update, -equality)

• array congruence: if arrays are equal and indices are equal, then identical elements are
obtained when reading from an array

∀a,b ∈ TA, i, j ∈ TI. a = b −→ i = j −→ a[i] = b[j] (1)

• array-updates: read-over-write axiom

∀a ∈ TA, e ∈ TE, i, j ∈ TI. a{i← e} [j] =

{
e, if i = j

a[j], otherwise
(2)

• optional extensionality rule: two arrays are equal if they store the same elements

∀a,b ∈ TA. (∀i ∈ TI. a[i] = b[i]) −→ a = b (3)

WS 2021 Constraint Solving lecture 13 3. Array Logic 11/29

Eliminating the Array Terms

• aim: translate formula in array logic to formula over

• index theory,
• element theory, and
• uninterpreted functions

in order to use decision procedure for this combination for array logic formulas

• main idea

• arrays behave like uninterpreted functions: according to (1), reading an array at the same
index yields same elements; function invocations on same inputs return same result

• translation
• for each array a introduce corresponding unary uninterpreted function A
• array read access a[i] is translated to function application A(i)

WS 2021 Constraint Solving lecture 13 3. Array Logic 12/29

Example (Eliminating Array Terms)

• consider array logic formula with element type being characters

i = j −→ a[j] = ’c’ −→ a[i] = ’c’

• elimination results in formula

i = j −→ A(j) = ’c’ −→ A(i) = ’c’

• validity of formula can be shown by decision procedure for equality and uninterpreted
functions (EUF)

WS 2021 Constraint Solving lecture 13 3. Array Logic 13/29

Eliminating the Array Terms – Array Updates

• aim: translate a{i← e} via write rule:

• replace an occurrence of a{i← e} by a fresh array variable b
• add two constraints that describe relationship between a and b by using (2)
• b[i] = e
• ∀j. j 6= i −→ b[j] = a[j]

• write rule is an equivalence preserving transformation

Example (requiring first constraint)

• formula a{i← e}[i] + 2 ≥ e is translated into

b[i] = e ∧ (∀j. j 6= i −→ b[j] = a[j]) −→ b[i] + 2 ≥ e

whose validity is easily proven:
apply equality b[i] = e and prove resulting LIA constraint e+ 2 ≥ e

WS 2021 Constraint Solving lecture 13 3. Array Logic 14/29

Eliminating the Array Terms – Array Updates, continued

• translate a{i← e} via write rule:

• replace an occurrence of a{i← e} by a fresh array variable b
• add two constraints that describe relationship between a and b by using (2)
• b[i] = e
• ∀j. j 6= i −→ b[j] = a[j]

Example (requiring second constraint)

• formula a[0] = 5 −→ a{7← x+ 1} [0] = 5 is translated into

b[7] = x+ 1 ∧ (∀j. j 6= 7 −→ b[j] = a[j]) ∧ a[0] = 5 −→ b[0] = 5

whose validity can easily be proven in EUF + LIA after its translation

B(7) = x+ 1 ∧ (∀j. j 6= 7 −→ B(j) = A(j)) ∧ A(0) = 5 −→ B(0) = 5

WS 2021 Constraint Solving lecture 13 3. Array Logic 15/29

Elimination of Array Terms – A Problem

• array terms can easily be eliminated; resulting formulas are combination of

• index theory + quantification
• element theory
• uninterpreted functions

• problem: even if

• index theory + quantification
• element theory

is decidable, the combination with uninterpreted functions is not necessarily decidable

• example

• choose index theory = element theory = Presburger arithmetic (decidable)
• when adding uninterpreted functions, this becomes undecidable

• potential solution: do not allow all array logic formulas, but a decidable fragment

WS 2021 Constraint Solving lecture 13 3. Array Logic 16/29

Outline

1. Summary of Previous Lecture

2. Checking Array Bounds

3. Array Logic

4. Array Properties

5. Summary and Further Reading

WS 2021 Constraint Solving lecture 13 4. Array Properties 17/29

Array Properties

• restricted class of array logic formulas; decidable fragment

• formula is array property if it is of the form

∀ i1, . . . , ik ∈ TI. φI(i1, . . . , ik) −→ φV(i1, . . . , ik)

where

• φI is called index guard, φV is value constraint, both are quantifier-free
• index guard is formula consisting of Boolean disjunction, conjunction, and comparison of

iterms via ≤ or =
• iterm is either i1, . . . , ik or a linear integer expression e with vars(e) disjoint from i1, . . . , ik
• ii, . . . , ik may only be used in array read accesses of form a[ij] within value constraint

• fragment restricts formulas to Boolean combination of array properties

• free variables are implicitly existentially quantified

WS 2021 Constraint Solving lecture 13 4. Array Properties 18/29

Example

Consider negated (simplified) verification condition from before; aim: show unsatisfiability

(∀x ∈ Z. x < i −→ a[x])︸ ︷︷ ︸
precondition

∧ a′ = a{i← >}︸ ︷︷ ︸
loop iteration

∧¬(∀x ∈ Z. x < i+ 1 −→ a′[x])︸ ︷︷ ︸
negated postcondition

• loop iteration is already array property

• precondition and postcondition are nearly array properties, just need to eliminate <

• resulting formula within fragment

(∀x ∈ Z. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x ∈ Z. x ≤ i −→ a′[x])

• note that replacing x < i by x+ 1 ≤ i does not work, since x+ 1 is no iterm;
reason: x is universally quantified

WS 2021 Constraint Solving lecture 13 4. Array Properties 19/29

Reduction Algorithm for TI = LIA

• translates formula in array logic fragment into equisatisfiable quantifier-free formula over
index theory and element theory combined with EUF

• algorithm

1 convert Boolean formula over array properties to negation normal form (NNF);
further convert ¬∀ into ∃¬

2 replace all array updates via write rule and transform constraints into array properties
3 remove each existential quantifier by introducing a fresh variable; result is formula φ
4 replace each universal quantification ∀i ∈ Ti. P(i) within formula φ by finite conjunction∧

i ∈ I(φ). P(i) where I(φ) is set of index terms that i might possibly equal to
• if a[e] is an array read access in φ and e is not a quantified variable, then add e to I(φ)
• if e is an iterm in the index guard of φ and e is not a quantified variable, then add e to I(φ)
• if the previous two rules are not applicable, then define I(φ) = {0} to have a non-empty set

5 replace array read access operations by uninterpreted functions

WS 2021 Constraint Solving lecture 13 4. Array Properties 20/29

Example Reduction Algorithm

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• conversion to NNF: (push negations inside quantifiers)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ (∃x. x ≤ i ∧ ¬a′[x])

• apply write rule: (eliminate a′ = a{i← >}, use a′[i] instead of official a′[i] = >)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j 6= i −→ a′[j] = a[j]) ∧ (∃x. x ≤ i ∧ ¬a′[x])

• convert constraint to array property: (eliminate 6=)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ (∃x. x ≤ i ∧ ¬a′[x])

• remove existential quantifier: (eliminate ∃x by fresh z)

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

WS 2021 Constraint Solving lecture 13 4. Array Properties 21/29

Example Reduction Algorithm, continued

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• result of step 3 is formula φ

(∀x. x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

• construct I(φ) = {i, z, i− 1, i+ 1}
• add i because of a′[i]
• add z because of a′[z]
• add i− 1 because of x ≤ i− 1 and j ≤ i− 1
• add i+ 1 because of i+ 1 ≤ j

• replace universal quantifier:

(
∧

x∈I(φ)

x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

WS 2021 Constraint Solving lecture 13 4. Array Properties 22/29

Example Reduction Algorithm, completed

• input:
(∀x. x ≤ i− 1 −→ a[x]) ∧ a′ = a{i← >} ∧ ¬(∀x. x ≤ i −→ a′[x])

• formula after quantifier elimination, where I(φ) = {i, z, i− 1, i+ 1}:

(
∧

x∈I(φ)

x ≤ i− 1 −→ a[x]) ∧ a′[i] ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]) ∧ z ≤ i ∧ ¬a′[z]

• final formula: replace array read access by uninterpreted functions

(
∧

x∈I(φ)

x ≤ i− 1 −→ A(x)) ∧ A′(i) ∧ (
∧

j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ A′(j) = A(j)) ∧ z ≤ i ∧ ¬A′(z)

• unsatisfiability now decidable: consider cases z ≤ i− 1 ∨ z = i ∨ z ≥ i+ 1 via LIA reasoning

• case z = i: show unsatisfiability using A′(i) and ¬A′(z) via EUF
• case z ≤ i− 1: since z ∈ I(φ), obtain A(z), A′(z) = A(z), and ¬A′(z) and use EUF
• case z ≥ i+ 1: show unsatisfiability in combination with z ≤ i via LIA

WS 2021 Constraint Solving lecture 13 4. Array Properties 23/29

Theorem (Correctness of Reduction Algorithm)

The input formula and the result of the reduction algorithm are equisatisfiable.

Corollary

If satisfiability of quantifier-free TEUF ∪ TLIA ∪ TE formulas is decidable, then so is satisfiability of
the fragment of array logic for TE.

WS 2021 Constraint Solving lecture 13 4. Array Properties 24/29

A Problem and its Solution

• in the reduction algorithm, the universal part of the write rule

∀j. j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]

is turned into a finite conjunction∧
j∈I(φ)

j ≤ i− 1 ∨ i+ 1 ≤ j −→ a′[j] = a[j]

• problem: this formula often gets (too) large

• observation: implications are often only required for a few index terms within I(φ)
(in previous example, only the index term z was required to prove unsatisfiability)

• solution: use a lazy encoding procedure, that generates instances only on demand, and can
be combined with DPLL(T)

• details: see literature, in particular Section 7.4 of Decision Procedures book

WS 2021 Constraint Solving lecture 13 4. Array Properties 25/29

Outline

1. Summary of Previous Lecture

2. Checking Array Bounds

3. Array Logic

4. Array Properties

5. Summary and Further Reading

WS 2021 Constraint Solving lecture 13 5. Summary and Further Reading 26/29

Summary

• checking array bounds is easily encoded via LIA, does not require extension of logic

• array logic provides primitives for array read- and write-accesses

• arrays are easily modeled as uninterpreted functions

• array logic is often undecidable, even for decidable index- and element-theories such as
Presburger arithmetic

• array properties define a fragment of array logic;
the fragment can be translated to quantifier-free formulas by adding EUF

• optimization: lazy encoding creates instances of the write rule on demand

WS 2021 Constraint Solving lecture 13 5. Summary and Further Reading 27/29

Kröning and Strichmann

• Sections 7.1–7.3

• warning: mistake in example at end of Section 7.3 (over-simplification)

• problem: < not eliminated
• result of mistake: smaller set of index terms I(φ) = {i, z}, but correct set is {i, i− 1, z}
• incorrect set does not cause problems in example, but in general elimination of < is

essential

Further Reading

Aaron R. Bradley, Zohar Manna, Henny B. Sipma
What’s Decidable About Arrays?
Proc. VMCAI 2006, volume 3855 of LNCS, pages 427-–442, 2006

WS 2021 Constraint Solving lecture 13 5. Summary and Further Reading 28/29

https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/11609773_28

Important Concepts

• array logic
• array property
• checking array bounds via LIA
• invariants
• reduction algorithm
• spurious counterexample
• write rule

WS 2021 Constraint Solving lecture 13 5. Summary and Further Reading 29/29

	Summary of Previous Lecture
	Checking Array Bounds
	Array Logic
	Array Properties
	Summary and Further Reading

