
Discrete Structures WS 2021/2022 LVA 703069

EXAM 2 February 28, 2022

This exam consists of three regular exercises (1–3) worth 70
points in total. The available points for each item are written
in the margin. You need at least 30 points to pass. Always
explain your answer. In particular, for yes/no questions the
correct answer is worth 1 point with the remaining points for
the explanation. The time available is 1 hour and 45 minutes
(105 minutes).

Throughout this exam, let the words f and l be your first respectively last name
written (in lowercase, omitting diacritics) over the alphabet Σ = {a, ..., z}, and let
m be your Matrikelnr. having 8 digits m1m2m3m4m5m6m7m8 with 0 ≤ mi ≤ 9.
Start each document handed in with (writing down) your f , l, and m.

1 (a) True or false: all equivalence relations over a finite set A have the same
number of classes.[3]

Solution: False. If a set A has n elements, A × A has 1 class (every-
thing is equivalent) and {(x, x) | x ∈ A} has n classes (no two different
elements are equivalent).

(b) Let A be an arbitrary set. Give all relations on A that are both partial
orders and equivalence relations.[3]

Solution: Partial orders are antisymmetric. Equivalence relations are
symmetric. Therefore, the relation cannot contain any pair (x, y) with
x 6= y. Since equivalence relations must additionally be reflexive, the
only such relation is therefore the diagonal relation {(x, x) | x ∈ A}.

(c) True or false: every language is either recursive or recursively enumer-
able.[3]

Solution: False, since recursive implies semi-recursive and there are
sets that are not recursively enumerable.

(d) True or false: If A and B are non-recursive, then A∩B is non-recursive.[3]

Solution: False. Let A be any non-recursive language and B its com-
plement. Then A ∩B = ∅, which is trivially recursive.

(e) From the lecture, you know the halting problem HP. Consider the fol-
lowing bounded version of it:

BHP := {M#n#x |M uses no more than n tape for input x}



where M is a Turing machine, n is a natural number, and x is a word.
Assume that M , n, and x are encoded as bit strings.

“Uses no more than n tape” means that the read-write head of M never
moves more than n tape cells away from its initial position. Is L recur-[5]

sive?

Solution: Yes. We can simply simulate the machine until it either
moves outside the allowed tape region, or it halts, or it reaches a con-
figuration that we have seen already. Since there are only finitely many
configurations (i.e. tuples of the current state, tape content, and head
position) that stay within the allowed tape region, one of the three op-
tions must happen.

(f) Recall that the halting problem HP = {M#x | M halts for input x} is
not recursive. Argue that

A = {M | ∃x∈{0, 1}∗. M halts for input x in at most |x| steps}

is then also non-recursive.[5]

Solution: If A were recursive, we could decide HP with it: given a
machine M and an input word x, we modify M to obtain a new machine
M ′ by adding a few states at the beginning that erase the tape and write
x onto it. In other words, M ′ ignores its input and behaves the same as
M running on input x.

Thus, M ′ terminates in at most |y| steps on input y if and only if M
terminates in at most |y| steps on input x. And thus, M ′ ∈ A if and
only if M terminates on input x, i.e. if M#x ∈ HP.

Alternative proof: one can also prove the reduction HP ≤ A using
a reduction function that maps M#x to the machine M ′ above (and
every string that is not of the form M#x to a machine that loops for all
inputs). This then also shows that A is not recursive.

(g) For what sets A does ∅ ≤ A hold (where ≤ denotes computable re-
ducibility).[4]

Solution: A reduction function f must satisfy ∀w. f(w) ∈ A⇐⇒ w ∈
∅, i.e. in our case every input word must be mapped to something not in
A. This is clearly possible if and only if A ( Σ∗. A possible reduction
function is f(x) = c (where c is an arbitrary element in Σ∗ \ A).

(h) Let Σ be a finite alphabet and n > 0 be a natural number. How many
words from Σn contain the same letter in adjacent positions somewhere?
(e.g. aabc, but not abac)[4]

Solution: Let k = |Σ|. There are k(k−1)n−1 words that do not contain
such a pattern (first letter can be anything, every successive letter can
only be chosen in k − 1 ways since it must not equal the previous one).
Thus, the desired number is kn − k(k − 1)n−1

2 (a) Consider the relation

R = {(m1,m3), (m3,m2), (m4,m5), (m5,m3)}



i. Is R anti-symmetric? Explain your answer.[2]

Solution: R is anti-symmetric, if for all mi,mj ∈M : (mi,mj) ∈ R
and (mj,mi) ∈ R =⇒ mi = mj.
In particular in our example R is not anti-symmetric if one of the
following cases are satisfied.

• m1 = m2 but m1 6= m3

• m3 = m4 but m3 6= m5

• m2 = m5 but m2 6= m3

• m1 = m5 ∧m3 = m4 but m1 6= m3

• m3 = m5 ∧m2 = m4 but m3 6= m2

Otherwise R would be anti-symmetric.
Hence we know that the example Matrikelnr m = 12345678 is anti-
symmetric.

ii. Is R irreflexive? Explain your answer.[2]

Solution: R is irreflexive, if for all x ∈M , (x, x) /∈ R. In particular
in our example R is not irreflexive if one of the following cases are
satisfied.

• m1 = m3

• m3 = m2

• m4 = m5

• m5 = m3

Otherwise R would be irreflexive.
Hence we know that the example Matrikelnr m = 12345678 is ir-
reflexive.

iii. Compute the reflexive-transitive closure R∗ of R and explain how
you did that.[4]

Solution: R∗ = {(1, 3), (3, 2), (4, 5), (5, 3), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5),
(1, 2), (4, 3), (4, 2), (5, 2)} is the reflexive-transitive closure of the ex-
ample Matrikelnr m = 12345678.

(b) Let a = (m1 mod 2)+2, where mod is the modulo operation. Determine
for each of the following functions which properties (injective, surjective,
bijective) they have or don’t have.

i. f1 : N→ N, f1(x) = xa[2]

ii. f2 : R→ R, f2(x) = xa[2]

iii. f3 : R→ R≥0, f3(x) = |ax|[2]

Solution: There are two possibilities for a. Either a = 2 or a = 3.
If a = 2

i. injective, not surjective, not bijective

ii. not injective, not surjective, not bijective

iii. not injective, surjective, not bijective

If a = 3



i. injective, not surjective, not bijective

ii. injective, surjective, bijective

iii. not injective, surjective, not bijective

(c) Let f4 : Z2 → Z, f4(x, y) = m5x + y. For each property (injective,
surjective, bijective) show that f4 has the property or provide a counter
example if not.[6]

Solution:

• f4 is not injective because f4(0,m5) = f4(1, 0).

• f4 is surjective. We can set x = 0. Then f4(0, y) = y.

• f4 is not bijective because it was not injective.

3 Let M be the set of all numbers in your m, let F be the set of all characters
in your f , and let L be the set of all characters in your l.

(a) i. Compute #(M), #(F ), and #(L).[1]

ii. How many relations on M are there?[2]

Solution: We have (#M)2 pairs of elements from M . Every subset

of these pairs is one relation, so there are 2(#M)2 relations in total.

iii. How many subsets of L of size k are there (k is arbitrary)?[2]

Solution: This is the binomial coefficient
(
#L
k

)
.

iv. A partial function from A to B is a subset of A× B which satisfies
the uniqueness functional property but is not necessarily total. How
many partial functions from F to L are there?[3]

Solution: Every partial function f can be made total by assigning
the unassigned values to a special value not found in L (say • 6∈ L).
The total function f ′ is the completion of f defined as follows:

f ′(x) =

{
f(x) if f(x) is defined

• otherwise

This gives us a bijection between the partial functions from F to L
and the total functions from F to L∪{•}. Hence the number of the
partial functions is (#L + 1)F .

v. How many reflexive relations on M are there?[3]

Solution: Every relation on M can be uniquely described by a
matrix of shape #M×#M with two values (say 0 and 1). A reflexive
relation must have all 1 on the diagonal (#M values), but we are free
to choose all the other elements. Hence the solution is 2#M(#M−1).

(b) In the following consider undirected graphs (without loops).

i. How many graphs with nodes M are there?[3]

Solution: There are
(
#M
2

)
undirected edges and because every sub-

set of these edges describes exactly one graph we have 2(#M
2 ) graphs.



ii. How many graphs with nodes M with edges labeled by F are there?
[3]

Solution: Every labeled graph can be seen as labeling function from
the set of edges to the labels with one additional label for edges not

present in the graph. Hence the solution is (#F + 1)(
#M
2 ).

(c) True or False: A finite undirected graph (without loops) with n nodes
and c components contains at least n − c edges. Prove the claim or
provide a counterexample.[3]

Solution: True. Let us consider a graph G = (V,E) with n nodes and
c components with the minimal possible count of edges. This must be a
forrest since otherwise we can remove an edge while keeping the number
of components c. From the lecture/proseminar we know that a forrest
with c trees and n nodes has exactly n− c edges. Since G was minimal
with respect to the count of edges, every other graph with n nodes and
c components will have at least n− c edges. �


