
Discrete Structures/Mathematics WS 2021/2022 LVA 703069

EXAM 3 30 September, 2022

This exam consists of three regular exercises (1–3) worth 70
points in total. The available points for each item are written
in the margin. You need at least 30 points to pass. Always
explain your answer. In particular, for yes/no questions the
correct answer is worth 1 point with the remaining points for
the explanation. The time available is 1 hour and 45 minutes
(105 minutes).

Throughout this exam, let the words f and l be your first respectively last name
written (in lowercase, omitting diacritics) over the alphabet Σ = {a, ..., z}, and let
m be your Matrikelnr. having 8 digits m1m2m3m4m5m6m7m8 with 0 ≤ mi ≤ 9.
Start each document handed in with (writing down) your f , l, and m.

1 (a) True or false: an equivalence relation R ⊆ A×A has at most |A| equiv-
alence classes.[4]

Solution: True. The union of all the classes is A and the classes are
distinct. Since every class contributes at least one element to the union
(as they are non-empty), the cardinality of the union has to be at least
as big as the cardinality of the sets of all classes.

More formally: Let us pick one representative for each equivalence class
C and call it f(C). Then f is an injection from the set of equivalence
classes of R into A, so the number of classes is ≤ |A|.

(b) True or false: Let A be a finite set and let R ⊆ A×A be a strict partial
order. Then R is well-founded.[3]

Solution: True. By the pigeonhole principle, any infinite descending
chain would have to contain the same element twice, i.e. there would
be a subchain xR . . . Rx. By transitivity, we have (x, x) ∈ R, which
contradicts the irreflexivity of R.

(c) True or false: if A1, . . . , An are recursive languages, then A1 ∪ . . . ∪ An

are also recursive.[3]

Solution: True. We can simply take the n Turing machines for the
languages Ai, run them after another, and output “True” as soon as one
of them says “True” and “False” otherwise.

(d) True or false: Let A,B ⊆ {0, 1}∗ be languages with A ≤ B and B ≤ A
(where ≤ denotes computable reducibility). Then A = B.[3]



Solution: False. Any two recursive sets (other than ∅ and Σ∗) are
reducible to one another.

(e) Recall that the halting problem HP = {M#x | M halts for input x} is
not recursive. Argue that

EqHP = {M1#M2 | M1 and M2 halt on exactly the same inputs}

is then also non-recursive.[6]

Solution: GivenM and x, letM ′ be the machine that halts immediately
if its input is x and otherwise simulates M . Clearly M ′ has the same
halting behaviour as M if and only if M halts on x. Thus, deciding
EqHP for M ′ also decides HP for M and x.

Alternatively, one can also do a reduction proof by using the mapping of
M#x to M#M ′ (with M ′ defined as above) as the reduction function.

(f) For what sets A does A ≤ ∅ hold (where ≤ denotes computable re-
ducibility). Give the corresponding reduction functions.[3]

Solution: We must fulfil ∀x. f(x) ∈ ∅ ⇐⇒ x ∈ A, which simplifies to
∀x. x /∈ A, which simplifies to A = ∅. So only A = ∅ works, and every
function f : Σ∗ → Σ∗ is a reduction function.

(g) True or false: Let G be a finite undirected graph. Then all spanning
forests of G have the same number of edges.[4]

Solution: True. All spanning forests of G clearly must have exactly the
same nodes as G and the same connected components as G (otherwise
they would not be spanning). And in a forest, “#edges = #nodes -
#component”, as we have seen in the lecture.

(h) How many numbers between 1 and 6000 are a multiple of at least one
of the numbers 2, 3, and 5?[4]

Solution: We apply the principle of inclusion and exclusion:

• 3000 multiples of 2, 2000 multiples of 3, 1200 multiples of 5

• 1000 multiples of 2 · 3, 600 multiples of 2 · 5, 400 multiples of 3 · 5
• 200 multiples of 2 · 3 · 5

Thus the desired number is 3000+2000+1200−1000−600−400+200 =
4400.

2 (a) In an algorithm, we divide large problems into r = (m3 mod 4) + 2
equal parts and discard r − 1 of them in constant time, then call the
algorithm recursively on the remaining part. What is the complexity of
this algorithm for size n = rk for k ≥ 0.[6]

Solution: Our recurrence is T (n) = T (n
r
) + c. The second case of

the Master theorem applies since a = 1 = r0 = bs. Thus we have
T (n) ∈ Θ(log n) regardless of the precise value of r.

(b) Let k1 = 3m7m8 in decimal notation (so 300 ≤ k ≤ 399).



Determine all 0 ≤ x ≤ k that satisfy the 3 congruences:

x ≡ 0 (mod 3)

x ≡ 2 (mod 5)

x ≡ 4 (mod 7)

by application(s) of the Chinese Remainder Theorem, and check that[10]

your solutions for x satisfy the congruences. Give all computation steps
and explain how you conclude that your solutions are the only ones.

(c) Let k2 = m2m3 in decimal notation (so 0 ≤ k ≤ 99). Compute

(k1998
2 + k2) (mod 1999)

given that 1999 is prime. State what theorem you used and what con-
ditions must hold to apply it.[4]

3 Let k = (m3 mod 3) + 1 and l = (m4 mod 3) + 1.

(a) Draw the Hasse diagram of a partial order that has k minimal elements
and l maximal elements and no other elements.[2]

Solution: Possible example for k = 4 and l = 3:

a1 a2 a3

b1 b2 b3 b4

(b) Is this the only partial order that satisfies this specification?[3]

Solution: If k = l = 1: no, since both the empty relation with universe
{0} works, but so does the relation where 0 < 1 on the universe {0, 1}.
If k = 1 and l ̸= 1: yes, since all maxima have to be connected to the
(unique) minimum and no other connections are possible (since other-
wise the maxima would not be maximal). Analogously if l = 1 and
k ̸= 1.

Otherwise no, since one can e.g. connect each minimum either to one
maximum or to two different ones.

Note: The intention in this question was that isomorphic partial orders
(i.e. those that differ only by renaming the elements) are to be considered
equal. Some students understandably interpreted it differently, such that
e.g. the relations {(0, 1)}= and {(a, b)}= are different. Such solutions
received full points as well.

(c) Is your partial order a total order?[3]

Solution: Only if k = 1 and l = 1, since a total order cannot have more
than 1 minimal and maximal element.

(d) Is it well-founded (as a partial order)?[3]

Solution: By definition, a relation is well-founded as a partial order if
its strict part is well-founded. This is the case in our example here, since
the underlying set is finite.



(e) Let A be the set of partial orders over N and let B = 2N \ {∅,N} be the
set of all nontrivial subsets of N (i.e. all subsets that are not ∅ or N).
Show that |A| ≥ |B| by giving an injection B → A.

(You need not prove formally that it is an injection, but you do have to
explain it.)[6]

Hint: take the relation you gave in a) as an inspiration.

Solution: We construct an injection B → A in the following way: given
a set X ⊆ N, we return the reflexive closure of X×(N\X). That is, any
element in X is strictly less than any element in N \ X. The minimal
elements of this order are precisely X and the maximal elements are
N \X, which also shows that this is indeed an injection.

(f) Argue why the previous subexercise implies that |A| > |N|.[3]

Solution: 2N is clearly infinite, and removing finitely many elements (in
this case two) from an infinite set does not change its cardinality. Hence
|B| = |2N|. In the lecture we have seen that 2N is uncountably infinite,
while N is countably infinite, hence |2N| > |N|.


