1) Consider the relation R on $\{A, B, C, D\}$ whose graph is:

Use Warshall's algorithm to compute the transitive closure R^+ of R. Explain the connection between the transitive closure matrix of R and the distance matrix of R (if the edges were labeled with distances).

2) The equivalence of fractions is defined by following relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(a,b) \sim (c,d) :\Leftrightarrow ad = bc$$

Show that this relation is reflexive, irreflexive, symmetric, anti-symmetric and transitive or give a counterexample.

Note: In the following, R^s denotes the symmetric closure of R.

3) We define the following relations $R, S \subseteq \mathbb{Z}^2$ on points with integer coordinates:

$$R := \{ ((x,y), (x+1,y) \mid x, y \in \mathbb{Z} \} \qquad S := \{ ((x,y), (x,y+1)) \mid x, y \in \mathbb{Z} \}$$

Informally, $p_1 R p_2$ holds iff p_2 is one step to the right of p_1 and $p_1 S p_2$ holds iff p_2 is one step above p_1 .

We now visualise these relations as follows: we draw a grid where each cell represents a point in \mathbb{Z}^2 . The cell in the centre (marked in black) represents a point p_1 . We now mark all points p_2 such that $p_1 R p_2$ with a cross.

- 4^*) Which of the following statements are true for **all** relations R and S? Give a counterexample for the false ones! For the true ones, give an informal explanation for why they hold.
 - a) $(R^{s})^{*} = (R^{*})^{s}$
 - b) $(R^{=})^{n} = (R^{n})^{=}$
 - c) $(R \cup S)^* = (R^*S^*)^*$
 - d) $(R \cup S)^* = R^* \cup S^*$
 - e) $(R \cap S)^* = R^* \cap S^*$
 - f) $(RS)^* = (SR)^*$

Hint: When looking for counterexamples, consider the relations R and S from ex. 3) and the relation $T := \{(x, -x) \mid x \in \mathbb{Z}\}$ or try to come up with a suitable small graph.