1) We compute the transitive closure:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

Imagine the edges were labled with distances and we computed Floyd's algorithm to compute the shortest paths among the nodes as it was done in exercise 2 of the 1st sheet. The matrices in the computation above can be obtained by mapping ∞ to 0 and natural numbers to 1. Note: Since R^+ is not necessarily reflexive (like the reflexive transitive closure R^*), we normally have to treat the diagonal separately.

2)

$$M = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$$
$$R := \{((a, b), (c, d)) \in M^2 \mid ad = bc\}$$

reflexive: $(a, b) \in M \Rightarrow ((a, b), (a, b)) \in R$ since ab = ab **not irreflexive:** It is reflexive. **symmetric:** $(a, b), (c, d) \in M$ and $((a, b), (c, d)) \in R \Rightarrow ((c, d), (a, b)) \in R$ since $ad = bc \Leftrightarrow cb = da$ **not anti-symmetric:** $((1, 2), (2, 4)) \in R$ and $((2, 4), (1, 2)) \in R$ because 4 = 4 but $(1, 2) \neq da$

not anti-symmetric: $((1,2), (2,4)) \in R$ and $((2,4), (1,2)) \in R$ because 4 = 4 but $(1,2) \neq (2,4)$

transitive: $(a, b), (c, d), (e, f) \in M, ((a, b), (c, d)) \in R$ and $((c, d), (e, f)) \in R \Rightarrow ((a, b), (e, f)) \in R$ since ad = bc and cf = de we have adcf = bcde. When we cancel equal terms on both sides of the equation we get af = be.

