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Summary last week

• model questions as problems on discrete structures
• various problems modelled as graph problems
• representing graphs as sets of vertices and edges, and by adjacency matrices
• Floyds shortest path algorithm, stepwise transforming adjacency matrix

Theorem

The following algorithm overwrites the matrix B with the matrix of distances

For r from 0 to n− 1 repeat:

Set N = B.

For i from 0 to n− 1 repeat:

For j from 0 to n− 1 repeat:

Set Nij = min(Bij,Bir + Brj).

Set B = N.

Proof.

today
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

ordinalsorders

algorithms

graphs

relations

dags trees

functions

sets cardinals

strings
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Indirect proof resp. proof by contradiction

Definition

• To show that a statement A holds, a proof by contradiction assumes that the
negation of A holds.

• If from this assumption (that the negation of A holds, that is, that A is false) a
contradiction can be deduced, then our assumption itself must have been false,
hence A must hold.

Example

The statement
?There are infinitely many natural numbers.?

is true (and therefore a theorem). To show this, we assume the negation of the
statement, that is

?There are only finitely many natural numbers.?
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Indirect proof resp. proof by contradiction

Example

A positive natural number is prime if it has no non-trivial divisors.

Theorem

There are infinitely many prime numbers.

To show this, we assume the negation of the statement. That is,
Suppose there were only finitely many prime numbers, say p1, . . . ,pn.
Any number can be written as product of prime numbers (Fundamental Theorem of
Arithmetic).
In particular then p = p1 · . . . · pn + 1 could be written as a product of prime numbers.
But per construction p is not divisible by any pi, so would be prime. Contradiction.
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Indirect proof resp. proof by contradiction

Example

An v-split of a path p in G is a sequence of paths p1, . . . ,pn for some n, such that
concatenating them yields p, and pi starts (ends) at v and is non-empty if i > 1 (i < n),
and v only occurs as start/end of the pi (not as an intermediate node).

Theorem

a path has at most one v-split.

By contradiction: Suppose p1, . . . ,pn and q1, . . . ,qm were two distinct v-splits of the
path p.
Looking from the left there then must be a first i such that pi is distinct from qi (one of
them may not exist) as otherwise the v-splits would be the same.
Note that then pi is a proper prefix of qi (or vice versa; that case is similar)
Then pi must end in v but that would mean that qi has some intermediate v-node
(since both v-splits must yield p when concatenated).
Contradiction with the assumption that q1, . . . ,qm was a v-split.
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Properties of Floyd’s algorithm

• Does it work? What does that mean, exactly?

• In what language do we express that?

• How do we prove it?

• Why does the algorithm work?

• How fast is it? As a function of what?

• How much memory does it use?

• How do we express this in a computer-independent way?

• . . .
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Floyd correctness

Theorem

Input: adjacency matrix of graph G

Output: distance matrix of graph G

Proof.

Idea: successively compute distances via subsets of nodes.

1 Pre: distance via empty subset ∅ is
• 0 from node to itself
• edge weight if edge between distinct nodes
• ∞ if no edge

2 (Outer) Loop invariant:

Input: matrix of distances in G via nodes {v0, . . . , vr−1}
Output: matrix of distances in G via nodes {v0, . . . , vr−1, vr}

3 Post: distance via all nodes is distance 8



Example

23

0 1


1 1 0 0

0 0 1 2

0 0 1 1

1 0 0 0



multigraph
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Example
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0 1


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digraph
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Correctness of middle and inner loop

Lemma

Let G be a directed multigraph. If there is a non-empty path p from node c to node d,
then there is a simple path from c to d, obtained by omitting edges

Observation

Shortest paths are simple
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Correctness of middle and inner loop

Auxiliary definition

For r ∈ {0,1, . . . ,n} let Pr be the set of all shortest paths in the graph of R that only
have intermediate nodes in the set {v0, v1, . . . , vr−1}. Then

Lemma

1 P0 is the set of all edges of G and empty paths;

2 Assume r < n. For a path p in Pr+1 there are two cases:

• vr is not an intermediate node of p. Then p in Pr.
• vr is an intermediate node of p. Then we can write the path p from e to d as the

composition of a path u from e to vr, and a path v from vr to d, which are both in Pr;

3 Pn is the set of all shortest paths in G.
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Complexity of Floyd’s algorithm

Parameter

number of nodes n of graph

Space

a single distance: unit space 1

1 matrices B and N of distances: 2 · n2 · 1 = 2n2

2 variables i, j, r: 3

total space: 2n2 + 3 ∈ O(n2)
polynomial, quadratic O(n2)
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Complexity of Floyd’s algorithm

Parameter

number of nodes n of graph

Time

a single operation: unit time 1

1 Pre: initialisation n2

2 Loop:
• assignment (Set Nij): 1
• inner loop (j) n times assignment: n · 1 = n
• middle loop (i) n times inner loop: n · n = n2

• outer loop (r) n times middle loop: n · n2 = n3

copy matrix twice: 2n2

3 Post: –

total time: 3n2 + n3 ∈ O(n3) (detailed later)
polynomial, cubic O(n3)
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Number of paths by matrix multiplication

Lemma

Let (V,E, src, tgt) be a directed multigraph having finitely many nodes- and edges with
adjacency matrix Aij := #({e ∈ E | src(e) = vi and tgt(e) = vj)} for nodes v0, . . . , vn−1.

• For ` ∈ N and i, j = 0,1, . . . ,n− 1 is (A`)ij the number of paths from vi to vj of
length `

Proof.

How could we prove this?
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Relations motivation

Mathematical relations

used to model . . . relations

Example

• friend

• enemy

• taller than

• sitting next to

• superclass

• . . .

14



Relations definitions

Definition

R ⊆ M×M is a relation on M; R is

• reflexive, if for all x ∈ M, (x, x) ∈ R

• irreflexive, if for all x ∈ M, (x, x) 6∈ R

• symmetric, if for all x, y ∈ M
(x, y) ∈ R⇒ (y, x) ∈ R

• anti-symmetric, if for all x, y ∈ M
(x, y) ∈ R and (y, x) ∈ R⇒ x = y

• transitive, if for all x, y, z ∈ M
(x, y) ∈ R and (y, z) ∈ R⇒ (x, z) ∈ R

Remark

Homogeneous binary relations (heterogeneous n-ary relation ⊆ M1 × . . .×Mn)
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Example

• R1 := friend on set of people

• R2 := enemy on set of people

• R3 := taller than on set of people

• R4 := sitting next to on set of people in classroom

• R5 := being superclass of in Java program ∅
reflexive irreflexive symmetric anti-symmetric transitive

R1 X? ×? X? × ×
R2

×? X? X? × ×

R3

× X × X X

R4

× X X × ×

R5

X? ×? × X X
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Example

• R1 := {(0,0), (1,1), (2,2)} on {0,1,2}
• R2 := ∅ on {0}
• R3 := {(0,0), (2,1)} on {0,1,2}
• R4 := {(0,0), (1,2), (2,1)} on {0,1,2}
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Closures

Definition

Let P be a property of relations. The P-closure of R is the least relation R′ such that
R ⊆ R′ and R′ has property P.

Notations

R= is the reflexive closure of R, R+ its transitive closure, R∗ its reflexive–transitive
closure.

Example

The transitive closure of friendship and enemy relates everyone to everyone?, of
being taller than and superclass are the relation themselves, and of sitting next to is
sitting in the same row.
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Closures
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R ⊆ R′ and R′ has property P.

Remark

Only well-defined if it exists and is unique. E.g. if a relation is reflexive an irreflexive
extension does not exist, and extending the empty relation on {a,b} such that a and b
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Algorithm of Warshall, transitive closure

Theorem

1 Let R be a relation on a set M with n elements and let A be its adjacency matrix

2 The following algorithm with O(n3) bit operations overwrites A with the adjacency
matrix of the transitive closure of R

For r from 0 to n− 1 repeat:

Set N = A.

For i from 0 to n− 1 repeat:

For j from 0 to n− 1 repeat:

Set Nij = max(Aij,Air · Arj)

Set A = N.
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Example

The transitive closure of the relation R = {(0,2), (1,0), (2,1)} on the set {0,1,2} is

T = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}

Adjacency matrix and first iteration (r = 0)

A =

0 0 1

1 0 0

0 1 0

 A1 =

0 0 1

1 0 1

0 1 0


Second (r = 1) and third (r = 2) iteration

A2 =

0 0 1

1 0 1

1 1 1

 A3 =

1 1 1

1 1 1

1 1 1


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Relations as digraphs

Definition

Let R be a relation on a set M. Then the digraph of R is given by:

• the set of nodes M

• the set of edges R

• the functions src((x, y)) = x and tgt((x, y)) = y

Graph notions apply to relation

Notions for graphs apply to a relation R via its graph.

21



Relations as digraphs

Graph notions apply to relation

Notions for graphs apply to a relation R via its graph.

Example

Let G be the graph of the relation R

• R is reflexive iff all nodes of G have a loop

• R is reflexive and transitive iff for every path from a to b there is an edge from a
to b in G

• R is symmetric iff for every edge from a to b in G there is an edge from b to a

• . . .
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Relations as digraphs, Warshall as Floyd

Graph notions apply to relation

Notions for graphs apply to a relation R via its graph.

Theorem

Let R be a relation. R∗ can be obtained from the distance matrix of R by mapping∞ to
0 and natural numbers to 1.

Proof.

The correspondence holds for every stage of Warshall’s algorithm applied to R= and
Floyd’s algorithm applied to the adjacency matrix of R.
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Functions as relations

Definition

A function on M is a relation R on M such that

1 for all x ∈ M, there exists y such that x R y (totality)

2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.
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1 for all x ∈ M, there exists y such that x R y (totality)

2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.

Example

• The squaring function on natural numbers is the relation
{(0,0), (1,1), (2,4), (3,9), (4,16), . . .}.
• Taking the square root is not a function on natural numbers, since, e.g., the

square root of 2 is not a natural number (existence fails)

• Taking the square root is not a function on the real numbers either, since, e.g.,
both −2 and 2 are square roots of 4 (uniqueness (also) fails)
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Functions as relations

Definition

A function on M is a relation R on M such that

1 for all x ∈ M, there exists y such that x R y (totality)

2 for all x, y, y′ ∈ M if x R y and x R y′ then y = y′, i.e. R relates uniquely.

we then write R(x) to denote y.

Specification of functions

A function is said to be defined by some specification this expresses that there exists a
unique relation satisfying the specification and the relation is a function.

Example

The function f on natural numbers defined by

• f(n) = n? Xor f(n) = −1? ×or f(n) = f(n)? ×
• f(0) = 10 and f(1) = 2? ×or f(0) = 0 and f(n + 1) = f(n)? X. . .
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Representing and specifying functions

Remark

Relation can be represented by graphs. Every node of the graph of a function on M
has out-degree exactly 1. If it is injective, then every node has in-degree at most 1. If
it is bijective, then every node has both in- and out-degree 1.

Remark

Functions in functional programming and functions in the mathematical sense do not
always correspond.
The function that maps a program to 1 if it halts on every input, and to 0 otherwise, is
a mathematical function, but not a Haskell function.
There cannot even exist a (Haskell) program for this mathematical function.
Defining f x = f x is allowed in Haskell (does type-check) but does not define a
mathematical function.
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