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Summary last week

® using induction on well-founded relations to prove properties

e |lexicographic product (x1,x2) <1 Xjex <2 (V1,¥2) if X1 <1 y1 or (X1 = y1, X2 <3 ¥2)
® preserves well-foundedness of partial orders <;, <;

® dags as directed acyclic graphs

* topological <-sorting (ao,...,an) of partial order < on {ao,...,an}: i <jifa; < a;.
® topological sorting algorithm by repeated selection of <-minimal element

® O(n) shortest/longest path algorithm on dags based on topological sorting

e forests as dags with nodes of in-degree <1

® trees as forests where pairs of nodes have common ancestors
® rooted trees as trees having a root (ancestor of all nodes)

e for trees, number of vertices = number of edges +1



undirected multigraph

vertex c is a neighbour of the vertex d, if there exists an edge joining both
loop, parallel edges

the degree of a vertex v is the number of edges having v as endpoint
undirected graph, sub-multigraph, sub-graph

paths, cycles



® Let G be an undirected multigraph
® A sub-graph G’ of G is a spanning forest of G, if

Fl G is a forest, and
E3 the partitionings of G resp. G’ into connected components are the same.

e ThenV' =V

The following graph has 8 - 3 = 24 spanning forests
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Course themes

® directed and undirected graphs

® relations and functions

® orders and induction

® trees and dags

¢ finite and infinite counting

® elementary number theory

® Turing machines, algorithms, and complexity
® decidable and undecidable problem



Theorem (Kruskal’s algorithm)

E Let G = (V,E) be an undirected multigraph with weights b

E We want to construct a partitioning of V into connected components, and a set of
edges F that constitutes a spanning forest of G having minimal weight " _ ¢ b(e)

El We preprocess G by removing all loops and all parallel edges except for a single
one of least weight, and sorting those such that b(eg) < b(e1) < ... < b(em-1)

1 The algorithm then proceeds as follows, with complexity O(#(V) - #(E))

Set F=@ and P={{v} |veV}

For i from 0 to m — 1 repeat:
if the nodes v and u of e; are in distinct blocks of P,
combine both blocks of P and adjoin e; to F




For the weighted graph
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For the weighted graph
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Kruskal’s algorithm starts with F = @; P = {{a}, {b}, {c}, {d}, {e}, {f}, {g}} and
terminates with

1

F= {{a, b}, {b, e}; {C7 d}’ {da 9}7 {e’ f}}
P={{a,b,e,f} {c,d,g}}



® Let G, be the sub-graph of G with V as nodes and edges {eg,e1,,...,e;}
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® Let G, be the sub-graph of G with V as nodes and edges {eg, €e1,,...,6;}

® The algorithm starts with partitioning into singletons of nodes and then proceeds
by combining blocks by edges connecting them

® After step i, P is a partitioning of G; into connected components

e |nitially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

® For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

® Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of G;

® We show that the greedy strategy employed, yields a spanning forest of minimal
weight



Proof (continued).

® Let F' be the set of edges of a spanning forest of minimal weight, and suppose
F’ # F; then there exists an edge e; in F not in F'.
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Let F' be the set of edges of a spanning forest of minimal weight, and suppose

F' # F; then there exists an edge e; in F not in F'.

Let v1, v, be the endpoints of e; and V7, V, the corresponding blocks in the
algorithm

Since there is a path p from v; to v, with edges in F/, there exists an edge ¢; in the
path p having one endpoint in V; and the other endpoint not in it. Hence, j > i and
b(ej) > b(e,-).

The sub-graph with nodes V and edges defined by E’ := (F' \ {g;}) U {e;} thenis a
spanning tree, because every path via ¢; can be transformed into one via e; and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

by finitely many such exchanges we obtain F from F’
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Let F' be the set of edges of a spanning forest of minimal weight, and suppose
F’ # F; then there exists an edge e; in F not in F'.

Let v1, v, be the endpoints of e; and V7, V, the corresponding blocks in the
algorithm

Since there is a path p from v; to v, with edges in F/, there exists an edge g in the
path p having one endpoint in V; and the other endpoint not in it. Hence, j > i and
b(ej) > b(e,-).
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Let F' be the set of edges of a spanning forest of minimal weight, and suppose
F’ # F; then there exists an edge e; in F not in F'.

Let v1, v, be the endpoints of e; and V7, V, the corresponding blocks in the
algorithm

Since there is a path p from v; to v, with edges in F/, there exists an edge g in the
path p having one endpoint in V; and the other endpoint not in it. Hence, j > i and
b(ej) > b(e,-).
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spanning tree, because every path via ¢; can be transformed into one via e; and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.
by finitely many such exchanges we obtain F from F’

Since F' has a minimal weight, so has F H
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Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

If there exists a bijection f: M — N, then the sets M and N are equinumerous (or
equipollent, equipotent). Cardinals represent equinumerous sets.

Each finite set equinumerous to set {m | m < n} forsomen € N.

N U {«} is equinumerous to N; witnessed by bijection f mapping * to 0, and n to n + 1.

9



set A is finite if there exist n € N and bijective function e: {0,1,....n—1} - A

¢ then n is unique, denoted by #(A) := n, and called the number or cardinality of A

the function e is in general not unique, and is called an enumeration of A

a bijection v: A — {0,1,...,m — 1} is called a numbering of A
® an inverse of an enumeration is a numbering and vice versa
* Ais infinite if it is not finite, and then we write #(A) = co

10



Cardinalities for operations on finite sets

Lemma

Lete:{0,....m—1} - Aandf:{0,...,n— 1} — B be enumerations of A,B.

B #0)=0
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EH #(AXxB)=+#(A)-#(B)=m-n
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Cardinalities for operations on finite sets

Lemma

Lete:{0,....m—1} - Aandf:{0,...,n— 1} — B be enumerations of A,B.

B #(0) =

B #({a}) =1

Bl #(AxB) =#(A)-#(B)=m-n

B #(AUB)=#(A)+#(B)=m+n,ifANB=10
( B
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Cardinalities for operations on finite sets

E the empty set () (of pairs) is a bijection from () to (.

E1 mapping 0 to a is a bijection from {0} to {a}.

El mapping k to (e(k + n), f(k mod n)) is a bijection from {0,...,m-n— 1} to A x B,
with inverse numbering given by (a,b) — e~1(a) - n +f~1(b).

1 mapping k to e(k) if kK < m and to f(k — m) otherwise, is a bijection from
{0,...,m+n —1} to AU B, with inverse numbering given by c — e~}(c) ifc € A
and ¢~ f~1(c)+ mifceB.

B writing k € {0,...,m" — 1} as k,_1 ... ko in base-m, mapping it to the function
g : B — Athat maps for 0 < i < n, f(i) to e(k;) is a bijection to A8, with inverse
numbering of elements of AB given by mapping a function g : B — A to the
number 3", 5 F1(g(b))me ' ®) in {0,...,m" — 1}.

Writing B = {by,...,bn_1}, then g: B — A is uniquely determined by the tuple
(9(bi))!=y in B™. . |




Derived cardinalities for operations, inclusion/exclusion

Bl If, for finite sets A and B there is a bijection f: A — B, then #(A) = #(B)
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Derived cardinalities for operations, inclusion/exclusion

Theorem
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Derived cardinalities for operations, inclusion/exclusion

Theorem

Bl If, for finite sets A and B there is a bijection f: A — B, then #(A) = #(B)
El For pairwise disjoint sets A1,A,, ..., Ax

#(U1A) = #(A1UA U UAY) = #(A1) + #(A2) + .. + #(A) = D I #(A).-

El For finite sets A and B,

#(A—B) = #(A\ B) = #(A) — #(ANB).

13



(1) Ais finite, hence by definition there are a natural number m and a bijection
e:{0,1,...,m—1} — A.
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(1) Ais finite, hence by definition there are a natural number m and a bijection
e:{0,1,...,m—1} — A.

Then consider the function composition

foe:{0,1,.... m—1} —» B, i— f(e(i)),

f o e is bijective, therefore #(B) = m



(1) Ais finite, hence by definition there are a natural number m and a bijection
e:{0,1,...,m—1} — A.
Then consider the function composition

foe:{0,1,.... m—1} —» B, i— f(e(i)),
f o e is bijective, therefore #(B) = m
(3) Because we have for arbitrary sets that
A= (A\B)U(ANB)
with the union disjoint, it follows by (2) that

#(A\ B) = #(A) — #(ANB)



(2) Given bijections

e1:{0,1,...,my — 1} - My,...,ex: {0,1,...,m — 1} — My

their compositione: {0,1,...,my +...+mg —1} - M; U...UM is again a

bijection
e1(i) i€{0,1,---,m —1}
ez(i—ml) ie{m1,~~ ,m1+m2—1}
i —
. ie{m1+...+mk,1,~~-,m1+
E\l —Mmq1 — ... — Mi_
k(i = m 1) - 1)

15
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Theorem

A Inclusion/exclusion principle
For finite sets A1, A, ..., Ak

In particular,

#(AUB) = #(A) + #(B) — #(AN B)
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Theorem

A Inclusion/exclusion principle

For finite sets A1, A, ..., A
k
#(|Ja) = > #((A) | - > #((A)
i=1 I C{1,...,k}, #(I) odd iel I1C{1,..., k}, #(I) even i€l

In particular,

#(AUB) = #(A) + #(B) — #(ANB)
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Theorem

A Inclusion/exclusion principle

For finite sets A1,A>, ... Ak
k
#(U Aj) = Z (—1)#0O-1 #(mAi)
i=1 IC{1,2,....k} iel
£

In particular,

#(AUB) = #(A) + #(B) — #(ANB)
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A Inclusion/exclusion principle

For finite sets A1,A>, ... Ak
k
#(U Aj) = Z (—1)#0O-1 #(mAi)
i=1 IC{1,2,....k} iel
£

In particular,
#(AUB) = #(A) + #(B) — #(ANB)

H Let Mi,M;,..., M be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

K

#(My x My x ... x M) = [ #(M).
i=1

In particular, #(MX) = #(M)k

16



(4) By induction on k. Incase k =2, A; UA; = A1 U (A2 \Alg
#(A1UA) = #(A1) + #(A2 \ A1) = #(A1) + #(A2) — #(A1 N Az)




(4) By inductionon k. Incasek =2,A; UA; = A1 U (A2\ 8
#(A1UA) = #(A1) + #(A2 \ A1) = #(A1) + #(A2) — #(A1 N Az)

For k > 2 we have by the IH

1 k—1



1 k—1

IC{1,....k—1} iel
I#£&

- Y (FFOtg(AanA) = > (—)F0Tx(A)

IC{1,....k—1} il JC{1,....k} i€J

The final equation holds for the three cases (i) ) =/, (ii) ] = {k}, (iii) ) =1U {k}



(5) By assumption we have bijections e;
&9 = {O./l,...,ml—l}—>M1,...,ek: {0,1,...,mk—l}—>Mk

18



(5) By assumption we have bijections e;
@95 {O,l,...,ml—1}—>M1,...,ek: {0,1,...,mk—l}—>Mk
Therefore, e: {0,1,....,m1---my — 1} — My X ... x My with

n— (ex(n/my---myg),...,ex—1((n/myg) mod my_1), ex(n mod my))

is a bijection again.
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er: {O,l,...,ml—1}—>M1,...,ek: {0,1,...,mk—l}—>Mk

Therefore, e: {0,1,....,m1---my — 1} — My X ... x My with
n— (ex(n/my---myg),...,ex—1((n/myg) mod my_1), ex(n mod my))
is a bijection again. From the respective numbers
ik = nmodmyg
ik—l = (n/mk) mod Mig_1
iz = (n/(m3 cee mk)) mod my
il = n/(m2~--mk)

the number n is obtained by

N:=iy-My---Myg~+iz-m3---Mg~+...+ 01 - M+ig
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In C-programs, the elements of a multi-dimensional array are stored consecutively in
memory, where their order is such that ,later indices go faster than earlier ones“. For
example, the elements of

are arranged in memory as:

int M[2][3] = {{3,5,-2},{1,0,2}};

M[0] [0]
3

M[0] [1]
5

M[0] [2]
-2

M[1] [0]
1

M[1] [1]
0

M[1] [2]
2

19



Example (continued)

double f(double *z, int mil, int m2, int m3)
{

}
int main( void)

{
double x, y, A[2]1[3]1[4], B[3][4][2];

f(&A[0] [0] [0],2,3,4);
£(&B[0][0][0],3,4,2);

X
y

}

In the function £, the element "*z[i] [j] [k] " can be addressed as
* (z+i*m2*m3+j*m3+k) the indices i, j, k of the element located at address z+1 can be
computedask = 1%m3, j = (1/m3)%m2 and i = 1/(m2+*m3)

20



Theorem

@ Double counting An undirected graph is bipartite, if there exists a partition of its
set of nodes in two blocks A and B, such that every edge has one endpoint in A
and one in B.

For a finite bipartite graph ), ., Deg(e1) = >,z Deg(e2)



Theorem

@ Double counting An undirected graph is bipartite, if there exists a partition of its
set of nodes in two blocks A and B, such that every edge has one endpoint in A
and one in B.

For a finite bipartite graph ), ., Deg(e1) = >,z Deg(e2)

(6) Both sums denote the number of edges [

21



Theorem (Pigeon hole principle)

Let f: M — N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y € N having an inverse image with more than one element.




Theorem (Pigeon hole principle)

Let f: M — N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y € N having an inverse image with more than one element.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M — f(M) bijective. Hence #(M) = #(f(M)) and by f(M) C N
we have #(M) < #(N) |

Lemma

Maximum > average. For R = (r;)i; a collection of numbers, max(R) > Z,R.

#(
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Theorem (Pigeon hole principle)

Let f: M — N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y € N having an inverse image with more than one element.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M — f(M) bijective. Hence #(M) = #(f(M)) and by f(M) C N
we have #(M) < #(N) |

Lemma

Maximum > average. For R = (r;)i; a collection of numbers, max(R) > %.

Alternative proof of PHP

Let R = (#(f~1(n))nen- By the lemma max(R) > % =

BiS

M
o> 1

Bix



Counting the number of injective functions

Theorem
Let K and M be finite sets having k resp. m elements. Then there are exactly

() {m(m—l)(m—Z)-~(m—k+1) ifk>1
kK =

1 ifk =0

injective functions from K to M. The number (m)y is the falling factorial of m and k.



Counting the number of injective functions

Theorem
Let K and M be finite sets having k resp. m elements. Then there are exactly

(m)e = {m(m—l)(m—2)~~(m—k+1) ifk>1
.

1 ifk =0
injective functions from K to M. The number (m)y is the falling factorial of m and k.

Obviously, there are no (total) injective functions from {0, 1,2,3} to {0, 1}, which
agrees with the theoremas (2)4 =2-1-0--1=0.




We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0,X1,..., Xk}

and consider how to construct injective functions f: K — M.
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Counting the number of bijective functions

Theorem
Let K and M be finite sets having m elements each. Then there are exactly
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claim follows from the theorem, with (m), = m!.
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Let M be a finite set with m elements. Then

#(P(M)) =27




Let M be a finite set with m elements. Then

#(P(M)) =27
We take some arbitrary but fixed enumeration e: {0,1,...,m — 1} — M. The

following function then is a bijection:

1 ife(eT

FZ/P(M)—>{0,1}m,Ti—>(to,...,tm_1),t,'Z: .
0 otherwise.
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Theorem

Let M be a finite set with m elements. Then

piy
e}
S
I
N
.3

We take some arbitrary but fixed enumeration e: {0,1,...,m — 1} — M. The
following function then is a bijection:

1 ife(i)eT
0 otherwise.

For T C M, the function x7 : M — {0, 1} defined by x7(t) = 1 if t € T and 0 otherwise, is
the characteristic function of T. 2



Counting the number of subsets of given size

Theorem
Let M be a finite set with m elements, and let k be a natural number. Then

#ro) = (7).

where Py(M) denotes the subsets of size k, and where the binomial coefficient ,,m
choose k“ or ,,m over k“ is defined by

! .

k-(k—1)---1 )
0 otherwise



An enumeration e: {0,1,...,k — 1} — T of a subset T of M having k elements, is
obtained by choosing

® an arbitrary element e(0) € M,
* an arbitrary element e(1) € M\ {e(0)},
® an arbitrary element e(2) € M\ {e(0),e(1)}, etc.
Since the order of choosing the elements of T is irrelevant, the number of such choices
is
m-(m—-1)---(m—k-+1)/k!.
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