
Discrete structures

Manuel Eberl Jamie Hochrainer
Jan Jakubuv Cezary Kaliszyk

http://cl-informatik.uibk.ac.at/

http://cl-informatik.uibk.ac.at/

Summary last week

• using induction on well-founded relations to prove properties

• lexicographic product (x1, x2) ≤1 ×lex ≤2 (y1, y2) if x1 <1 y1 or (x1 = y1, x2 ≤2 y2)

• preserves well-foundedness of partial orders ≤1,≤2

• dags as directed acyclic graphs

• topological ≤-sorting (a0, . . . , an) of partial order ≤ on {a0, . . . , an}: i < j if ai < aj.

• topological sorting algorithm by repeated selection of ≤-minimal element

• O(n) shortest/longest path algorithm on dags based on topological sorting

• forests as dags with nodes of in-degree ≤ 1

• trees as forests where pairs of nodes have common ancestors

• rooted trees as trees having a root (ancestor of all nodes)

• for trees, number of vertices = number of edges +1

1

Summary last week

• using induction on well-founded relations to prove properties

• lexicographic product (x1, x2) ≤1 ×lex ≤2 (y1, y2) if x1 <1 y1 or (x1 = y1, x2 ≤2 y2)

• preserves well-foundedness of partial orders ≤1,≤2

• dags as directed acyclic graphs

• topological ≤-sorting (a0, . . . , an) of partial order ≤ on {a0, . . . , an}: i < j if ai < aj.

• topological sorting algorithm by repeated selection of ≤-minimal element

• O(n) shortest/longest path algorithm on dags based on topological sorting

• forests as dags with nodes of in-degree ≤ 1

• trees as forests where pairs of nodes have common ancestors

• rooted trees as trees having a root (ancestor of all nodes)

• for trees, number of vertices = number of edges +1

1

Summary last week

• using induction on well-founded relations to prove properties

• lexicographic product (x1, x2) ≤1 ×lex ≤2 (y1, y2) if x1 <1 y1 or (x1 = y1, x2 ≤2 y2)

• preserves well-foundedness of partial orders ≤1,≤2

• dags as directed acyclic graphs

• topological ≤-sorting (a0, . . . , an) of partial order ≤ on {a0, . . . , an}: i < j if ai < aj.

• topological sorting algorithm by repeated selection of ≤-minimal element

• O(n) shortest/longest path algorithm on dags based on topological sorting

• forests as dags with nodes of in-degree ≤ 1

• trees as forests where pairs of nodes have common ancestors

• rooted trees as trees having a root (ancestor of all nodes)

• for trees, number of vertices = number of edges +1

1

• undirected multigraph

• vertex c is a neighbour of the vertex d, if there exists an edge joining both

• loop, parallel edges

• the degree of a vertex v is the number of edges having v as endpoint

• undirected graph, sub-multigraph, sub-graph

• paths, cycles

2

Definition

• Let G be an undirected multigraph
• A sub-graph G′ of G is a spanning forest of G, if

1 G is a forest, and
2 the partitionings of G resp. G′ into connected components are the same.

• Then V′ = V

Example

The following graph has 8 · 3 = 24 spanning forests

a b c

g

d

fe

3

Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

4

Theorem (Kruskal’s algorithm)

1 Let G = (V,E) be an undirected multigraph with weights b

2 We want to construct a partitioning of V into connected components, and a set of
edges F that constitutes a spanning forest of G having minimal weight

∑
e∈F b(e)

3 We preprocess G by removing all loops and all parallel edges except for a single
one of least weight, and sorting those such that b(e0) 6 b(e1) 6 . . . 6 b(em−1)

4 The algorithm then proceeds as follows, with complexity O(#(V) ·#(E))

Set F = ∅ and P = {{v} | v ∈ V}
For i from 0 to m− 1 repeat:

if the nodes v and u of ei are in distinct blocks of P,

combine both blocks of P and adjoin ei to F

5

Example

For the weighted graph

1

2

2

3

1

2

31

a b c

g

d

fe

Kruskal’s algorithm starts with F = ∅; P = {{a}, {b}, {c}, {d}, {e}, {f}, {g}} and
terminates with

F = {{a,b}, {b, e}, {c,d}, {d,g}, {e, f}}
P = {{a,b, e, f}, {c,d,g}}

6

Example

For the weighted graph

1

2

2

3

1

2

31

a b c

g

d

fe

Kruskal’s algorithm starts with F = ∅; P = {{a}, {b}, {c}, {d}, {e}, {f}, {g}} and
terminates with

F = {{a,b}, {b, e}, {c,d}, {d,g}, {e, f}}
P = {{a,b, e, f}, {c,d,g}}

6

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}

• The algorithm starts with partitioning into singletons of nodes and then proceeds
by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof.

• Let Gi be the sub-graph of G with V as nodes and edges {e0, e1, , . . . , ei}
• The algorithm starts with partitioning into singletons of nodes and then proceeds

by combining blocks by edges connecting them

• After step i, P is a partitioning of Gi into connected components

• Initially, the set F is empty, and in step i it is extended by a connecting edge
whose endpoints are in the combined block.

• For every block B, the sub-graph restricted to nodes B and the corresponding
edges in F, is a tree

• Therefore, after step i, the sub-graph having nodes V and edges F is a spanning
forest of Gi

• We show that the greedy strategy employed, yields a spanning forest of minimal
weight

7

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Proof (continued).

• Let F′ be the set of edges of a spanning forest of minimal weight, and suppose
F′ 6= F; then there exists an edge ei in F not in F′.

• Let v1, v2 be the endpoints of ei and V1,V2 the corresponding blocks in the
algorithm

• Since there is a path p from v1 to v2 with edges in F′, there exists an edge ej in the
path p having one endpoint in V1 and the other endpoint not in it. Hence, j > i and
b(ej) ≥ b(ei).

• The sub-graph with nodes V and edges defined by E′ := (F′ \ {ej}) ∪ {ei} then is a
spanning tree, because every path via ej can be transformed into one via ei and
the other edges of p and vice versa; moreover that sub-graph has minimal weight.

• by finitely many such exchanges we obtain F from F′

• Since F′ has a minimal weight, so has F

8

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous (or
equipollent, equipotent). Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

N ∪{∗} is equinumerous to N ; witnessed by bijection f mapping ∗ to 0, and n to n+ 1.

9

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100.
(only number no order)

Definition

If there exists a bijection f : M→ N, then the sets M and N are equinumerous (or
equipollent, equipotent). Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set {m | m < n} for some n ∈ N .

Example

N ∪{∗} is equinumerous to N ; witnessed by bijection f mapping ∗ to 0, and n to n+ 1.

9

Definition

• set A is finite if there exist n ∈ N and bijective function e : {0,1, . . . ,n− 1} → A

• then n is unique, denoted by #(A) := n, and called the number or cardinality of A

• the function e is in general not unique, and is called an enumeration of A

• a bijection ν : A→ {0,1, . . . ,m− 1} is called a numbering of A

• an inverse of an enumeration is a numbering and vice versa

• A is infinite if it is not finite, and then we write #(A) =∞

10

Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n
4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅
5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A

11

Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n
4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅
5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A

11

Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n

4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅
5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A

11

Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n
4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅

5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A

11

Cardinalities for operations on finite sets

Lemma

Let e : {0, . . . ,m− 1} → A and f : {0, . . . ,n− 1} → B be enumerations of A,B.

1 #(∅) = 0

2 #({a}) = 1

3 #(A× B) = #(A) ·#(B) = m · n
4 #(A ∪ B) = #(A) + #(B) = m + n, if A ∩ B = ∅
5 #(AB) = #(A)#(B) = mn, for AB the set of functions from B to A

11

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.

2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.

12

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.
2 mapping 0 to a is a bijection from {0} to {a}.

3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,
with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.

12

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.
2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.

12

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.
2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.

12

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.
2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm.

12

Cardinalities for operations on finite sets

Proof.

1 the empty set ∅ (of pairs) is a bijection from ∅ to ∅.
2 mapping 0 to a is a bijection from {0} to {a}.
3 mapping k to (e(k ÷ n), f(k mod n)) is a bijection from {0, . . . ,m · n− 1} to A× B,

with inverse numbering given by (a,b) 7→ e−1(a) · n + f−1(b).

4 mapping k to e(k) if k < m and to f(k −m) otherwise, is a bijection from
{0, . . . ,m + n− 1} to A ∪ B, with inverse numbering given by c 7→ e−1(c) if c ∈ A
and c 7→ f−1(c) + m if c ∈ B.

5 writing k ∈ {0, . . . ,mn − 1} as kn−1 . . . k0 in base-m, mapping it to the function
g : B→ A that maps for 0 ≤ i < n, f(i) to e(ki) is a bijection to AB, with inverse
numbering of elements of AB given by mapping a function g : B→ A to the
number

∑
b∈B f−1(g(b))me−1(b) in {0, . . . ,mn − 1}.

Writing B = {b0, . . . ,bn−1}, then g : B→ A is uniquely determined by the tuple
(g(bi))

n−1
i=0 in Bm. 12

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection f : A→ B, then #(A) = #(B)

2 For pairwise disjoint sets A1,A2, . . . ,Ak

#(
⋃

k
i=1Ak) = #(A1 ∪ A2 ∪ . . . ∪ Ak) = #(A1) +#(A2) + . . .+#(Ak) =

∑
k
i=1#(Ai) .

3 For finite sets A and B,

#(A− B) = #(A \ B) = #(A)−#(A ∩ B) .

13

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection f : A→ B, then #(A) = #(B)

2 For pairwise disjoint sets A1,A2, . . . ,Ak

#(
⋃

k
i=1Ak) = #(A1 ∪ A2 ∪ . . . ∪ Ak) = #(A1) +#(A2) + . . .+#(Ak) =

∑
k
i=1#(Ai) .

3 For finite sets A and B,

#(A− B) = #(A \ B) = #(A)−#(A ∩ B) .

13

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection f : A→ B, then #(A) = #(B)

2 For pairwise disjoint sets A1,A2, . . . ,Ak

#(
⋃

k
i=1Ak) = #(A1 ∪ A2 ∪ . . . ∪ Ak) = #(A1) +#(A2) + . . .+#(Ak) =

∑
k
i=1#(Ai) .

3 For finite sets A and B,

#(A− B) = #(A \ B) = #(A)−#(A ∩ B) .

13

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection
e : {0,1, . . . ,m− 1} → A.

Then consider the function composition

f ◦ e : {0,1, . . . ,m− 1} → B , i 7→ f(e(i)) ,

f ◦ e is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

A = (A \ B) ∪ (A ∩ B)

with the union disjoint, it follows by (2) that

#(A \ B) = #(A)−#(A ∩ B)

14

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection
e : {0,1, . . . ,m− 1} → A.

Then consider the function composition

f ◦ e : {0,1, . . . ,m− 1} → B , i 7→ f(e(i)) ,

f ◦ e is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

A = (A \ B) ∪ (A ∩ B)

with the union disjoint, it follows by (2) that

#(A \ B) = #(A)−#(A ∩ B)

14

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection
e : {0,1, . . . ,m− 1} → A.

Then consider the function composition

f ◦ e : {0,1, . . . ,m− 1} → B , i 7→ f(e(i)) ,

f ◦ e is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

A = (A \ B) ∪ (A ∩ B)

with the union disjoint, it follows by (2) that

#(A \ B) = #(A)−#(A ∩ B)

14

Proof.

(1) A is finite, hence by definition there are a natural number m and a bijection
e : {0,1, . . . ,m− 1} → A.

Then consider the function composition

f ◦ e : {0,1, . . . ,m− 1} → B , i 7→ f(e(i)) ,

f ◦ e is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

A = (A \ B) ∪ (A ∩ B)

with the union disjoint, it follows by (2) that

#(A \ B) = #(A)−#(A ∩ B)

14

Proof.

(2) Given bijections

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

their composition e : {0,1, . . . ,m1 + . . .+ mk − 1} → M1 ∪ . . . ∪Mk is again a
bijection

i 7→

e1(i) i ∈ {0,1, · · · ,m1 − 1}
e2(i−m1) i ∈ {m1, · · · ,m1 + m2 − 1}
...

...

ek(i−m1 − . . .−mk−1)
i ∈ {m1 + . . . + mk−1, · · · ,m1 +
. . .+ mk − 1}

15

Proof.

(2) Given bijections

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

their composition e : {0,1, . . . ,m1 + . . .+ mk − 1} → M1 ∪ . . . ∪Mk is again a
bijection

i 7→

e1(i) i ∈ {0,1, · · · ,m1 − 1}
e2(i−m1) i ∈ {m1, · · · ,m1 + m2 − 1}
...

...

ek(i−m1 − . . .−mk−1)
i ∈ {m1 + . . . + mk−1, · · · ,m1 +
. . .+ mk − 1}

15

Theorem

4 Inclusion/exclusion principle
For finite sets A1,A2, . . . ,Ak

#(
k⋃

i=1

Ai) =

In particular,
#(A ∪ B) = #(A) + #(B)−#(A ∩ B)

5 Let M1,M2, . . . ,Mk be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

#(M1 ×M2 × . . .×Mk) =
k∏

i=1

#(Mi) .

In particular, #(Mk) = #(M)k

16

Theorem

4 Inclusion/exclusion principle
For finite sets A1,A2, . . . ,Ak

#(
k⋃

i=1

Ai) =

 ∑
I ⊆ {1, . . . , k}, #(I) odd

#(
⋂
i∈I

Ai)

−
 ∑

I ⊆ {1, . . . , k}, #(I) even

#(
⋂
i∈I

Ai)

In particular,
#(A ∪ B) = #(A) + #(B)−#(A ∩ B)

5 Let M1,M2, . . . ,Mk be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

#(M1 ×M2 × . . .×Mk) =
k∏

i=1

#(Mi) .

In particular, #(Mk) = #(M)k

16

Theorem

4 Inclusion/exclusion principle
For finite sets A1,A2, . . . ,Ak

#(
k⋃

i=1

Ai) =
∑

I⊆{1,2,...,k}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai)

In particular,
#(A ∪ B) = #(A) + #(B)−#(A ∩ B)

5 Let M1,M2, . . . ,Mk be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

#(M1 ×M2 × . . .×Mk) =
k∏

i=1

#(Mi) .

In particular, #(Mk) = #(M)k

16

Theorem

4 Inclusion/exclusion principle
For finite sets A1,A2, . . . ,Ak

#(
k⋃

i=1

Ai) =
∑

I⊆{1,2,...,k}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai)

In particular,
#(A ∪ B) = #(A) + #(B)−#(A ∩ B)

5 Let M1,M2, . . . ,Mk be finite sets. Then cardinality of their Cartesian product, is the
product of their cardinalities:

#(M1 ×M2 × . . .×Mk) =
k∏

i=1

#(Mi) .

In particular, #(Mk) = #(M)k

16

Proof.

(4) By induction on k. In case k = 2, A1 ∪ A2 = A1 ∪ (A2 \ A1)
#(A1 ∪ A2) = #(A1) + #(A2 \ A1) = #(A1) + #(A2)−#(A1 ∩ A2)

For k > 2 we have by the IH

#(
k⋃

i=1

Ai) = #((
k−1⋃
i=1

Ai) ∪ Ak) = #(
k−1⋃
i=1

Ai) + #(Ak)−#(
k−1⋃
i=1

(Ai ∩ Ak)) =

=
∑

I⊆{1,...,k−1}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai) + #(Ak)−

−
∑

I⊆{1,...,k−1}
I 6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai ∩ Ak) =
∑

J⊆{1,...,k}
J6=∅

(−1)#(J)−1 #(
⋂
i∈J

Ai)

The final equation holds for the three cases (i) J = I, (ii) J = {k}, (iii) J = I ∪ {k}

17

Proof.

(4) By induction on k. In case k = 2, A1 ∪ A2 = A1 ∪ (A2 \ A1)
#(A1 ∪ A2) = #(A1) + #(A2 \ A1) = #(A1) + #(A2)−#(A1 ∩ A2)

For k > 2 we have by the IH

#(
k⋃

i=1

Ai) = #((
k−1⋃
i=1

Ai) ∪ Ak) = #(
k−1⋃
i=1

Ai) + #(Ak)−#(
k−1⋃
i=1

(Ai ∩ Ak)) =

=
∑

I⊆{1,...,k−1}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai) + #(Ak)−

−
∑

I⊆{1,...,k−1}
I 6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai ∩ Ak) =
∑

J⊆{1,...,k}
J6=∅

(−1)#(J)−1 #(
⋂
i∈J

Ai)

The final equation holds for the three cases (i) J = I, (ii) J = {k}, (iii) J = I ∪ {k}

17

Proof.

(4) By induction on k. In case k = 2, A1 ∪ A2 = A1 ∪ (A2 \ A1)
#(A1 ∪ A2) = #(A1) + #(A2 \ A1) = #(A1) + #(A2)−#(A1 ∩ A2)

For k > 2 we have by the IH

#(
k⋃

i=1

Ai) = #((
k−1⋃
i=1

Ai) ∪ Ak) = #(
k−1⋃
i=1

Ai) + #(Ak)−#(
k−1⋃
i=1

(Ai ∩ Ak)) =

=
∑

I⊆{1,...,k−1}
I6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai) + #(Ak)−

−
∑

I⊆{1,...,k−1}
I 6=∅

(−1)#(I)−1 #(
⋂
i∈I

Ai ∩ Ak) =
∑

J⊆{1,...,k}
J6=∅

(−1)#(J)−1 #(
⋂
i∈J

Ai)

The final equation holds for the three cases (i) J = I, (ii) J = {k}, (iii) J = I ∪ {k}

17

Proof.

(5) By assumption we have bijections ei

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

Therefore, e : {0,1, . . . ,m1 · · ·mk − 1} → M1 × . . .×Mk with

n 7→ (e1(n/m2 · · ·mk), . . . , ek−1((n/mk) mod mk−1), ek(n mod mk))

is a bijection again. From the respective numbers
ik = n mod mk

ik−1 = (n/mk) mod mk−1
...

i2 = (n/(m3 · · ·mk)) mod m2

i1 = n/(m2 · · ·mk)

the number n is obtained by

n := i1 ·m2 · · ·mk + i2 ·m3 · · ·mk + . . .+ ik−1 ·mk + ik

18

Proof.

(5) By assumption we have bijections ei

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

Therefore, e : {0,1, . . . ,m1 · · ·mk − 1} → M1 × . . .×Mk with

n 7→ (e1(n/m2 · · ·mk), . . . , ek−1((n/mk) mod mk−1), ek(n mod mk))

is a bijection again.

From the respective numbers
ik = n mod mk

ik−1 = (n/mk) mod mk−1
...

i2 = (n/(m3 · · ·mk)) mod m2

i1 = n/(m2 · · ·mk)

the number n is obtained by

n := i1 ·m2 · · ·mk + i2 ·m3 · · ·mk + . . .+ ik−1 ·mk + ik

18

Proof.

(5) By assumption we have bijections ei

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

Therefore, e : {0,1, . . . ,m1 · · ·mk − 1} → M1 × . . .×Mk with

n 7→ (e1(n/m2 · · ·mk), . . . , ek−1((n/mk) mod mk−1), ek(n mod mk))

is a bijection again. From the respective numbers
ik = n mod mk

ik−1 = (n/mk) mod mk−1
...

i2 = (n/(m3 · · ·mk)) mod m2

i1 = n/(m2 · · ·mk)

the number n is obtained by

n := i1 ·m2 · · ·mk + i2 ·m3 · · ·mk + . . .+ ik−1 ·mk + ik
18

Proof.

(5) By assumption we have bijections ei

e1 : {0,1, . . . ,m1 − 1} → M1, . . . , ek : {0,1, . . . ,mk − 1} → Mk

Therefore, e : {0,1, . . . ,m1 · · ·mk − 1} → M1 × . . .×Mk with

n 7→ (e1(n/m2 · · ·mk), . . . , ek−1((n/mk) mod mk−1), ek(n mod mk))

is a bijection again. From the respective numbers
ik = n mod mk

ik−1 = (n/mk) mod mk−1
...

i2 = (n/(m3 · · ·mk)) mod m2

i1 = n/(m2 · · ·mk)

the number n is obtained by

n := i1 ·m2 · · ·mk + i2 ·m3 · · ·mk + . . .+ ik−1 ·mk + ik
18

Example

In C-programs, the elements of a multi-dimensional array are stored consecutively in
memory, where their order is such that „later indices go faster than earlier ones“. For
example, the elements of

int M[2][3] = {{3,5,-2},{1,0,2}};

are arranged in memory as:

M[0][0]
3

M[0][1]
5

M[0][2]
-2

M[1][0]
1

M[1][1]
0

M[1][2]
2

M

19

Example (continued)

double f(double *z, int m1, int m2, int m3)

{

...

}

...

int main(void)

{

double x, y, A[2][3][4], B[3][4][2];

...

x = f(&A[0][0][0],2,3,4);

y = f(&B[0][0][0],3,4,2);

...

}

In the function f, the element "‘z[i][j][k] "’ can be addressed as
*(z+i*m2*m3+j*m3+k) the indices i, j, k of the element located at address z+l can be
computed as k = l%m3, j = (l/m3)%m2 and i = l/(m2*m3)

20

Theorem

6 Double counting An undirected graph is bipartite, if there exists a partition of its
set of nodes in two blocks A and B, such that every edge has one endpoint in A
and one in B.

A B

For a finite bipartite graph
∑

e1∈A Deg(e1) =
∑

e2∈B Deg(e2)

Proof.

(6) Both sums denote the number of edges

21

Theorem

6 Double counting An undirected graph is bipartite, if there exists a partition of its
set of nodes in two blocks A and B, such that every edge has one endpoint in A
and one in B.

A B

For a finite bipartite graph
∑

e1∈A Deg(e1) =
∑

e2∈B Deg(e2)

Proof.

(6) Both sums denote the number of edges

21

Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

22

Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

22

Theorem (Pigeon hole principle)

Let f : M→ N be a function, with M, N finite. If #(M) > #(N), then there is at least one
element y ∈ N having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is
injective, and therefore M→ f(M) bijective. Hence #(M) = #(f(M)) and by f(M) ⊆ N
we have #(M) 6 #(N)

Lemma

Maximum ≥ average. For R = (ri)i∈I a collection of numbers, max(R) ≥
∑

R
#(I) .

Alternative proof of PHP

Let R = (#(f−1(n))n∈N. By the lemma max(R) ≥
∑

R
#(N) =

#(M)
#(N) > 1.

22

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

(m)k :=

{
m(m− 1)(m− 2) · · · (m− k + 1) if k > 1

1 if k = 0

injective functions from K to M. The number (m)k is the falling factorial of m and k.

Example

Obviously, there are no (total) injective functions from {0,1,2,3} to {0,1}, which
agrees with the theorem as (2)4 = 2 · 1 · 0 · −1 = 0.

23

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

(m)k :=

{
m(m− 1)(m− 2) · · · (m− k + 1) if k > 1

1 if k = 0

injective functions from K to M. The number (m)k is the falling factorial of m and k.

Example

Obviously, there are no (total) injective functions from {0,1,2,3} to {0,1}, which
agrees with the theorem as (2)4 = 2 · 1 · 0 · −1 = 0.

23

Proof.

We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0, x1, . . . , xk}

and consider how to construct injective functions f : K → M.

For x0 we have m ways to
choose an image f(x0) ∈ M. That element

y0 := f(x0)

then cannot by chosen as image of the other elements of K. That is, as images of
x1, . . . , xk we must choose elements among M \ {y0}. By the IH there are (m− 1)k

such choices. Therefore, the total number of injective functions is

m · (m− 1)k = (m)k+1

24

Proof.

We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0, x1, . . . , xk}

and consider how to construct injective functions f : K → M. For x0 we have m ways to
choose an image f(x0) ∈ M. That element

y0 := f(x0)

then cannot by chosen as image of the other elements of K. That is, as images of
x1, . . . , xk we must choose elements among M \ {y0}.

By the IH there are (m− 1)k

such choices. Therefore, the total number of injective functions is

m · (m− 1)k = (m)k+1

24

Proof.

We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0, x1, . . . , xk}

and consider how to construct injective functions f : K → M. For x0 we have m ways to
choose an image f(x0) ∈ M. That element

y0 := f(x0)

then cannot by chosen as image of the other elements of K. That is, as images of
x1, . . . , xk we must choose elements among M \ {y0}. By the IH there are (m− 1)k

such choices. Therefore, the total number of injective functions is

m · (m− 1)k = (m)k+1

24

Proof.

We show the claim by mathematical induction on k. In the base case, k = 0, we have
that K is the empty set and the empty function is the only injective function. In the
step case, we write

K = {x0, x1, . . . , xk}

and consider how to construct injective functions f : K → M. For x0 we have m ways to
choose an image f(x0) ∈ M. That element

y0 := f(x0)

then cannot by chosen as image of the other elements of K. That is, as images of
x1, . . . , xk we must choose elements among M \ {y0}. By the IH there are (m− 1)k

such choices. Therefore, the total number of injective functions is

m · (m− 1)k = (m)k+1

24

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

m! :=

{
m(m− 1)(m− 2) · · ·3 · 2 · 1 m > 1

1 m = 0

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the
claim follows from the theorem, with (m)m = m!.

25

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

m! :=

{
m(m− 1)(m− 2) · · ·3 · 2 · 1 m > 1

1 m = 0

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the
claim follows from the theorem, with (m)m = m!.

25

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

m! :=

{
m(m− 1)(m− 2) · · ·3 · 2 · 1 m > 1

1 m = 0

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the
claim follows from the theorem, with (m)m = m!.

25

Theorem

Let M be a finite set with m elements. Then

#(P(M)) = 2m .

Proof.

We take some arbitrary but fixed enumeration e : {0,1, . . . ,m− 1} → M. The
following function then is a bijection:

F : P(M)→ {0,1}m , T 7→ (t0, . . . , tm−1) , ti :=

{
1 if e(i) ∈ T

0 otherwise.

Naming

For T ⊆ M, the function χT : M→ {0,1} defined by χT(t) = 1 if t ∈ T and 0 otherwise, is
the characteristic function of T.

26

Theorem

Let M be a finite set with m elements. Then

#(P(M)) = 2m .

Proof.

We take some arbitrary but fixed enumeration e : {0,1, . . . ,m− 1} → M. The
following function then is a bijection:

F : P(M)→ {0,1}m , T 7→ (t0, . . . , tm−1) , ti :=

{
1 if e(i) ∈ T

0 otherwise.

Naming

For T ⊆ M, the function χT : M→ {0,1} defined by χT(t) = 1 if t ∈ T and 0 otherwise, is
the characteristic function of T.

26

Theorem

Let M be a finite set with m elements. Then

#(P(M)) = 2m .

Proof.

We take some arbitrary but fixed enumeration e : {0,1, . . . ,m− 1} → M. The
following function then is a bijection:

F : P(M)→ {0,1}m , T 7→ (t0, . . . , tm−1) , ti :=

{
1 if e(i) ∈ T

0 otherwise.

Naming

For T ⊆ M, the function χT : M→ {0,1} defined by χT(t) = 1 if t ∈ T and 0 otherwise, is
the characteristic function of T. 26

Counting the number of subsets of given size

Theorem

Let M be a finite set with m elements, and let k be a natural number. Then

#(Pk(M)) =

(
m

k

)
.

where Pk(M) denotes the subsets of size k, and where the binomial coefficient „m
choose k“ or „m over k“ is defined by

(
m

k

)
:=

m · (m− 1) · · · (m− k + 1)

k · (k − 1) · · ·1
=

m!

k!(m− k)!
if k 6 m

0 otherwise

27

Proof.

An enumeration e : {0,1, . . . , k − 1} → T of a subset T of M having k elements, is
obtained by choosing

• an arbitrary element e(0) ∈ M,

• an arbitrary element e(1) ∈ M \ {e(0)},
• an arbitrary element e(2) ∈ M \ {e(0), e(1)}, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices
is

m · (m− 1) · · · (m− k + 1)/k! .

28

Proof.

An enumeration e : {0,1, . . . , k − 1} → T of a subset T of M having k elements, is
obtained by choosing

• an arbitrary element e(0) ∈ M,

• an arbitrary element e(1) ∈ M \ {e(0)},
• an arbitrary element e(2) ∈ M \ {e(0), e(1)}, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices
is

m · (m− 1) · · · (m− k + 1)/k! .

28

	Summary

