

Discrete structures

Manuel Eberl Jan Jakubuv

http://cl-informatik.uibk.ac.at/

Jamie Hochrainer Cezary Kaliszyk

Summary last week

- using induction on well-founded relations to prove properties
- lexicographic product $(x_1, x_2) \leq_1 \times_{\mathsf{lex}} \leq_2 (y_1, y_2)$ if $x_1 <_1 y_1$ or $(x_1 = y_1, x_2 \leq_2 y_2)$
- preserves well-foundedness of partial orders \leq_1, \leq_2

Summary last week

- using induction on well-founded relations to prove properties
- lexicographic product $(x_1, x_2) \leq_1 \times_{\mathsf{lex}} \leq_2 (y_1, y_2)$ if $x_1 <_1 y_1$ or $(x_1 = y_1, x_2 \leq_2 y_2)$
- preserves well-foundedness of partial orders \leq_1, \leq_2
- dags as directed acyclic graphs
- topological \leq -sorting (a_0, \ldots, a_n) of partial order \leq on $\{a_0, \ldots, a_n\}$: i < j if $a_i < a_j$.
- topological sorting algorithm by repeated selection of \leq -minimal element
- O(n) shortest/longest path algorithm on dags based on topological sorting

Summary last week

- using induction on well-founded relations to prove properties
- lexicographic product $(x_1, x_2) \leq_1 \times_{\mathsf{lex}} \leq_2 (y_1, y_2)$ if $x_1 <_1 y_1$ or $(x_1 = y_1, x_2 \leq_2 y_2)$
- preserves well-foundedness of partial orders \leq_1, \leq_2
- dags as directed acyclic graphs
- topological \leq -sorting (a_0, \ldots, a_n) of partial order \leq on $\{a_0, \ldots, a_n\}$: i < j if $a_i < a_j$.
- topological sorting algorithm by repeated selection of \leq -minimal element
- O(n) shortest/longest path algorithm on dags based on topological sorting
- forests as dags with nodes of in-degree \leq 1
- trees as forests where pairs of nodes have common ancestors
- rooted trees as trees having a root (ancestor of all nodes)
- for trees, number of vertices = number of edges +1

- undirected multigraph
- vertex *c* is a **neighbour** of the vertex *d*, if there exists an edge joining both
- loop, parallel edges
- the degree of a vertex v is the number of edges having v as endpoint
- undirected graph, sub-multigraph, sub-graph
- paths, cycles

Definition

- Let G be an undirected multigraph
- A sub-graph G' of G is a spanning forest of G, if
 - 1 G is a forest, and
 - **2** the partitionings of G resp. G' into connected components are the same.
- Then V' = V

Example

The following graph has $8 \cdot 3 = 24$ spanning forests

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Theorem (Kruskal's algorithm)

- **1** Let G = (V, E) be an undirected multigraph with weights b
- **2** We want to construct a partitioning of V into connected components, and a set of edges F that constitutes a spanning forest of G having minimal weight $\sum_{e \in F} b(e)$
- **3** We preprocess G by removing all loops and all parallel edges except for a single one of least weight, and sorting those such that $b(e_0) \leq b(e_1) \leq \ldots \leq b(e_{m-1})$
- **4** The algorithm then proceeds as follows, with complexity $O(\#(V) \cdot \#(E))$

```
Set F = \emptyset and P = \{\{v\} \mid v \in V\}
```

For i from 0 to m - 1 repeat:

if the nodes v and u of e_i are in distinct blocks of P,

combine both blocks of P and adjoin e_i to F

Example

For the weighted graph

Example

For the weighted graph

Kruskal's algorithm starts with $F = \emptyset$; $P = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}\}$ and terminates with

$$F = \{\{a, b\}, \{b, e\}, \{c, d\}, \{d, g\}, \{e, f\}\}$$
$$P = \{\{a, b, e, f\}, \{c, d, g\}\}$$

• Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \dots, e_i\}$

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \dots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \ldots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them
- After step *i*, *P* is a partitioning of *G_i* into connected components

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \dots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them
- After step *i*, *P* is a partitioning of *G_i* into connected components
- Initially, the set *F* is empty, and in step *i* it is extended by a connecting edge whose endpoints are in the combined block.

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \ldots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them
- After step *i*, *P* is a partitioning of *G_i* into connected components
- Initially, the set *F* is empty, and in step *i* it is extended by a connecting edge whose endpoints are in the combined block.
- For every block *B*, the sub-graph restricted to nodes *B* and the corresponding edges in *F*, is a tree

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \ldots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them
- After step *i*, *P* is a partitioning of *G_i* into connected components
- Initially, the set *F* is empty, and in step *i* it is extended by a connecting edge whose endpoints are in the combined block.
- For every block *B*, the sub-graph restricted to nodes *B* and the corresponding edges in *F*, is a tree
- Therefore, after step *i*, the sub-graph having nodes *V* and edges *F* is a spanning forest of *G_i*

- Let G_i be the sub-graph of G with V as nodes and edges $\{e_0, e_1, \ldots, e_i\}$
- The algorithm starts with partitioning into singletons of nodes and then proceeds by combining blocks by edges connecting them
- After step *i*, *P* is a partitioning of *G_i* into connected components
- Initially, the set *F* is empty, and in step *i* it is extended by a connecting edge whose endpoints are in the combined block.
- For every block *B*, the sub-graph restricted to nodes *B* and the corresponding edges in *F*, is a tree
- Therefore, after step *i*, the sub-graph having nodes *V* and edges *F* is a spanning forest of *G_i*
- We show that the greedy strategy employed, yields a spanning forest of minimal weight

• Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm
- Since there is a path p from v_1 to v_2 with edges in F', there exists an edge e_j in the path p having one endpoint in V_1 and the other endpoint not in it. Hence, j > i and $b(e_j) \ge b(e_i)$.

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm
- Since there is a path p from v_1 to v_2 with edges in F', there exists an edge e_j in the path p having one endpoint in V_1 and the other endpoint not in it. Hence, j > i and $b(e_j) \ge b(e_i)$.
- The sub-graph with nodes V and edges defined by $E' := (F' \setminus \{e_j\}) \cup \{e_i\}$ then is a spanning tree, because every path via e_j can be transformed into one via e_i and the other edges of p and vice versa; moreover that sub-graph has minimal weight.

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm
- Since there is a path p from v_1 to v_2 with edges in F', there exists an edge e_j in the path p having one endpoint in V_1 and the other endpoint not in it. Hence, j > i and $b(e_j) \ge b(e_i)$.
- The sub-graph with nodes V and edges defined by $E' := (F' \setminus \{e_j\}) \cup \{e_i\}$ then is a spanning tree, because every path via e_j can be transformed into one via e_i and the other edges of p and vice versa; moreover that sub-graph has minimal weight.
- by finitely many such exchanges we obtain F from F'

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm
- Since there is a path p from v_1 to v_2 with edges in F', there exists an edge e_j in the path p having one endpoint in V_1 and the other endpoint not in it. Hence, j > i and $b(e_j) \ge b(e_i)$.
- The sub-graph with nodes V and edges defined by $E' := (F' \setminus \{e_j\}) \cup \{e_i\}$ then is a spanning tree, because every path via e_j can be transformed into one via e_i and the other edges of p and vice versa; moreover that sub-graph has minimal weight.
- by finitely many such exchanges we obtain F from F'
- Since F' has a minimal weight, so has F

- Let F' be the set of edges of a spanning forest of minimal weight, and suppose $F' \neq F$; then there exists an edge e_i in F not in F'.
- Let v_1, v_2 be the endpoints of e_i and V_1, V_2 the corresponding blocks in the algorithm
- Since there is a path p from v_1 to v_2 with edges in F', there exists an edge e_j in the path p having one endpoint in V_1 and the other endpoint not in it. Hence, j > i and $b(e_j) \ge b(e_i)$.
- The sub-graph with nodes V and edges defined by $E' := (F' \setminus \{e_j\}) \cup \{e_i\}$ then is a spanning tree, because every path via e_j can be transformed into one via e_i and the other edges of p and vice versa; moreover that sub-graph has minimal weight.
- by finitely many such exchanges we obtain F from F'
- Since F' has a minimal weight, so has F

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100. (only number no order)

Cardinals

Motivation/intuition

Capture cardinals as in counting: e.g. 1, 2, 100. (only number no order)

Definition

If there exists a bijection $f: M \rightarrow N$, then the sets M and N are equinumerous (or equipollent, equipotent). Cardinals represent equinumerous sets.

Example

Each finite set equinumerous to set $\{m \mid m < n\}$ for some $n \in \mathbb{N}$.

Example

 $\mathbb{N} \cup \{*\}$ is equinumerous to \mathbb{N} ; witnessed by bijection *f* mapping * to 0, and *n* to n + 1.

Definition

- set A is finite if there exist $n \in \mathbb{N}$ and bijective function $e: \{0, 1, \dots, n-1\} \rightarrow A$
- then *n* is unique, denoted by #(A) := n, and called the number or cardinality of A
- the function *e* is in general **not** unique, and is called an **enumeration** of *A*
- a bijection $\nu: A \to \{0, 1, \dots, m-1\}$ is called a numbering of A
- an inverse of an enumeration is a numbering and vice versa
- A is infinite if it is not finite, and then we write $\#(A) = \infty$

Lemma

Let $e : \{0, \dots, m-1\} \rightarrow A$ and $f : \{0, \dots, n-1\} \rightarrow B$ be enumerations of A,B. $\#(\emptyset) = 0$

Lemma

Let $e : \{0, \dots, m-1\} \rightarrow A$ and $f : \{0, \dots, n-1\} \rightarrow B$ be enumerations of A,B. 1 $\#(\emptyset) = 0$ 2 $\#(\{a\}) = 1$

Lemma

Let $e : \{0, ..., m - 1\} \to A$ and $f : \{0, ..., n - 1\} \to B$ be enumerations of A,B. **1** $\#(\emptyset) = 0$ **2** $\#(\{a\}) = 1$ **3** $\#(A \times B) = \#(A) \cdot \#(B) = m \cdot n$

Lemma

Let
$$e: \{0, \dots, m-1\} \rightarrow A$$
 and $f: \{0, \dots, n-1\} \rightarrow B$ be enumerations of A,B.

- 1 $\#(\emptyset) = 0$
- **2** $\#(\{a\}) = 1$
- **3** $\#(A \times B) = \#(A) \cdot \#(B) = m \cdot n$
- 4 $\#(A \cup B) = \#(A) + \#(B) = m + n$, if $A \cap B = \emptyset$

Lemma

Let $e: \{0, \dots, m-1\} \rightarrow A$ and $f: \{0, \dots, n-1\} \rightarrow B$ be enumerations of A,B.

- **1** $\#(\emptyset) = 0$
- **2** $\#(\{a\}) = 1$
- **3** $\#(A \times B) = \#(A) \cdot \#(B) = m \cdot n$
- 4 $\#(A \cup B) = \#(A) + \#(B) = m + n$, if $A \cap B = \emptyset$
- **5** $\#(A^B) = \#(A)^{\#(B)} = m^n$, for A^B the set of functions from B to A

Proof.

1 the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .

- **1** the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .
- **2** mapping 0 to *a* is a bijection from $\{0\}$ to $\{a\}$.

- **1** the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .
- **2** mapping 0 to *a* is a bijection from $\{0\}$ to $\{a\}$.
- **3** mapping k to $(e(k \div n), f(k \mod n))$ is a bijection from $\{0, \ldots, m \cdot n 1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n + f^{-1}(b)$.

- **1** the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .
- **2** mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
- **3** mapping k to $(e(k \div n), f(k \mod n))$ is a bijection from $\{0, \ldots, m \cdot n 1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n + f^{-1}(b)$.
- **4** mapping k to e(k) if k < m and to f(k m) otherwise, is a bijection from $\{0, \ldots, m + n 1\}$ to $A \cup B$, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c) + m$ if $c \in B$.
Cardinalities for operations on finite sets

Proof.

- **1** the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .
- **2** mapping 0 to a is a bijection from $\{0\}$ to $\{a\}$.
- **3** mapping k to $(e(k \div n), f(k \mod n))$ is a bijection from $\{0, \ldots, m \cdot n 1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n + f^{-1}(b)$.
- **4** mapping k to e(k) if k < m and to f(k m) otherwise, is a bijection from $\{0, \ldots, m + n 1\}$ to $A \cup B$, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c) + m$ if $c \in B$.
- **5** writing $k \in \{0, ..., m^n 1\}$ as $k_{n-1} ... k_0$ in base-*m*, mapping it to the function $g: B \to A$ that maps for $0 \le i < n$, f(i) to $e(k_i)$ is a bijection to A^B , with inverse numbering of elements of A^B given by mapping a function $g: B \to A$ to the number $\sum_{b \in B} f^{-1}(g(b))m^{e^{-1}(b)}$ in $\{0, ..., m^n 1\}$.

Cardinalities for operations on finite sets

Proof.

- **1** the empty set \emptyset (of pairs) is a bijection from \emptyset to \emptyset .
- **2** mapping 0 to *a* is a bijection from $\{0\}$ to $\{a\}$.
- **3** mapping k to $(e(k \div n), f(k \mod n))$ is a bijection from $\{0, \ldots, m \cdot n 1\}$ to $A \times B$, with inverse numbering given by $(a, b) \mapsto e^{-1}(a) \cdot n + f^{-1}(b)$.
- **4** mapping *k* to e(k) if *k* < *m* and to f(k m) otherwise, is a bijection from $\{0, ..., m + n 1\}$ to *A* ∪ *B*, with inverse numbering given by $c \mapsto e^{-1}(c)$ if $c \in A$ and $c \mapsto f^{-1}(c) + m$ if $c \in B$.
- **5** writing $k \in \{0, ..., m^n 1\}$ as $k_{n-1} ... k_0$ in base-*m*, mapping it to the function $g: B \to A$ that maps for $0 \le i < n$, f(i) to $e(k_i)$ is a bijection to A^B , with inverse numbering of elements of A^B given by mapping a function $g: B \to A$ to the number $\sum_{b \in B} f^{-1}(g(b))m^{e^{-1}(b)}$ in $\{0, ..., m^n 1\}$. Writing $B = \{b_0, ..., b_{n-1}\}$, then $g: B \to A$ is uniquely determined by the tuple $(g(b_i))_{i=0}^{n-1}$ in B^m .

Derived cardinalities for operations, inclusion/exclusion

Theorem

1 If, for finite sets A and B there is a bijection $f : A \rightarrow B$, then #(A) = #(B)

Derived cardinalities for operations, inclusion/exclusion

Theorem

If, for finite sets A and B there is a bijection f: A → B, then #(A) = #(B)
 For pairwise disjoint sets A₁, A₂,..., A_k

$$\#(\bigcup_{i=1}^{k}A_{k}) = \#(A_{1} \cup A_{2} \cup \ldots \cup A_{k}) = \#(A_{1}) + \#(A_{2}) + \ldots + \#(A_{k}) = \sum_{i=1}^{k}\#(A_{i}).$$

Derived cardinalities for operations, inclusion/exclusion

Theorem

If, for finite sets A and B there is a bijection f: A → B, then #(A) = #(B)
 For pairwise disjoint sets A₁, A₂,..., A_k

$$\#(\bigcup_{i=1}^{k}A_{k}) = \#(A_{1} \cup A_{2} \cup \ldots \cup A_{k}) = \#(A_{1}) + \#(A_{2}) + \ldots + \#(A_{k}) = \sum_{i=1}^{k}\#(A_{i})$$

3 For finite sets A and B,

$$\#(A-B) = \#(A \setminus B) = \#(A) - \#(A \cap B).$$

(1) A is finite, hence by definition there are a natural number m and a bijection $e: \{0, 1, \dots, m-1\} \rightarrow A$.

(1) A is finite, hence by definition there are a natural number m and a bijection $e: \{0, 1, \dots, m-1\} \rightarrow A$.

Then consider the function composition

$$f \circ e \colon \{0, 1, \dots, m-1\}
ightarrow B, \ i \mapsto f(e(i)),$$

(1) A is finite, hence by definition there are a natural number m and a bijection $e: \{0, 1, \dots, m-1\} \rightarrow A$.

Then consider the function composition

$$f \circ e \colon \{0, 1, \ldots, m-1\} \to B, \ i \mapsto f(e(i)),$$

 $f \circ e$ is bijective, therefore #(B) = m

(1) A is finite, hence by definition there are a natural number m and a bijection $e: \{0, 1, \dots, m-1\} \rightarrow A$.

Then consider the function composition

$$f \circ e \colon \{0, 1, \ldots, m-1\} \to B, \ i \mapsto f(e(i)),$$

 $f \circ e$ is bijective, therefore #(B) = m

(3) Because we have for arbitrary sets that

 $A = (A \setminus B) \cup (A \cap B)$

with the union disjoint, it follows by (2) that

$$\#(A \setminus B) = \#(A) - \#(A \cap B)$$

(2) Given bijections

$$e_1$$
: $\{0, 1, \ldots, m_1 - 1\} \rightarrow M_1, \ldots, e_k$: $\{0, 1, \ldots, m_k - 1\} \rightarrow M_k$

their composition $e: \{0, 1, \dots, m_1 + \ldots + m_k - 1\} \to M_1 \cup \ldots \cup M_k$ is again a bijection

$$i \mapsto \begin{cases} e_1(i) & i \in \{0, 1, \cdots, m_1 - 1\} \\ e_2(i - m_1) & i \in \{m_1, \cdots, m_1 + m_2 - 1\} \\ \vdots & \vdots \\ e_k(i - m_1 - \dots - m_{k-1}) & i \in \{m_1 + \dots + m_{k-1}, \cdots, m_1 + \dots + m_k - 1\} \end{cases}$$

(2) Given bijections

$$e_1$$
: $\{0, 1, \ldots, m_1 - 1\} \rightarrow M_1, \ldots, e_k$: $\{0, 1, \ldots, m_k - 1\} \rightarrow M_k$

their composition $e: \{0, 1, \dots, m_1 + \ldots + m_k - 1\} \to M_1 \cup \ldots \cup M_k$ is again a bijection

$$i \mapsto \begin{cases} e_1(i) & i \in \{0, 1, \cdots, m_1 - 1\} \\ e_2(i - m_1) & i \in \{m_1, \cdots, m_1 + m_2 - 1\} \\ \vdots & \vdots \\ e_k(i - m_1 - \dots - m_{k-1}) & i \in \{m_1 + \dots + m_{k-1}, \cdots, m_1 + \dots + m_k - 1\} \end{cases}$$

Inclusion/exclusion principle

For finite sets A_1, A_2, \ldots, A_k

$$\#(\bigcup_{i=1}^k A_i) =$$

In particular, $\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$

4 Inclusion/exclusion principle For finite sets A_1, A_2, \ldots, A_k

$$\#(\bigcup_{i=1}^{k} A_i) = \left(\sum_{I \subseteq \{1, \ldots, k\}, \ \#(I) \text{ odd }} \#(\bigcap_{i \in I} A_i)\right) - \left(\sum_{I \subseteq \{1, \ldots, k\}, \ \#(I) \text{ even }} \#(\bigcap_{i \in I} A_i)\right)$$

In particular, $\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$

4 Inclusion/exclusion principle

For finite sets A_1, A_2, \ldots, A_k

$$\#(\bigcup_{i=1}^{k} A_{i}) = \sum_{\substack{I \subseteq \{1,2,\dots,k\}\\ I \neq \emptyset}} (-1)^{\#(I)-1} \#(\bigcap_{i \in I} A_{i})$$

In particular, $\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$

Inclusion/exclusion principle

For finite sets A_1, A_2, \ldots, A_k

$$\#(\bigcup_{i=1}^{k} A_i) = \sum_{\substack{I \subseteq \{1,2,\dots,k\}\\ I \neq \emptyset}} (-1)^{\#(I)-1} \, \#(\bigcap_{i \in I} A_i)$$

In particular,

 $\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$

5 Let $M_1, M_2, ..., M_k$ be finite sets. Then cardinality of their Cartesian product, is the product of their cardinalities: $\binom{k}{\prod} \frac{1}{\prod} \frac{1}{m} (M_k)$

$$\#(M_1 \times M_2 \times \ldots \times M_k) = \prod_{i=1} \#(M_i).$$

In particular, $\#(M^k) = \#(M)^k$

(4) By induction on k. In case k = 2, $A_1 \cup A_2 = A_1 \cup (A_2 \setminus A_1)$ $\#(A_1 \cup A_2) = \#(A_1) + \#(A_2 \setminus A_1) = \#(A_1) + \#(A_2) - \#(A_1 \cap A_2)$

(4) By induction on k. In case k = 2, $A_1 \cup A_2 = A_1 \cup (A_2 \setminus A_1)$ $\#(A_1 \cup A_2) = \#(A_1) + \#(A_2 \setminus A_1) = \#(A_1) + \#(A_2) - \#(A_1 \cap A_2)$

For k > 2 we have by the IH

$$\#(\bigcup_{i=1}^{k} A_{i}) = \#((\bigcup_{i=1}^{k-1} A_{i}) \cup A_{k}) = \#(\bigcup_{i=1}^{k-1} A_{i}) + \#(A_{k}) - \#(\bigcup_{i=1}^{k-1} (A_{i} \cap A_{k})) =$$

$$= \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(I)-1} \#(\bigcap_{i \in I} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in I} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \subseteq \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \in \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \in \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \in \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I \in \{1, \dots, k-1\} \\ I \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i} \cap A_{k}) = \sum_{\substack{I$$

(4) By induction on k. In case k = 2, $A_1 \cup A_2 = A_1 \cup (A_2 \setminus A_1)$ $\#(A_1 \cup A_2) = \#(A_1) + \#(A_2 \setminus A_1) = \#(A_1) + \#(A_2) - \#(A_1 \cap A_2)$

For k > 2 we have by the IH

$$\#(\bigcup_{i=1}^{k} A_{i}) = \#((\bigcup_{i=1}^{k-1} A_{i}) \cup A_{k}) = \#(\bigcup_{i=1}^{k-1} A_{i}) + \#(A_{k}) - \#(\bigcup_{i=1}^{k-1} (A_{i} \cap A_{k})) = \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \varnothing}} (-1)^{\#(l)-1} \#(\bigcap_{i \in l} A_{i}) + \#(A_{k}) - \\ - \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(l)-1} \#(\bigcap_{i \in l} A_{i} \cap A_{k}) = \sum_{\substack{J \subseteq \{1, \dots, k\} \\ J \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \subseteq \{1, \dots, k-1\} \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\ = \sum_{\substack{l \in J \\ l \neq \emptyset}} (-1)^{\#(J)-1} \#(\bigcap_{i \in J} A_{i}) + \\$$

The final equation holds for the three cases (i) J = I, (ii) $J = \{k\}$, (iii) $J = I \cup \{k\}$

(5) By assumption we have bijections e_i

$$e_1: \{0, 1, \dots, m_1 - 1\} \to M_1, \dots, e_k: \{0, 1, \dots, m_k - 1\} \to M_k$$

(5) By assumption we have bijections e_i

 $e_1: \{0, 1, \dots, m_1 - 1\} \to M_1, \dots, e_k: \{0, 1, \dots, m_k - 1\} \to M_k$ Therefore, $e: \{0, 1, \dots, m_1 \cdots m_k - 1\} \to M_1 \times \dots \times M_k$ with

 $n\mapsto (e_1(n/m_2\cdots m_k),\ldots,e_{k-1}((n/m_k) \mod m_{k-1}),e_k(n \mod m_k))$ is a bijection again.

(5) By assumption we have bijections e_i

 $e_1: \{0, 1, \dots, m_1 - 1\} \to M_1, \dots, e_k: \{0, 1, \dots, m_k - 1\} \to M_k$ Therefore, $e: \{0, 1, \dots, m_1 \cdots m_k - 1\} \to M_1 \times \dots \times M_k$ with

 $n\mapsto (e_1(n/m_2\cdots m_k),\ldots,e_{k-1}((n/m_k) \bmod m_{k-1}),e_k(n \bmod m_k))$

is a bijection again. From the respective numbers

$$i_k = n \mod m_k$$

$$i_{k-1} = (n/m_k) \mod m_{k-1}$$

$$\vdots$$

$$i_2 = (n/(m_3 \cdots m_k)) \mod m_2$$

$$i_1 = n/(m_2 \cdots m_k)$$

the number *n* is obtained by

 $n := i_1 \cdot m_2 \cdots m_k + i_2 \cdot m_3 \cdots m_k + \ldots + i_{k-1} \cdot m_k + i_k$

(5) By assumption we have bijections e_i

 $e_1: \{0, 1, \dots, m_1 - 1\} \to M_1, \dots, e_k: \{0, 1, \dots, m_k - 1\} \to M_k$ Therefore, $e: \{0, 1, \dots, m_1 \cdots m_k - 1\} \to M_1 \times \dots \times M_k$ with

 $n\mapsto (e_1(n/m_2\cdots m_k),\ldots,e_{k-1}((n/m_k) \bmod m_{k-1}),e_k(n \bmod m_k))$

is a bijection again. From the respective numbers

$$i_k = n \mod m_k$$

$$i_{k-1} = (n/m_k) \mod m_{k-1}$$

$$\vdots$$

$$i_2 = (n/(m_3 \cdots m_k)) \mod m_2$$

$$i_1 = n/(m_2 \cdots m_k)$$

the number *n* is obtained by

 $n := i_1 \cdot m_2 \cdots m_k + i_2 \cdot m_3 \cdots m_k + \ldots + i_{k-1} \cdot m_k + i_k$

Example

In C-programs, the elements of a multi-dimensional array are stored consecutively in memory, where their order is such that "later indices go faster than earlier ones". For example, the elements of

```
int M[2][3] = {{3,5,-2},{1,0,2}};
```

are arranged in memory as:

	M[0][0]	M[0][1]	M[0][2]	M[1][0]	M[1][1]	M[1][2]
	3	5	-2	1	0	2
M						

Example (continued)

```
double f(double *z, int m1, int m2, int m3)
ł
  . . .
}
. . .
int main( void)
ſ
   double x, y, A[2][3][4], B[3][4][2];
   . . .
   x = f(\&A[0][0][0],2,3,4);
   v = f(\&B[0][0][0],3,4,2);
   . . .
}
```

In the function f, the element "'z[i][j][k]"' can be addressed as *(z+i*m2*m3+j*m3+k) the indices i, j, k of the element located at address z+l can be computed as k = 1%m3, j = (1/m3)%m2 and i = 1/(m2*m3)

Double counting An undirected graph is **bipartite**, if there exists a partition of its set of nodes in two blocks A and B, such that every edge has one endpoint in A and one in B.

For a finite bipartite graph $\sum_{e_1 \in A} \mathsf{Deg}(e_1) = \sum_{e_2 \in B} \mathsf{Deg}(e_2)$

Double counting An undirected graph is **bipartite**, if there exists a partition of its set of nodes in two blocks A and B, such that every edge has one endpoint in A and one in B.

For a finite bipartite graph $\sum_{e_1 \in A} \mathsf{Deg}(e_1) = \sum_{e_2 \in B} \mathsf{Deg}(e_2)$

Proof.

(6) Both sums denote the number of edges

Theorem (Pigeon hole principle)

Let $f: M \to N$ be a function, with M, N finite. If #(M) > #(N), then there is at least one element $y \in N$ having an inverse image with more than one element.

Theorem (Pigeon hole principle)

Let $f: M \to N$ be a function, with M, N finite. If #(M) > #(N), then there is at least one element $y \in N$ having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is injective, and therefore $M \to f(M)$ bijective. Hence #(M) = #(f(M)) and by $f(M) \subseteq N$ we have $\#(M) \leq \#(N)$

Lemma

Maximum \geq average. For $R = (r_i)_{i \in I}$ a collection of numbers, $\max(R) \geq \frac{\sum R}{\#(I)}$.

Theorem (Pigeon hole principle)

Let $f: M \to N$ be a function, with M, N finite. If #(M) > #(N), then there is at least one element $y \in N$ having an inverse image with more than one element.

Proof.

Assuming the inverse image of each element of N has at most one element, f is injective, and therefore $M \to f(M)$ bijective. Hence #(M) = #(f(M)) and by $f(M) \subseteq N$ we have $\#(M) \leq \#(N)$

Lemma

Maximum \geq average. For $R = (r_i)_{i \in I}$ a collection of numbers, $\max(R) \geq \frac{\sum R}{\#(I)}$.

Alternative proof of PHP

Let
$$R=(\#(f^{-1}(n))_{n\in N}.$$
 By the lemma $\max(R)\geq rac{\sum R}{\#(N)}=rac{\#(M)}{\#(N)}>1.$

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

injective functions from K to M. The number $(m)_k$ is the falling factorial of m and k.

Counting the number of injective functions

Theorem

Let K and M be finite sets having k resp. m elements. Then there are exactly

$$(m)_k := \begin{cases} m(m-1)(m-2)\cdots(m-k+1) & \text{if } k \ge 1 \\ 1 & \text{if } k = 0 \end{cases}$$

injective functions from K to M. The number $(m)_k$ is the falling factorial of m and k.

Example

Obviously, there are no (total) injective functions from $\{0, 1, 2, 3\}$ to $\{0, 1\}$, which agrees with the theorem as $(2)_4 = 2 \cdot 1 \cdot 0 \cdot -1 = 0$.

We show the claim by mathematical induction on k. In the base case, k = 0, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$K = \{x_0, x_1, \ldots, x_k\}$$

and consider how to construct injective functions $f: K \rightarrow M$.

We show the claim by mathematical induction on k. In the base case, k = 0, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$K = \{x_0, x_1, \ldots, x_k\}$$

and consider how to construct injective functions $f: K \to M$. For x_0 we have m ways to choose an image $f(x_0) \in M$. That element

$$y_0 := f(x_0)$$

then cannot by chosen as image of the other elements of K. That is, as images of x_1, \ldots, x_k we must choose elements among $M \setminus \{y_0\}$.

We show the claim by mathematical induction on k. In the base case, k = 0, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$K = \{x_0, x_1, \ldots, x_k\}$$

and consider how to construct injective functions $f: K \to M$. For x_0 we have m ways to choose an image $f(x_0) \in M$. That element

$$y_0 := f(x_0)$$

then cannot by chosen as image of the other elements of *K*. That is, as images of x_1, \ldots, x_k we must choose elements among $M \setminus \{y_0\}$. By the IH there are $(m-1)_k$ such choices. Therefore, the total number of injective functions is

$$m \cdot (m-1)_k = (m)_{k+1}$$

We show the claim by mathematical induction on k. In the base case, k = 0, we have that K is the empty set and the empty function is the only injective function. In the step case, we write

$$K = \{x_0, x_1, \ldots, x_k\}$$

and consider how to construct injective functions $f: K \to M$. For x_0 we have m ways to choose an image $f(x_0) \in M$. That element

$$y_0 := f(x_0)$$

then cannot by chosen as image of the other elements of K. That is, as images of x_1, \ldots, x_k we must choose elements among $M \setminus \{y_0\}$. By the IH there are $(m-1)_k$ such choices. Therefore, the total number of injective functions is

$$m \cdot (m-1)_k = (m)_{k+1}$$

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$m! := egin{cases} m(m-1)(m-2)\cdots 3\cdot 2\cdot 1 & m \geqslant 1 \ 1 & m=0 \end{cases}$$

bijections from K to M. The number m! is called m factorial
Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$m! := egin{cases} m(m-1)(m-2)\cdots 3\cdot 2\cdot 1 & m \geqslant 1 \ 1 & m=0 \end{cases}$$

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the claim follows from the theorem, with $(m)_m = m!$.

Counting the number of bijective functions

Theorem

Let K and M be finite sets having m elements each. Then there are exactly

$$m! := egin{cases} m(m-1)(m-2)\cdots 3\cdot 2\cdot 1 & m \geqslant 1 \ 1 & m=0 \end{cases}$$

bijections from K to M. The number m! is called m factorial

Proof.

Since #(K) = #(M) = m every injective function from K to M is a bijection, hence the claim follows from the theorem, with $(m)_m = m!$.

Theorem

Let M be a finite set with m elements. Then

$$\#(\mathcal{P}(M)) = 2^m$$
.

Theorem

Let M be a finite set with m elements. Then

$$\#(\mathcal{P}(M))=2^m$$
.

Proof.

We take some arbitrary but fixed enumeration $e: \{0, 1, ..., m-1\} \rightarrow M$. The following function then is a bijection:

$$F \colon \mathcal{P}(M) \to \{0,1\}^m \ , \ T \mapsto (t_0,\ldots,t_{m-1}) \ , \ t_i := egin{cases} 1 & ext{if } e(i) \in T \ 0 & ext{otherwise.} \end{cases}$$

Theorem

Let M be a finite set with m elements. Then

$$\#(\mathcal{P}(M)) = 2^m$$
.

Proof.

We take some arbitrary but fixed enumeration $e: \{0, 1, ..., m-1\} \rightarrow M$. The following function then is a bijection:

$$F \colon \mathcal{P}(M) \to \{0,1\}^m , \ T \mapsto (t_0,\ldots,t_{m-1}) \ , \ t_i := \begin{cases} 1 & \text{if } e(i) \in T \\ 0 & \text{otherwise.} \end{cases}$$

Naming

For $T \subseteq M$, the function $\chi_T : M \to \{0, 1\}$ defined by $\chi_T(t) = 1$ if $t \in T$ and 0 otherwise, is the characteristic function of T.

Counting the number of subsets of given size

Theorem

Let M be a finite set with m elements, and let k be a natural number. Then

$$\#(\mathcal{P}_k(M)) = \binom{m}{k}.$$

where $\mathcal{P}_k(M)$ denotes the subsets of size k, and where the binomial coefficient "m choose k" or "m over k" is defined by

$$\binom{m}{k} := \frac{m \cdot (m-1) \cdots (m-k+1)}{k \cdot (k-1) \cdots 1} = \begin{cases} \frac{m!}{k! (m-k)!} & \text{if } k \leq m \\ 0 & \text{otherwise} \end{cases}$$

Proof.

An enumeration $e: \{0, 1, ..., k - 1\} \rightarrow T$ of a subset T of M having k elements, is obtained by choosing

- an arbitrary element $e(0) \in M$,
- an arbitrary element $e(1) \in M \setminus \{e(0)\}$,
- an arbitrary element $e(2) \in M \setminus \{e(0), e(1)\}$, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices is

$$m \cdot (m-1) \cdots (m-k+1)/k!$$
.

Proof.

An enumeration $e: \{0, 1, ..., k - 1\} \rightarrow T$ of a subset T of M having k elements, is obtained by choosing

- an arbitrary element $e(0) \in M$,
- an arbitrary element $e(1) \in M \setminus \{e(0)\}$,
- an arbitrary element $e(2) \in M \setminus \{e(0), e(1)\}$, etc.

Since the order of choosing the elements of T is irrelevant, the number of such choices is

$$m \cdot (m-1) \cdots (m-k+1)/k!$$
.