
Functional Programming WS 2021 LVA 703025

Exercise Sheet 4, 10 points Deadline: Wednesday, November 3, 2021, 6am

• Mark your completed exercises in the OLAT course of the PS.

• You can use a template .hs-file that is provided on the proseminar page.

• Upload your .hs-file(s) of Exercises 1 and 2 in OLAT.

• Your .hs-file should be compilable with ghci.

Exercise 1 Nested Lists and Either 5 p.

1. Study the slides of week 4, pages 19 & 20 to understand the consequences of the definition of the predefined
string type.

type String = [Char]

(++) :: [a] -> [a] -> [a] -- and not: String -> String -> String

head :: [a] -> a -- and not: String -> Char

Given a function concat :: [[a]] -> [a], briefly explain the type of the following six Haskell expressions
or give a reason why these expressions result in a type error.

e1 = concat [1 :: Int, 2, 3]

e2 = concat ["one", "two", "three"]

e3 = concat [[1 :: Int, 2], [], [3]]

e4 = concat [["one", "two"], [], ["three"]]

e5 = concat e3

e6 = concat e4

(1 point)

2. Define a function suffixes that computes the list of all suffixes of a list. Particularly, the following
identities should hold:

suffixes [1, 2, 3] = [[1,2,3], [2,3], [3], []]

suffixes "hello" = ["hello", "ello", "llo", "lo", "o", ""]

Hint: structural recursion suffices.

(1 point)

3. Define a function prefixes that computes the list of all prefixes of a list. Particularly, the following
identities should hold:

prefixes [1, 2, 3] = [[1,2,3], [1,2], [1], []]

prefixes "hello" = ["hello", "hell", "hel", "he", "h", ""]

Hint: you might need an auxiliary function; structural recursion is not recommended for prefixes.

(2 points)

4. Utilize the Either type to create a menu that generates the list of prefixes, suffixes or a meaningful error
message depending on its input. Particularly, the following identities should hold:

menu 'p' [1,2,3] = Right [[1,2,3],[1,2],[1],[]]

menu 'p' "hello" = Right ["hello","hell","hel","he","h",""]

menu 's' [1,2,3] = Right [[1,2,3],[2,3],[3],[]]

menu 's' "hello" = Right ["hello","ello","llo","lo","o",""]

menu 'c' "hello" = Left "(c) is not supported, use (p)refix or (s)uffix"

(1 point)

http://cl-informatik.uibk.ac.at/teaching/ws21/fp/slides/04x1.pdf#page=19


Exercise 2 Polymorphic Expressions 5 p.

1. Define a polymorphic datatype to represent expressions involving addition, multiplication and numbers.
In particular expr1 and expr2 should be accepted.

expr1 = Times (Plus (Number (5.2 :: Double)) (Number 4)) (Number 2)

expr2 = Plus (Number (2 :: Int)) (Times (Number 3) (Number 4))

expr3 = Times (Number "hello") (Number "world")

Is expr3 type correct as well? Provide a brief explanation. (1 point)

2. Write a polymorphic function numbers that given an expression constructs a list of numbers that occur in
the expression. For example numbers expr1 = [5.2,4,2] and numbers expr2 = [2,3,4].

Also provide a type for your function that is as general as possible. (1 point)

3. Write a polymorphic function eval to evaluate an expression. For example eval expr1 = 18.4 and
eval expr2 = 14.

Also provide a type for your function that is as general as possible. (1 point)

4. Write a polymorphic function exprToString that converts an expression into a string that represents the
expression. The string should insert parentheses only if they are required. For example:

• exprToString expr1 = "(5.2 + 4.0) * 2.0"

• exprToString expr2 = "2 + 3 * 4"

Also provide a type for your function that is as general as possible. (2 points)


