M universitat
iInnsbruck

Functional Programming WS 2021 LVA 703025

Exercise Sheet 6, 10 points Deadline: Wednesday, November 17, 2021, 6am

e Mark your completed exercises in the OLAT course of the PS.
e You can start from template_06.hs provided on the proseminar page.

e Your .hs-file(s) should be compilable with ghci and be uploaded in OLAT.

Exercise 1 Functions on Numbers 4 p.
1. Implement a Haskell function dividesRange :: Integer -> Integer -> Integer -> Bool that checks
whether there is any divisor of a number within a given range: dividesRange n 1 u should be true iff
there is some x such that 1 < x < u and x divides n. (1 point)

Example: dividesRange 629 15 25 == True since 15 < 17 < 25 and 17 divides 629.

Hint: You can use the built-in functions div or mod for checking divisibility of two numbers: div x y and
mod x y compute the quotient and the remainder of the integral division of x by y, respectively. E.g.,
div 25 4 = 6 and mod 25 4 = 1, since 25 =6-4 + 1.

2. Implement a Haskell function prime :: Integer -> Bool to determine whether a number is prime. Re-
call: n is a prime number if n > 2 and n has exactly two divisors. (1 point)
Example: prime 7793 == True and prime 7797 == False.

3. Implement a Haskell function generatePrime :: Integer -> Integer which takes a number d as input
and computes a prime number with at least d digits. (1 point)

Valid examples: generatePrime 4 == 1009 and generatePrime 8 == 10000019.

4. How far can you increase d such that generatePrime d is computed within 1 minute? If this value is

below 10, then improve your algorithm prime. (1 point)
Hint: Implement a square root function directly on integers, i.e., without using sqrt :: Double -> Double.
It does not matter if you implement |v/n| or [/n]. For instance, the integer square root of 27 can either
be 5 or 6.

Exercise 2 Heron’s method 2 p.

Heron’s method is an ancient (but very efficient) method to approximate the square root of a given non-negative
real number z. It works like this: We recursively define the following sequence of numbers:

B L ify, =0
Yo =1 Ynt1 = N

(yn + 5-) otherwise

Mathematically, this sequence converges monotonically to /z but never actually reaches it (unless x = 0 or
x = 1), giving successively better and better approximations to /z.

However, due to the finite precision of the Double type, doing this computation in Haskell, you will always find
that at some point y,11 == yn.

http://cl-informatik.uibk.ac.at/teaching/ws21/fp/sheets/template_06.hs

Your task is to write a function heron :: Double -> [Double] that outputs the sequence of numbers [yo, . . ., yn],
where n is the smallest number such that y,+1 == yn. (2 points)

Examples:

heron 0 == [0.0]

heron 1 == [1.0]

heron 2 == [2.0, 1.5, 1.4166666666666665, 1.4142156862745097,
1.4142135623746899, 1.414213562373095]

Exercise 3 Fibonacci numbers 4 p.

The Fibonacci numbers (a,)nen = 0,1,1,2,3,5,8,... are defined by the recurrence

0 ifn=0
ap =41 ifn=1

Ap—1 + Gn_o otherwise

They can also be computed more efficiently by the following recurrence:

0 ifn=0

1 ifn=1orn=2
Apn = . .

af%j +af§j+1 if n is odd

(2a)2)11 —ajz))apn) if nis even
You will implement the computation of the a,, given a non-negative integer n as an input in three different ways:

1. Write a function fib :: Integer -> Integer that computes a, using the naive recurrence a,is =
Gnt1 + a, and a function fib' :: Integer -> Integer that does the same using the more complicated
recurrence given above.

Test your functions on increasingly large values and see how much time they take.
Explain the results. 2 points
Hint:

o If you run the command :set +s in GHCi, it will print how long each evaluation took.!

e If an evaluation takes too long, you can abort it using the key combination Ctrl + C.

e Recall that in Haskell, | 5] is written as div n 2. Also note that the following pre-defined functions
exist: even :: Integer -> Bool and odd :: Integer -> Bool

2. Write a function fibFast :: Integer -> Integer that does the same as £ib' but internally remembers
all values that have already been computed in a lookup table. Again check how long it takes on increasingly
large inputs. 2 points

Hint:
e You will need an auxiliary function
fibFastAux :: Integer -> [(Integer, Integer)] -> (Integer, [(Integer, Integer)])

that takes a number n and a lookup table (consisting of pairs (i, a;)) and returns both the result a,
and a (possibly bigger) lookup table. If the pair for n is already in the table, the stored value of a,,
should be returned — otherwise the recurrence should be used to recursively compute the value of a,,
and the new pair (n, a,) is then stored in the table.

e The pre-defined function lookup :: Eq a => a -> [(a, b)] -> Maybe b will be useful to lookup
values in the table.

e The numbers involved grow wvery fast, so even the printing takes a lot of time. For more con-
sistent results, try showing the number of digits of the result instead of the actual result, e.g.
length (show (fib' 10000)) or length (show (fibFast 10000)).

INote that benchmarking functions in GHCi like this is not particularly accurate for a number of reasons: the code is not compiled
but only interpreted, and many optimisations that GHC normally does are not performed. But for the scope of this exercise,
this is fine.

