\square universität
innsbruck

Functional Programming

Week 5 - Expressions, Recursion on Numbers
René Thiemann Philipp Anrain Marc Bußjäger Benedikt Dornauer Manuel Eberl Christina Kohl Sandra Reitinger Christian Sternagel

Department of Computer Science

Last Lecture

- type variables: $\mathrm{a}, \mathrm{b}, \ldots$ represent any type
- parametric polymorphism
- one implementation that can be used for various types
polymorphic datatypes, e.g., data List a = Empty | Cons a (List a)
- polymorphic functions, e.g., append : : List a -> List a -> List a
- type constraints, e.g., sumList : : Num a $=>$ List a $->$ a
- predefined types: [a], Maybe a, Either a b, (a1,..., aN)
- predefined type classes
arithmetic except division: Num a
arithmetic including division: Fractional a
- equality between elements: Eq a
- smaller than and greater than: Ord a
- conversion to Strings: Show a

This Lecture

- type synonyms
- expressions revisited
- recursion involving numbers

Type Synonyms

- Haskell offers a mechanism to create synonyms of types via the keyword type type TConstr a1 ... aN = ty
- TConstr is a fresh name for a type constructor
- a1 ... an is a list of type variables
- ty is a type that may contain any of the type variables
- there is no new (value-)constructor
- ty may not include TConstr itself, i.e., no recursion allowed
- example
data PersonDT $=$ Person (String, Integer) -- name \& year of birth type PersonTS = (String, Integer)
- the types PersonTS and (String, Integer) are identical,
((("Jane", 1980) :: PersonTS) :: (String, Integer)) :: PersonTS
- the types PersonDT is different from both (String, Integer) and PersonTS;
("Bob", 2002) is of type PersonTS, but not of type PersonDT;
Person ("Bob", 2002) is of type PersonDT, but not of type PersonTS

Type Synonyms - Applications, Strings

- example applications of type synonyms
- avoid creation of new datatypes: type Person = (String,Integer)
- increase readability of code
type Month = Int
type Day = Int
type Year = Int
type Date = (Day, Month, Year)
createDate :: Day -> Month -> Year -> Date
createDate d m y $=$ (d, m, y)
-- createDate is logically equivalent to the following function,
-- but the type synonyms help to make the code more readable
createDate :: Int -> Int -> Int -> (Int, Int, Int) createDate x y $\mathrm{z}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$
- in Haskell: type String = [Char]
- in particular "hello" is identical to ['h', 'e', 'l', 'l', 'o']
- all functions on lists can be applied to Strings as well, e.g. (++) : : [a] -> [a] -> [a] RT et al. (DCS @ UIBK)

Function Definitions Revisited

- current form of function definitions

f : : ty	-- optional type definition
f pat11 \ldots pat1M $=\operatorname{expr} 1$	-- first defining equation
\ldots.	

$$
\text { f pat1M ... patNM }=\text { exprN } \quad-- \text { last defining equation }
$$

where expressions consist of literals, variables, and function- or constructor applications

- observations
- case analysis only possible via patterns in left-hand sides of equations
- case analysis on right-hand sides often desirable
- work-around via auxiliary functions possible
- better solution: extension of expressions

if-then-else

- most primitive form of case analysis: if-then-else
- functionality: return one of two possible results, depending on a Boolean value ite :: Bool -> a -> a -> a
ite True $\mathrm{x} y=\mathrm{x}$
ite False $\mathrm{x} y=\mathrm{y}$
- example application: lookup a value in a key/value-list
lookup :: Eq a \Rightarrow a \rightarrow [(a, b)] \rightarrow Maybe b
lookup x ((k, v) : ys) = ite ($\mathrm{x}=\mathrm{=}$ k) (Just v) (lookup x ys)
lookup _ _ = Nothing
- if-then-else is predefined: if ... then ... else ...
lookup x ((k, v) : ys) = if $\mathrm{x}==\mathrm{k}$ then Just v else lookup x ys
- there is no if-then (without the else) in Haskell: what should be the result if the Boolean is false?
- remark: also lookup is predefined in Haskell;

Prelude content (functions, (type-)constructors, type classes, ...) is typeset in green

Case Expressions

- case expressions support arbitrary pattern matching directly in right-hand sides
case expr of
pat1 -> expr1
patN -> exprN
- match expr against pat1 to patN top to bottom
- if patI is first match, then case-expression is evaluated to exprI
- example from previous slide without auxiliary function
eval ass (Var x) = case lookup x ass of
Just i -> i
_ -> error ("assignment does not include variable " ++ x)

Case Analysis via Pattern Matching

- observation: often case analysis is required on computed values
- implementation possible via auxiliary functions
- example: evaluation of expressions with meaningful error messages
data Expr a = Var String | ... -- Numbers, Addition, ... eval :: Num a => [(String, a)] -> Expr a -> a
eval ass $\ldots \quad=\ldots \quad-$ all the other cases
eval ass (Var x) $=$ aux (lookup x ass) x -- case analysis on lookup x ass aux (Just i) _ = i
aux _ $\mathrm{x}=$ error ("assignment does not include variable " ++ x)
- disadvantages
- local values need to be passed as arguments to auxiliary function (here: x)
- pollution of name space by auxiliary functions
(aux, aux1, aux2, aux, helper, fHelper, ...)
- note: if-then-else is not sufficient for above example

The Layout Rule

- problem: define groups (of patterns, of function definitions, ...)
- items that start in same column are grouped together
- by increasing indentation, single item may span multiple lines
- groups end when indentation decreases
- script content is group, start nested group by where, let, do, or of
- ignore layout: enclose groups in ' $\{$ ' and ' $\}$ ' and separate items by ';'

Examples

with layout:

and b1 b2 = case b1 of	and b1 b2 = case b1 of
True $->$ case b2 of	\{ True $->$ case b2 of
True $->$ True	\{True -> True; False -> False \};
False -> False	False -> False \}

False -> False
without layout:

```
False -> False \}
and b1 b2 = case b1 of
    { True -> case b2 of
    False -> False }
```

False -> False

White-Space in Haskell

- because of layout rule, white-space in Haskell matters (in contrast to many other programming languages)
- avoid tabulators in Haskell scripts
(tab-width of editor vs. Haskell-compiler)

Example

and1 b1 b2 = case b1 of	and2 b1 b2 = case b1 of
True -> case b2 of	True $->$ case b2 of
True -> True	True -> True
False -> False	False $->$ False
ghci> and1 True False	
False	
ghci> and2 True False	
*** error: non-exhaustive patterns	

*** error: non-exhaustive patterns
\qquad

Number of Real Roots via let Construct

```
-- Prelude type and function for comparing two numbers
data Ordering = EQ | LT | GT
compare :: Ord a => a -> a -> Ordering
-- task: determine number of real roots of ax^2 + bx + c
numRoots a b c = let
    disc = b^2 - 4 * a * c -- local variable
    analyse EQ = 1 -- local function
    analyse LT = 0
    analyse GT = 2
    in analyse (compare disc 0)
```


The let Construct

- let-expressions are used for local definitions
- syntax
let

pat	$=\operatorname{expr}$	-- definition by pattern matching
fname pat1 \ldots patN	$=$ expr	- function definition

in expr -- result

- each let-expression may contain several definitions (order irrelevant)
- definitions result in new variable-bindings and functions
- may be used in every expression expr above
- are not visible outside let-expression

The where Construct

- where is similar to let, used for local definitions
- syntax

$$
\begin{aligned}
& \text { f pat1 .. patM }=\text { expr -- defining equation (or case) } \\
& \text { where pat = expr -- pattern matching } \\
& \text { fname pat1 .. patN = expr -- function definitions }
\end{aligned}
$$

- each where may consist of several definitions (order irrelevant)
- local definitions introduce new variables and functions
- may be used in every expression expr above
- are not visible outside defining equation / case-expression
- remark: in contrast to let, when using where the defining equation of f is given first numRoots a b c = analyse (compare disc 0) where

$$
\begin{aligned}
& \text { disc }=\mathrm{b}^{\wedge} 2-4 * \mathrm{a} * \mathrm{c} \\
& \text { analyse } \mathrm{EQ}=1 \\
& \text { analyse } \mathrm{LT}=0 \\
& \text { analyse } \mathrm{GT}=2
\end{aligned}
$$

Guarded Equations

- defining equations within a function definition can be guarded
- syntax:

```
name pat1 ... patM
    | cond1 = expr1
    | cond2 = expr2
    | ...
    where ... -- optional where-block
```

where each condI is a Boolean expression

- whenever condI is first condition that evaluates to True, then result is exprI
- next defining equation of fname considered, if no condition is satisfied numRoots a b c
| disc > $0=2$
| disc == $0=1$
| otherwise = $0 \quad$-- otherwise $=$ True
where disc $=b^{\wedge} 2-4 * \operatorname{c}$ - -- disc is shared among cases

Example: Roots (Continued)

- task: compute the sum of the roots of a quadratic polynomial
- solution with explicit failure via Maybe-type
roots :: Double -> Double -> Double -> Maybe (Double, Double)
roots a b c
| a == $0=$ Nothing
| $\mathrm{d}<0=$ Nothing
| otherwise = Just (($-\mathrm{b}-\mathrm{r}) / \mathrm{e},(-\mathrm{b}+\mathrm{r}) / \mathrm{e})$
where $\mathrm{d}=\mathrm{b} * \mathrm{~b}-4 * \mathrm{a} * \mathrm{c}$
$e=2 * a$
r $=$ sqrt d
sumRoots :: Double -> Double -> Double -> Maybe Double
sumRoots a b c =
case roots a b c of -- case for explicit error handling
Just (x, y) -> Just ($x+y$) -- nested pattern matching

$$
\text { n -> Nothing -- can't be replaced by } n \text {-> n! (types) }
$$

Example: Roots

- task: compute the sum of the roots of a quadratic polynomia
- solution with potential runtime errors
roots : : Double -> Double -> Double -> (Double, Double)
roots a b c
| a == 0 = error "not quadratic"
$\mid \mathrm{d}<0=$ error "no real roots"
| otherwise = ((- b - r) / e, (- b + r) / e)
where $\mathrm{d}=\mathrm{b} * \mathrm{~b}-4 * \mathrm{a} * \mathrm{c}$

e = 2 * a

r $=$ sqrt d
sumRoots :: Double -> Double -> Double -> Double sumRoots a b c = let
$(x, y)=$ roots $a \mathrm{~b}$ c -- pattern match in let in $x+y$

- note: non-variable patterns in let are usually only used if they cannot fail; otherwise, use case instead of let

Abstract

RT et al (DCS @ UBK) , Week 5

Recursion on Numbers

Recursion on Numbers

- recursive function

$$
\text { f pat1 ... patN }=\ldots(f \text { expr1 . . . exprN }) . .
$$

where input arguments should somehow be larger than arguments in recursive call:
(pat1, ..., patN) > (expr1, ..., expri) -- for some relation >

- decrease often happens in one specific argument (the i-th argument always gets smaller)
- so far the decrease in size was always w.r.t. tree size
- length of list gets smaller
- arithmetic expressions (Expr) are decomposed, i.e., number of constructors is decreased
- if argument is a number (tree size is always 1), then still recursion is possible; example: the value of number might decrease
- frequent cases
- some number i is decremented until it becomes 0
- some number i is incremented until it reaches some bound n

$$
\begin{aligned}
& \text { (while } i \neq 0 \ldots i:=i-1 \text {) } \\
& \text { (while } i<n \ldots i:=i+1 \text {) }
\end{aligned}
$$

$$
\text { Week } 5
$$

Example: Combined Recursion

- recursion on trees and numbers can be combined
- example: compute the n-th element of a list
nth : : [a] -> Int $->$ a
nth (x : _) $0=x \quad--$ indexing starts from 0
nth (_ : xs) $n=$ nth $x s(n-1)$-- decrease of number and list-length
nth _ _ = error "no nth-element"
- example: take the first n-elements of a list

```
take :: Int -> [a] -> [a]
take _ [] = []
take n (x:xs)
    | n <= 0 = []
    | otherwise = x : take (n - 1) xs -- decrease of number and list-length
```

- remarks
- both take and n-th element (!!) are predefined
- drop is predefined function that removes the first n-elements of a list
- equality: take n xs ++ drop n xs $==\mathrm{xs}$ RT et al. (DCS @ UIBK)

Example: Factorial Function

- mathematical definition: $n!=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1,0!=1$
- implementation D: count downwards
factorial :: Integer -> Integer factorial $0=1$
factorial $\mathrm{n}=\mathrm{n} *$ factorial ($\mathrm{n}-1$)
- in every recursive call the value of n is decreased
- factorial n does not terminate if n is negative (hit Ctrl-C in ghci to stop computation)
- implementation U : count upwards, use accumulator (here: r stores accumulated (r)esult) factorial :: Integer \rightarrow Integer
factorial $\mathrm{n}=$ fact 11 where
fact r i
| i < $n=$ fact $(i * r)(i+1)$
| otherwise = r
- in every recursive call the value of $n-i$ is decreased
- implementation U is equivalent to imperative program (with local variables r and i)

Example: Creating Ranges of Values

- task: given lower bound l and upper bound u, compute list of numbers $[l, l+1, \ldots, u]$
- algorithm: increment l until $l>u$ and always add l to front of list range 1 u
| $1<=u=1$: range $(1+1) u$
| otherwise = []
- remark: (a generalized version of) range 1 u is predefined and written [l . . u]
- example: concise definition of factorial function
- factorial $\mathrm{n}=$ product [1 .. n]
where product : : Num a => [a] \rightarrow a computes the product of a list of numbers

Summary

type synonyms via type

- expressions with local definitions and case analysis
- recursion on numbers

