
Constraint Solving WS 2022/2023 LVA 703304

Test-Exam – Solution January 27, 2023

1 First we replace ¬∀ with ∃¬ and compute an equivalent NNF:

∃x.
(
3y − 1 < 3x ∧ y ̸= 2x− 6

)
Next we eliminate ̸=, resulting in the formula

∃x.
(
3y − 1 < 3x ∧ (y < 2x− 6 ∨ 2x− 6 < y)

)
In the next step we move the terms containing x to one side of the inequalities:

∃x.
(
3y − 1 < 3x ∧ (y + 6 < 2x ∨ 2x < y + 6)

)
The coefficients of x are 2 and 3, hence we let δ′ = lcm {2, 3} = 6 and obtain the formula

∃x′.
(
6y − 2 < x′ ∧ (3y + 18 < x′ ∨ x′ < 3y + 18) ∧ 6 |x′

)
The four literals are classified as follows:

(B) 6y − 2 < x′ (B) 3y + 18 < x′ (A) x′ < 3y + 18 (C) 6 |x′

At this point we compute the left infinite projection:

⊥ ∧ (⊥ ∨ ⊤) ∧ 6 |x′

which simplifies to ⊥. The lower bounds in the (B) literals are B = {6y − 2, 3y + 18} and δ = 6. Hence the
following quantifier-free formula is obtained:

6∨
j=1

∨
t∈B

(
6y − 2 < t+ j ∧ (3y + 18 < t+ j ∨ t+ j < 3y + 18) ∧ 6 | t+ j

)
Since |A| < |B|, it is actually more efficient to compute the right infinite projection:

⊤ ∧ (⊤ ∨ ⊥) ∧ 6 |x′

which simplifies to 6 |x′. The upper bound in the (A) literal is 3y + 18 and δ = 6, resulting in the following
quantifier-free formula:

6∨
j=1

6 | −j ∨
6∨

j=1

(
6y − 2 < t− j ∧ (3y + 18 < t− j ∨ t− j < 3y + 18) ∧ 6 | t− j

)
with t = 3y + 18.

2 The constraints are equivalent to

4x+ 2y ≥ −3
8x+ 4y ≤ −5

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0:

tableau x y bounds assignment x y s t

s 4 2 s ≥ −3 0 0 0 0

t 8 4 t ≤ −5

There is a violation for t. Both x and y are suitable, but Bland’s rule will select x. Pivoting results in:

tableau t y bounds assignment x y s t

s 1/2 0 s ≥ −3 0 0 0 0

x 1/8 −1/2 t ≤ −5

Updating the assignment t := −5 results in:

tableau t y bounds assignment x y s t

s 1/2 0 s ≥ −3 −5/8 0 −5/2 −5
x 1/8 −1/2 t ≤ −5

Since all bounds are satisfied, the solution x = −5/8 and y = 0 is returned.

3 We associate an integer variable xc with every cell c and use LIA as underlying theory. We consider the
constraints separately:

(a) For each room consisting of the n cells c1, . . . , cn we add the constraint

n∧
i=1

1 ⩽ xci ⩽ n ∧
n∑

i=1

xci =
n(n+1)

2 ∧
n−1∧
i=1

n∧
j=i+1

xci ̸= xcj

(b) For neighbouring cells a and b in adjacent rooms we add the constraint xa ̸= xb. For the given puzzle
we obtain 12 such constraints.

(c) A cell with an arrow can have up to four neighbouring cells. Here we consider the case of exactly four
neighbours. Let a, b, c and d be these neighbours, and suppose the arrow points to cell a. Then we add

a > b ∧ a > c ∧ a > d

(d) Finally, if cell c is filled with a concrete number n then we simply add the constraint xc = n.

4 (a) Since the inequality Ax⃗ ≤ b⃗ is the same as demanding all row-inequalities we just build a large conjunc-
tion, i.e., we apply (2) on each row separately and obtain:

−1z1 + 3z2 ≤ 2− 4

2z1 − 1z2 ≤ 4− 3

−1z1 − 1z2 ≤ 7− 2

or equivalently: Az⃗ ≤ b⃗−

4

3

2

. This problem can then be solved by the simplex algorithm.

(b) s = 1/2 is the smallest possible value of s, because exactly then it is guaranteed that an integral vector
x⃗ is contained in cubes(z⃗). It is the vector x⃗ defined as xi := round(zi), where round rounds a rational
number to the closest integer.

(c) We assume (A) x⃗ ∈ cubes(z⃗) and (B) a⃗ · z⃗ ≤ c − s
∑n

i=1 |ai| and have to prove a⃗ · x⃗ ≤ c. This can be
done as follows:

a⃗ · x⃗ = a⃗ · (z⃗ + (x⃗− z⃗))
= a⃗ · z⃗ + a⃗ · (x⃗− z⃗)
(B)

≤

(
c− s

n∑
i=1

|ai|

)
+ a⃗ · (x⃗− z⃗)

= c− s
n∑

i=1

|ai|+
n∑

i=1

ai · (xi − zi)

≤ c− s
n∑

i=1

|ai|+
n∑

i=1

|ai| · |xi − zi|

(A)

≤ c− s
n∑

i=1

|ai|+
n∑

i=1

|ai| · s

= c

5 (1) Yes, this can happen. Consider the weighted graph

a
−4−→ b

1−→ c
1−→ d

(2) No, this cannot happen. The reason is that if they were pending distance updates in iteration |V | − 1,
then this leads to a negative-cycle detection in the modified algorithm.

(3) No, this cannot happen. If there is a negative cycle, then in every iteration there would be distance
updates. So, in particular when performing the cyclicity-check in the modified algorithm.

6 (a) A suitable invariant is i ≥ 1. We obtain the following formulas:

i = 1 −→ i ≥ 1 (loop start)

i < N ∧ i ≥ 1 ∧ i′ = i+ 1 −→ i′ ≥ 1 (loop iteration)

i < N ∧ i ≥ 1 −→ 0 ≤ i+ 1 ≤ N ∧ 0 ≤ i ≤ N ∧ 0 ≤ i− 1 ≤ N (array accessess)

(b) We first convert the formula ¬ψ into NNF:

φ(a, i) ∧ i < N ∧ b = a{i+ 1← a[i] + a[i− 1]} ∧ j = i+ 1 ∧
(
∃k. 0 ≤ k ≤ j ∧ b[k] ̸= fib(k)

)
Next we eliminate the array updates via the write rule:

φ(a, i) ∧ i < N ∧ b[i+ 1] = a[i] + a[i− 1] ∧
(
∀k. k ≤ i ∨ k ≥ i+ 2 −→ b[k] = a[k]

)
∧ j = i+ 1 ∧

(
∃k. 0 ≤ k ≤ j ∧ b[k] ̸= fib(k)

)
Next we eliminate the existential quantifier:

φ(a, i) ∧ i < N ∧ b[i+ 1] = a[i] + a[i− 1] ∧
(
∀k. k ≤ i ∨ k ≥ i+ 2 −→ b[k] = a[k]

)
∧ j = i+ 1 ∧ 0 ≤ ℓ ≤ j ∧ b[ℓ] ̸= fib(ℓ)

Next we eliminate the universal quantifier where I = {0, i− 1, i, i+ 1, i+ 2, ℓ}:(∧
k∈I

0 ≤ k ≤ i −→ a[k] = fib(k)

)
∧ i < N ∧ b[i+ 1] = a[i] + a[i− 1]

∧

(∧
k∈I

k ≤ i ∨ k ≥ i+ 2 −→ b[k] = a[k]

)
∧ j = i+ 1 ∧ 0 ≤ ℓ ≤ j ∧ b[ℓ] ̸= fib(ℓ)

Finally, we eliminate array accesses to obtain the desired formula χ:

χ :=
(∧
k∈I

0 ≤ k ≤ i −→ A(k) = fib(k)
)
∧ i < N ∧B(i+ 1) = A(i) +A(i− 1)

∧

(∧
k∈I

k ≤ i ∨ k ≥ i+ 2 −→ B(k) = A(k)

)
∧ j = i+ 1 ∧ 0 ≤ ℓ ≤ j ∧B(ℓ) ̸= fib(ℓ)

