1 First we replace $\neg \forall$ with $\exists \neg$ and compute an equivalent NNF:

$$
\exists x .(3 y-1<3 x \wedge y \neq 2 x-6)
$$

Next we eliminate \neq, resulting in the formula

$$
\exists x .(3 y-1<3 x \wedge(y<2 x-6 \vee 2 x-6<y))
$$

In the next step we move the terms containing x to one side of the inequalities:

$$
\exists x .(3 y-1<3 x \wedge(y+6<2 x \vee 2 x<y+6))
$$

The coefficients of x are 2 and 3 , hence we let $\delta^{\prime}=\operatorname{lcm}\{2,3\}=6$ and obtain the formula

$$
\exists x^{\prime} .\left(6 y-2<x^{\prime} \wedge\left(3 y+18<x^{\prime} \vee x^{\prime}<3 y+18\right) \wedge 6 \mid x^{\prime}\right)
$$

The four literals are classified as follows:
(B) $6 y-2<x^{\prime}$
(B) $3 y+18<x^{\prime}$
(A) $x^{\prime}<3 y+18$
(C) $6 \mid x^{\prime}$

At this point we compute the left infinite projection:

$$
\perp \wedge(\perp \vee \top) \wedge 6 \mid x^{\prime}
$$

which simplifies to \perp. The lower bounds in the (B) literals are $B=\{6 y-2,3 y+18\}$ and $\delta=6$. Hence the following quantifier-free formula is obtained:

$$
\bigvee_{j=1}^{6} \bigvee_{t \in B}(6 y-2<t+j \wedge(3 y+18<t+j \vee t+j<3 y+18) \wedge 6 \mid t+j)
$$

Since $|A|<|B|$, it is actually more efficient to compute the right infinite projection:

$$
\top \wedge(\top \vee \perp) \wedge 6 \mid x^{\prime}
$$

which simplifies to $6 \mid x^{\prime}$. The upper bound in the (A) literal is $3 y+18$ and $\delta=6$, resulting in the following quantifier-free formula:

$$
\bigvee_{j=1}^{6} 6 \mid-j \vee \bigvee_{j=1}^{6}(6 y-2<t-j \wedge(3 y+18<t-j \vee t-j<3 y+18) \wedge 6 \mid t-j)
$$

with $t=3 y+18$.
2 The constraints are equivalent to

$$
\begin{aligned}
& 4 x+2 y \geq-3 \\
& 8 x+4 y \leq-5
\end{aligned}
$$

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0 :

$$
\begin{array}{c|cccccccc}
\text { tableau } & x & y & \text { bounds } & \text { assignment } & x & y & s & t \\
\hline s & 4 & 2 & s \geq-3 & 0 & 0 & 0 & 0 \\
t & 8 & 4 & t \leq-5 & & & & &
\end{array}
$$

There is a violation for t. Both x and y are suitable, but Bland's rule will select x. Pivoting results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	$1 / 2$	0	$s \geq-3$	0	0	0	0	
x	$1 / 8$	$-1 / 2$	$t \leq-5$					

Updating the assignment $t:=-5$ results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	$1 / 2$	0	$s \geq-3$	$-5 / 8$	0	$-5 / 2$	-5	
x	$1 / 8$	$-1 / 2$	$t \leq-5$					

Since all bounds are satisfied, the solution $x=-5 / 8$ and $y=0$ is returned.
3 We associate an integer variable x_{c} with every cell c and use LIA as underlying theory. We consider the constraints separately:
(a) For each room consisting of the n cells c_{1}, \ldots, c_{n} we add the constraint

$$
\bigwedge_{i=1}^{n} 1 \leqslant x_{c_{i}} \leqslant n \quad \wedge \sum_{i=1}^{n} x_{c_{i}}=\frac{n(n+1)}{2} \wedge \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} x_{c_{i}} \neq x_{c_{j}}
$$

(b) For neighbouring cells a and b in adjacent rooms we add the constraint $x_{a} \neq x_{b}$. For the given puzzle we obtain 12 such constraints.
(c) A cell with an arrow can have up to four neighbouring cells. Here we consider the case of exactly four neighbours. Let a, b, c and d be these neighbours, and suppose the arrow points to cell a. Then we add

$$
a>b \wedge a>c \wedge a>d
$$

(d) Finally, if cell c is filled with a concrete number n then we simply add the constraint $x_{c}=n$.

4 (a) Since the inequality $A \vec{x} \leq \vec{b}$ is the same as demanding all row-inequalities we just build a large conjunction, i.e., we apply (2) on each row separately and obtain:

$$
\begin{aligned}
-1 z_{1}+3 z_{2} & \leq 2-4 \\
2 z_{1}-1 z_{2} & \leq 4-3 \\
-1 z_{1}-1 z_{2} & \leq 7-2
\end{aligned}
$$

or equivalently: $A \vec{z} \leq \vec{b}-\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)$. This problem can then be solved by the simplex algorithm.
(b) $s=1 / 2$ is the smallest possible value of s, because exactly then it is guaranteed that an integral vector \vec{x} is contained in cube (\vec{z}). It is the vector \vec{x} defined as $x_{i}:=\operatorname{round}\left(z_{i}\right)$, where round rounds a rational number to the closest integer.
(c) We assume (A) $\vec{x} \in \operatorname{cube}_{s}(\vec{z})$ and (B) $\vec{a} \cdot \vec{z} \leq c-s \sum_{i=1}^{n}\left|a_{i}\right|$ and have to prove $\vec{a} \cdot \vec{x} \leq c$. This can be done as follows:

$$
\begin{aligned}
\vec{a} \cdot \vec{x} & =\vec{a} \cdot(\vec{z}+(\vec{x}-\vec{z})) \\
& =\vec{a} \cdot \vec{z}+\vec{a} \cdot(\vec{x}-\vec{z}) \\
& \stackrel{(B)}{\leq}\left(c-s \sum_{i=1}^{n}\left|a_{i}\right|\right)+\vec{a} \cdot(\vec{x}-\vec{z}) \\
& =c-s \sum_{i=1}^{n}\left|a_{i}\right|+\sum_{i=1}^{n} a_{i} \cdot\left(x_{i}-z_{i}\right) \\
& \leq c-s \sum_{i=1}^{n}\left|a_{i}\right|+\sum_{i=1}^{n}\left|a_{i}\right| \cdot\left|x_{i}-z_{i}\right| \\
& (A) \\
& \leq c-s \sum_{i=1}^{n}\left|a_{i}\right|+\sum_{i=1}^{n}\left|a_{i}\right| \cdot s \\
& =c
\end{aligned}
$$

5 (1) Yes, this can happen. Consider the weighted graph

$$
a \xrightarrow{-4} b \xrightarrow{1} c \xrightarrow{1} d
$$

(2) No, this cannot happen. The reason is that if they were pending distance updates in iteration $|V|-1$, then this leads to a negative-cycle detection in the modified algorithm.
(3) No, this cannot happen. If there is a negative cycle, then in every iteration there would be distance updates. So, in particular when performing the cyclicity-check in the modified algorithm.

6
(a) A suitable invariant is $i \geq 1$. We obtain the following formulas:

$$
\begin{array}{rr}
i=1 \longrightarrow i \geq 1 & \text { (loop start) } \\
i<N \wedge i \geq 1 \wedge i^{\prime}=i+1 \longrightarrow i^{\prime} \geq 1 \\
i<N \wedge i \geq 1 \longrightarrow 0 \leq i+1 \leq N \wedge 0 \leq i \leq N \wedge 0 \leq i-1 \leq N & \text { (loop iteration) } \\
\text { (array accessess) }
\end{array}
$$

(b) We first convert the formula $\neg \psi$ into NNF:

$$
\varphi(a, i) \wedge i<N \wedge b=a\{i+1 \leftarrow a[i]+a[i-1]\} \wedge j=i+1 \wedge(\exists k .0 \leq k \leq j \wedge b[k] \neq f i b(k))
$$

Next we eliminate the array updates via the write rule:

$$
\begin{aligned}
& \varphi(a, i) \wedge i<N \wedge b[i+1]=a[i]+a[i-1] \wedge(\forall k . k \leq i \vee k \geq i+2 \longrightarrow b[k]=a[k]) \\
\wedge & j=i+1 \wedge(\exists k .0 \leq k \leq j \wedge b[k] \neq f i b(k))
\end{aligned}
$$

Next we eliminate the existential quantifier:

$$
\begin{aligned}
& \varphi(a, i) \wedge i<N \wedge b[i+1]=a[i]+a[i-1] \wedge(\forall k . k \leq i \vee k \geq i+2 \longrightarrow b[k]=a[k]) \\
\wedge & j=i+1 \wedge 0 \leq \ell \leq j \wedge b[\ell] \neq f i b(\ell)
\end{aligned}
$$

Next we eliminate the universal quantifier where $\mathcal{I}=\{0, i-1, i, i+1, i+2, \ell\}$:

$$
\begin{aligned}
& \left(\bigwedge_{k \in \mathcal{I}} 0 \leq k \leq i \longrightarrow a[k]=f i b(k)\right) \wedge i<N \wedge b[i+1]=a[i]+a[i-1] \\
\wedge & \left(\bigwedge_{k \in \mathcal{I}} k \leq i \vee k \geq i+2 \longrightarrow b[k]=a[k]\right) \wedge j=i+1 \wedge 0 \leq \ell \leq j \wedge b[\ell] \neq f i b(\ell)
\end{aligned}
$$

Finally, we eliminate array accesses to obtain the desired formula χ :

$$
\begin{aligned}
\chi: & \left(\bigwedge_{k \in \mathcal{I}} 0 \leq k \leq i \longrightarrow A(k)=f i b(k)\right) \wedge i<N \wedge B(i+1)=A(i)+A(i-1) \\
& \wedge\left(\bigwedge_{k \in \mathcal{I}} k \leq i \vee k \geq i+2 \longrightarrow B(k)=A(k)\right) \wedge j=i+1 \wedge 0 \leq \ell \leq j \wedge B(\ell) \neq f i b(\ell)
\end{aligned}
$$

