

Constraint Solving

WS 2022/2023

LVA 703304

Test-Exam - Solution

,

January 27, 2023

1 First we replace $\neg \forall$ with $\exists \neg$ and compute an equivalent NNF:

 $\exists x. (3y-1 < 3x \land y \neq 2x-6)$

Next we eliminate \neq , resulting in the formula

 $\exists x. (3y - 1 < 3x \land (y < 2x - 6 \lor 2x - 6 < y))$

In the next step we move the terms containing x to one side of the inequalities:

 $\exists x. (3y - 1 < 3x \land (y + 6 < 2x \lor 2x < y + 6))$

The coefficients of x are 2 and 3, hence we let $\delta' = \operatorname{lcm} \{2, 3\} = 6$ and obtain the formula

$$\exists x'. (6y - 2 < x' \land (3y + 18 < x' \lor x' < 3y + 18) \land 6 \mid x')$$

The four literals are classified as follows:

(B) 6y - 2 < x' (B) 3y + 18 < x' (A) x' < 3y + 18 (C) 6 | x'|

At this point we compute the left infinite projection:

 $\perp \land (\perp \lor \top) \land 6 | x'$

which simplifies to \perp . The lower bounds in the (B) literals are $B = \{6y - 2, 3y + 18\}$ and $\delta = 6$. Hence the following quantifier-free formula is obtained:

$$\bigvee_{j=1}^{6} \bigvee_{t \in B} (6y - 2 < t + j \land (3y + 18 < t + j \lor t + j < 3y + 18) \land 6 | t + j)$$

Since |A| < |B|, it is actually more efficient to compute the right infinite projection:

$$\top \land (\top \lor \bot) \land 6 | x'$$

which simplifies to 6 | x'. The upper bound in the (A) literal is 3y + 18 and $\delta = 6$, resulting in the following quantifier-free formula:

$$\bigvee_{j=1}^{6} 6 |-j| \lor \bigvee_{j=1}^{6} (6y-2 < t-j) \land (3y+18 < t-j) \lor (t-j < 3y+18) \land 6 | t-j)$$

with t = 3y + 18.

c

2 The constraints are equivalent to

$$4x + 2y \ge -3$$
$$8x + 4y \le -5$$

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0:

tableau	x	y	bounds	assignment	x	y	s	t
s	4	2	$s \ge -3$		0	0	0	0
t	8	4	$t \leq -5$					

There is a violation for t. Both x and y are suitable, but Bland's rule will select x. Pivoting results in:

tableau	t	y	bounds	assignment	x	y	s	t	
s	1/2	0	$s \ge -3$		0	0	0	0	
x	1/8	-1/2	$t \leq -5$						

Updating the assignment t := -5 results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	1/2	0	$s \ge -3$		-5/8	0	-5/2	-5
x	1/8	-1/2	$t \leq -5$					

Since all bounds are satisfied, the solution x = -5/8 and y = 0 is returned.

3 We associate an integer variable x_c with every cell c and use LIA as underlying theory. We consider the constraints separately:

(a) For each room consisting of the *n* cells c_1, \ldots, c_n we add the constraint

$$\bigwedge_{i=1}^{n} 1 \leqslant x_{c_i} \leqslant n \quad \land \quad \sum_{i=1}^{n} x_{c_i} = \frac{n(n+1)}{2} \quad \land \quad \bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} x_{c_i} \neq x_{c_j}$$

- (b) For neighbouring cells a and b in adjacent rooms we add the constraint $x_a \neq x_b$. For the given puzzle we obtain 12 such constraints.
- (c) A cell with an arrow can have up to four neighbouring cells. Here we consider the case of exactly four neighbours. Let a, b, c and d be these neighbours, and suppose the arrow points to cell a. Then we add

$$a > b \land a > c \land a > d$$

- (d) Finally, if cell c is filled with a concrete number n then we simply add the constraint $x_c = n$.
- [4] (a) Since the inequality $A\vec{x} \leq \vec{b}$ is the same as demanding all row-inequalities we just build a large conjunction, i.e., we apply (2) on each row separately and obtain:

$$-1z_{1} + 3z_{2} \leq 2 - 4$$

$$2z_{1} - 1z_{2} \leq 4 - 3$$

$$-1z_{1} - 1z_{2} \leq 7 - 2$$
equivalently: $A\vec{z} \leq \vec{b} - \begin{pmatrix} 4\\ 3\\ 2 \end{pmatrix}$.

or

This problem can then be solved by the simplex algorithm.

- (b) s = 1/2 is the smallest possible value of s, because exactly then it is guaranteed that an integral vector \vec{x} is contained in $\mathsf{cube}_s(\vec{z})$. It is the vector \vec{x} defined as $x_i := \mathsf{round}(z_i)$, where round rounds a rational number to the closest integer.
- (c) We assume (A) $\vec{x} \in \mathsf{cube}_s(\vec{z})$ and (B) $\vec{a} \cdot \vec{z} \leq c s \sum_{i=1}^n |a_i|$ and have to prove $\vec{a} \cdot \vec{x} \leq c$. This can be done as follows:

$$\vec{a} \cdot \vec{x} = \vec{a} \cdot (\vec{z} + (\vec{x} - \vec{z})) = \vec{a} \cdot \vec{z} + \vec{a} \cdot (\vec{x} - \vec{z}) \stackrel{(B)}{\leq} \left(c - s \sum_{i=1}^{n} |a_i| \right) + \vec{a} \cdot (\vec{x} - \vec{z}) = c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} a_i \cdot (x_i - z_i) \leq c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} |a_i| \cdot |x_i - z_i| \stackrel{(A)}{\leq} c - s \sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} |a_i| \cdot s = c$$

5 (1) Yes, this can happen. Consider the weighted graph

$$a \xrightarrow{-4} b \xrightarrow{1} c \xrightarrow{1} d$$

(2) No, this cannot happen. The reason is that if they were pending distance updates in iteration |V| - 1, then this leads to a negative-cycle detection in the modified algorithm.

- (3) No, this cannot happen. If there is a negative cycle, then in every iteration there would be distance updates. So, in particular when performing the cyclicity-check in the modified algorithm.
- [6] (a) A suitable invariant is $i \ge 1$. We obtain the following formulas:

$$\begin{array}{ll} i=1 \longrightarrow i \geq 1 & (\text{loop start}) \\ i < N \wedge i \geq 1 \wedge i' = i+1 \longrightarrow i' \geq 1 & (\text{loop iteration}) \\ i < N \wedge i \geq 1 \longrightarrow 0 \leq i+1 \leq N \wedge 0 \leq i \leq N \wedge 0 \leq i-1 \leq N & (\text{array accessess}) \end{array}$$

(b) We first convert the formula $\neg \psi$ into NNF:

$$\varphi(a,i) \wedge i < N \wedge b = a\{i+1 \leftarrow a[i] + a[i-1]\} \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \ne fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge \left(\exists k. \ 0 \le j \wedge b[k] \rightarrow fib(k)\right) \wedge j = i+1 \wedge i+1$$

Next we eliminate the array updates via the write rule:

$$\begin{split} \varphi(a,i) \wedge i < N \wedge b[i+1] = a[i] + a[i-1] \wedge \left(\forall k. \ k \le i \lor k \ge i+2 \longrightarrow b[k] = a[k] \right) \\ \wedge j = i+1 \wedge \left(\exists k. \ 0 \le k \le j \land b[k] \ne fib(k) \right) \end{split}$$

Next we eliminate the existential quantifier:

$$\begin{split} \varphi(a,i) \wedge i < N \wedge b[i+1] = a[i] + a[i-1] \wedge \left(\forall k. \ k \le i \lor k \ge i+2 \longrightarrow b[k] = a[k] \right) \\ \wedge j = i+1 \wedge 0 \le \ell \le j \wedge b[\ell] \neq fib(\ell) \end{split}$$

Next we eliminate the universal quantifier where $\mathcal{I} = \{0, i - 1, i, i + 1, i + 2, \ell\}$:

$$\left(\bigwedge_{k \in \mathcal{I}} 0 \le k \le i \longrightarrow a[k] = fib(k)\right) \land i < N \land b[i+1] = a[i] + a[i-1]$$
$$\land \left(\bigwedge_{k \in \mathcal{I}} k \le i \lor k \ge i+2 \longrightarrow b[k] = a[k]\right) \land j = i+1 \land 0 \le \ell \le j \land b[\ell] \neq fib(\ell)$$

Finally, we eliminate array accesses to obtain the desired formula χ :

$$\begin{split} \chi &:= \Big(\bigwedge_{k \in \mathcal{I}} 0 \le k \le i \longrightarrow A(k) = fib(k)\Big) \land i < N \land B(i+1) = A(i) + A(i-1) \\ &\land \left(\bigwedge_{k \in \mathcal{I}} k \le i \lor k \ge i+2 \longrightarrow B(k) = A(k)\right) \land j = i+1 \land 0 \le \ell \le j \land B(\ell) \neq fib(\ell) \end{split}$$