B universitat
™ Innsbruck

Constraint Solving WS 2022/2023 LVA 703304

Test-Exam — Solution January 27, 2023

First we replace =V with 3 - and compute an equivalent NNF:
Jo. (3y —1 <3z A y#2z—6)
Next we eliminate #, resulting in the formula
Jr.(3y—1<3z A (y<2z—6 V 22 —6<y))
In the next step we move the terms containing x to one side of the inequalities:
Jz.(By—1<3z A (y+6<2z V 22 <y+06))
The coefficients of = are 2 and 3, hence we let ¢’ = lcm {2,3} = 6 and obtain the formula

o' (6y—2<a’ A By+18<a’ VvV 2’ <3y+18) A 6|a)
The four literals are classified as follows:

(B) 6y—2<2a (B) 3y+18<a’ (A) 2/ <3y+18 (C) 6]
At this point we compute the left infinite projection:

LA(LV T AG6

which simplifies to L. The lower bounds in the (B) literals are B = {6y — 2,3y + 18} and § = 6. Hence the
following quantifier-free formula is obtained:

6

V V y—2<t+j A By+18<t+j Vv t+j<3y+18) A 6[t+)
j=1 teB

Since |A| < |B|, it is actually more efficient to compute the right infinite projection:
TA(TV L) A6

which simplifies to 6| 2’. The upper bound in the (A) literal is 3y 4+ 18 and § = 6, resulting in the following
quantifier-free formula:

6 6
\V 6l-iv \ (6y—2<t—j A By+18<t—j VvV t—j<3y+18) A 6|t—j)
j=1 j=1

with ¢t = 3y + 18.
The constraints are equivalent to

4+ 2y > -3
8r+4y < -5

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0:

tableau ‘ Ty bounds assignment z y s t
s 4 2 s> -3 0 0 0O
t t< -5

There is a violation for ¢t. Both x and y are suitable, but Bland’s rule will select z. Pivoting results in:

tableau ‘ t y bounds assignment = y s t
S 1/2 0 s> -3 0 0 0 O
T 1/8 —1/2 t< -5

Updating the assignment ¢ := —5 results in:

tableau ‘ t y bounds assignment x Y S t
s 1/2 0 s>-3 —-5/8 0 -5/2 -5
x 1/8 —1/2 t< -5

Since all bounds are satisfied, the solution z = —5/8 and y = 0 is returned.

We associate an integer variable z. with every cell ¢ and use LIA as underlying theory. We consider the
constraints separately:

(a) For each room consisting of the n cells ¢y, ..., ¢, we add the constraint
n n n—1 n
1
At<a<n n Sea=200 o A A s ta,
i=1 i=1 i=1 j=i+1

(b) For neighbouring cells a and b in adjacent rooms we add the constraint z, # x;. For the given puzzle
we obtain 12 such constraints.

(c) A cell with an arrow can have up to four neighbouring cells. Here we consider the case of exactly four
neighbours. Let a, b, ¢ and d be these neighbours, and suppose the arrow points to cell a. Then we add

a>b ANa>c N a>d

(d) Finally, if cell ¢ is filled with a concrete number n then we simply add the constraint z. = n.

(a) Since the inequality AZ < b is the same as demanding all row-inequalities we just build a large conjunc-
tion, i.e., we apply (2) on each row separately and obtain:

—121+322§2—4
2217122§473
—1z; — 12 <7 -2

or equivalently: AZ < b— . This problem can then be solved by the simplex algorithm.

N W

(b) s =1/2 is the smallest possible value of s, because exactly then it is guaranteed that an integral vector
Z is contained in cubey(Z). It is the vector & defined as x; := round(z;), where round rounds a rational
number to the closest integer.

(c) We assume (A) & € cubey(Z) and (B) @-Z < c—s) ., |a;| and have to prove @ - Z < c¢. This can be
done as follows:

n n
:c—sZ\ai| —l—Zai (xs — z)
i=1 i=1
n n
<c—sd lail+ Y |ail - |2 — 2l
i=1 i=1
< c—sZ|ai|+Z\ai|-s
i=1 i=1

=c
(1) Yes, this can happen. Consider the weighted graph
a—Sb-5 4

(2) No, this cannot happen. The reason is that if they were pending distance updates in iteration |V| — 1,
then this leads to a negative-cycle detection in the modified algorithm.

(3) No, this cannot happen. If there is a negative cycle, then in every iteration there would be distance
updates. So, in particular when performing the cyclicity-check in the modified algorithm.

(a) A suitable invariant is ¢ > 1. We obtain the following formulas:

i=1—12>1 (loop start)
i< NAi>IAN =i4+1—i>1 (loop iteration)
I<NANi>1—0<i+1<NAOLi<NAOLi—1<N (array accessess)

(b) We first convert the formula —¢) into NNF:

ola, i) Ni < NAb=af{i+1«+afi]+ai—1}Aj=i+1A (EIk.Og k < j ADbIK] ;éﬁb(k))
Next we eliminate the array updates via the write rule:

ola,i) Ni < NAbli+1] =ali] +ali — 1A (V. k<iVk>i+2— bk] =alk])
ANj=i+1A(3k.0<k<jAbk]# fib(k))

Next we eliminate the existential quantifier:

pla,i) Ni < NAbli+1] =ali] +ali — 1] A (V. k<iVk>i+2— bk] =alk])
ANj=i+1AN0<L<jAbE# fib(l)

Next we eliminate the universal quantifier where Z = {0,¢ — 1,4,4+ 1,4+ 2,£}:

(/\ 0§k§i—>a[k]—ﬁb(k)> Ai < N Abli+ 1] = afi] + afi — 1]
kel

A (/\ kgivk2i+2—>b[k]:a[k]> ANj=i+1A0<L<jAD[]# fib(l)
kel

Finally, we eliminate array accesses to obtain the desired formula y:

xi=(/\0<k<i— A(k)=fib(k)) Ni < NAB(i+1) = A(i) + A(i — 1)
kel

A </\k§z‘\/k2i+2*>3(k)A(k))/\ji+1/\0§€§j/\B(€)7éﬁb(€)
kel

