This exam consists of $\mathbf{5}$ exercises. The available points for each item are written in the margin. In total there are 90 points. You need 45 points to pass.

(1) Algorithms in Linear Arithmetic

Consider the following formula:

$$
\varphi:=\exists x . \exists y . \quad(3 x+2 y<2 \wedge-x+5 y>1)
$$

(a) Remove the quantifier of y within φ using Cooper's method. You don't have to simplify the formula after the removal of the quantifier.
(b) Start to solve φ using the simplex method: apply all initial steps and one iteration of the main loop. Use Bland's selection rule with the variable order $x<y<s<t$ where s and t are the introduced slack variables.
Is a second iteration of the main loop required? Just answer this question with a yes or no.

(2) Understanding Linear Arithmetic

For some optimization problems it is required to consider mixed linear arithmetic problems, where the set of variables \mathcal{V} is partitioned into $\mathcal{V}_{\mathbb{Z}} \uplus \mathcal{V}_{\mathbb{Q}}$, i.e., some variables are restricted to represent integers whereas the others are for rational numbers. For instance $\mathcal{V}_{\mathbb{Z}}$ might describe quantities which cannot be split, such as wheels, screws, etc., whereas $\mathcal{V}_{\mathbb{Q}}$ is used for amounts of fluids, for costs, etc.
A mixed solution of a quantifier-free formula φ is an assignment $v: \mathcal{V} \rightarrow \mathbb{Q}$ that satisfies φ and where additionally $v(x) \in \mathbb{Z}$ for all $x \in \mathcal{V}_{\mathbb{Z}}$.
] (a) Modify the branch-and-bound algorithm for LIA so that it can treat mixed linear arithmetic constraints, i.e., write down pseudo-code.
(b) Consider the small model property of LIA.

The existing proof translates a set of constraints with n variables given as a polyhedron $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ with $A \in \mathbb{Z}^{m \times n}$ and $\vec{b} \in \mathbb{Z}^{m}$ into $\operatorname{hull}(H)+\operatorname{cone}(C)$ for some $H \subseteq \mathbb{Q}^{n}$ and $C \subseteq \mathbb{Z}^{n}$ where additionally some upper bound u is constructed in a way that all coefficients c of all vectors in $H \cup C$ are bounded: $|c| \leq u$.
Afterwards it is shown how some arbitrary integral solution $\vec{x} \in \operatorname{hull}(H)+$ cone (C) can be turned into a small integral solution $\vec{y} \in \operatorname{hull}(H)+\operatorname{cone}(C)$ where $\left|y_{i}\right|$ is bounded by some expression involving u and n for all coefficients y_{i} of \vec{y}.
i. Provide an upper bound for $\left|y_{i}\right|$ depending on u and n.
ii. Does the transformation of the arbitrary integer solution \vec{x} into the small integer solution \vec{y} also work correctly in the mixed case with $\mathcal{V}_{\mathbb{Z}}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathcal{V}_{\mathbb{Q}}=$ $\left\{x_{k+1}, \ldots, x_{n}\right\}$, i.e., when replacing the conditions of \vec{x}, \vec{y} being integral by $\vec{x}, \vec{y} \in$ $\mathbb{Z}^{k} \times \mathbb{Q}^{n-k}$? Explain your answer.

Algorithms for SAT
Consider the following clauses.
(a) $1 \vee \neg 7 \vee 8$
(e) $2 \vee \neg 4 \vee 5$
(i) $\neg 5 \vee 7 \vee \neg 8 \vee \neg 9$
(b) $\neg 1 \vee \neg 2$
(f) $6 \vee \neg 9 \vee 10$
(j) $\neg 5 \vee 9 \vee \neg 10$
(c) $2 \vee 3$
(g) $\neg 4 \vee \neg 6 \vee \neg 7$
(k) $9 \vee 11$
(d) $\neg 1 \vee 4$
(h) $\neg 6 \vee 8$
(l) $10 \vee \neg 11$

Further consider the following run of DPLL

$$
{ }^{d} \underset{(b)}{\neg 2} \underset{(c)}{3} \underset{(c)}{4} \underset{(d)}{5} \underset{(e)}{5} \stackrel{d}{6} \underset{(g)}{\neg 7} \underset{(h)}{8} \underset{(i)}{\neg 9} \underset{(j)}{\neg 10} \underset{(k)}{11}
$$

where in this configuration a conflict w.r.t. clause (l) is detected.
(a) Compute the implication graph from the beginning up to the conflict detection. Layout hint: put nodes $1, \neg 2,3$ in one line at the top, place 4 below 1 and 6 below 4 .
(b) Identify the first unique implication point and write down the corresponding backjump clause.
(c) Write down the next configuration that is obtain from applying the backjump rule w.r.t. the identified backjump clause.

4 Encoding Problems

Consider a puzzle game where each puzzle consists of several puzzle constraints p_{i} which are all of the form

$$
c=1 \cdot x_{1}+2 \cdot x_{2}+\ldots+k \cdot x_{k}
$$

where $c \in \mathbb{N}$ and x_{1}, \ldots, x_{k} are variables chosen from a larger set of variables. A solution to a puzzle constraint must satisfy the equation and additionally the restriction that each variable x_{i} gets assigned a digit in the range from 0 to 7 .
For instance, the constraint $14=x+2 y+3 z$ can be solved by choosing $x=7, y=2, z=1$ or $x=0, y=7, z=0$ or \ldots, but neither $x=8, y=3, z=0$ nor $x=1, y=2, z=4$.
Example: given two puzzle constraints $2=1 x+2 y$ and $25=1 y+2 x+3 z$ using variables x, y, z, this game has the unique solution $x=2, y=0, z=7$.
(a) Choose a theory (such as equality logic, difference logic, EUF, LRA, LIA, BV) and encode a single puzzle constraint as a formula which is as succinct as possible.
(b) Choose another theory and encode a single puzzle constraint. You can reuse earlier formulas if desired.
(c) Choose yet another theory and encode a single puzzle constraint.
(d) Assume you are given a full puzzle game with puzzle constraints p_{1}, \ldots, p_{n} using variables x_{1}, \ldots, x_{m}. Describe an SMT-based algorithm to check whether this game has a unique solution.

5 Multiple Choice

[10]
There are five questions on the answer sheet.
Mark your answers by crossing the correct box, e.g., like this: \square.

- Each correct answer is worth 2 points.
- Each wrong answer is worth -1 point.
- Giving no answer to a question is worth 0 points.
- If the total number of points is negative, then this exercise will be evaluated with 0 points.

