

Constraint Solving

WS 2022/2023

LVA 703304

EXAM 1

February 3, 2023

1 (a) calculation + explanation

$$\varphi := \exists x. \exists y. \ (3x + 2y < 2 \land -x + 5y > 1)$$

gather y on one side

$$\equiv \exists x. \exists y. \ (2y < 2 - 3x \land 5y > 1 + x)$$

multiply to get 10y everywhere

$$\equiv \exists x. \exists y. \ (10y < 10 - 15x \land 10y > 2 + 2x)$$

switch to y'

$$\equiv \exists x. \exists y'. \ (y' < 10 - 15x \land y' > 2 + 2x \land 10|y')$$

elimination of y': $B = \{2 + 2x\}, \delta = 10$, left infinite projection simplifies to \perp

$$\equiv \exists x. \bigvee_{j=1}^{10} \left(2 + 2x + j < 10 - 15x \land 2 + 2x + j > 2 + 2x \land 10|2 + 2x + j\right)$$

further simplification (not required)

$$\equiv \exists x. \bigvee_{j \in \{2,4,6,8,10\}} (17x + j < 8 \land 10|2 + 2x + j)$$

(b) *calculation* + *explanation*

The formula can be written as

$$3x + 2y < 2$$
$$-x + 5y > 1$$

and the elimination of strict inequalities yields

 $3x + 2y \le 2 - \delta$ $-x + 5y \ge 1 + \delta$

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0:

tableau	x	y	bounds	assignment	x	y	s	t
s	3	2	$s \leq 2-\delta$		0	0	0	0
t	-1	5	$t \geq 1+\delta$					

There is a violation for t. Both x and y are suitable, but Bland's rule will select x. Pivoting of t and x results in:

tableau	t	y	bounds	$\operatorname{assignment}$	x	y	s	t
s	-3	17	$s \leq 2-\delta$		0	0	0	0
x	-1	5	$t \geq 1+\delta$					

Updating the assignment $t := 1 + \delta$ results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	-3	17	$s \leq 2-\delta$		$-1-\delta$	0	$-3-3\delta$	$1+\delta$
x	-1	5	$t \geq 1+\delta$					

Since no bound is violated, no further iterations of the main loop are required.

2 (a) algorithm bb-mixed $(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi)$

- \bullet invoke simplex on φ
- if the output is unsat, return unsat
- \bullet otherwise, let v be the solution of simplex
- if $v(x) \in \mathbb{Z}$ for all $x \in \mathcal{V}_{\mathbb{Z}}$ then return solution v
- otherwise, choose some $x \in \mathcal{V}_{\mathbb{Z}}$ such that $c = v(x) \notin \mathbb{Z}$
- if $bb\text{-}mixed(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi \cup \{x \leq \lfloor c \rfloor\})$ returns a solution v' then return v'
- otherwise, return $bb-mixed(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi \cup \{x \geq \lceil c \rceil\})$

(b.i) upper bound

The small solution is obtain by starting in hull(H) and adding at most n vectors $\vec{c_i}$ of C with coefficients $\lambda_i < 1$. Hence, an upper bound is $(n+1) \cdot u$.

(b.ii) answer and explanation

The same construction is still possible: one starts with an arbitrary solution $\vec{x} \in \mathbb{Z}^k \times \mathbb{Q}^{n-k}$, i.e., $\vec{x} = \vec{v} + \sum_{i=1}^n \lambda_i \vec{c_i}$ where $\vec{v} \in hull(H)$ and each $\vec{c_i} \in C$ and $\lambda_i \ge 0$. If all λ_i are below 1, then the small vector is obtained. Otherwise, there is some $\lambda_i \ge 1$. Then one can change λ_i to $\lambda_i - 1$ and gets the solution $\vec{x} - \vec{c_i}$ that is contained in $\mathbb{Z}^k \times \mathbb{Q}^{n-k}$, since C consists

can change λ_i to $\lambda_i - 1$ and gets the solution $\vec{x} - \vec{c_i}$ that is contained in $\mathbb{Z}^k \times \mathbb{Q}^{n-k}$, since C consists of integral vectors. Repeating this adaptation of the solution will finally result in the desired small solution.

 $\boxed{4} \quad (a) \ \ chosen \ theory + formula$

The obvious choice is LIA where each puzzle variable x_i is directly represented by an integer variable. The formula is

$$\underbrace{c = 1x_1 + \ldots + kx_k}_{\varphi_{eq}} \land \bigwedge_{i=1}^k (0 \le x_i \land x_i \le 7)$$

(b) chosen theory + formula

The next obvious choice is LRA where each puzzle variable x_i is represented by a rational variable. To avoid that rational values are taken, we replace the formula φ_{LIA} by φ_{LRA} .

$$\underbrace{\bigwedge_{i=1}^{k} (x_i = 0 \lor x_i = 1 \lor \ldots \lor x_i = 7)}_{\varphi_{LRA}}$$

(c) chosen theory + formula

Another obvious choice is bit-vector arithmetic where each puzzle variable x_i is represented by a bit-vector variable. In bit-vector arithmetic we have to specify which kind of encoding we want to use in comparisons (we want unsigned), so we replace the formula φ_{LIA} by φ_{BV} .

$$\underbrace{\bigwedge_{i=1}^{k} x_i \leq_u 7}_{\varphi_{BV}}$$

We also have to take care that no overflows can occur within φ_{eq} . Since the summation can take a value of at most $1 \cdot 7 + 2 \cdot 7 + \ldots + k \cdot 7 = 7 \cdot k \cdot (k+1)/2 \leq 4(k+1)^2$, it suffices to consider a bit-width of at least $2 \cdot \lceil \log_2(4(k+1)) \rceil$. Using only 3 bits (to represent numbers between 0 and 7 which covers digits 0 to 7) is not sufficient.

(d) algorithm

Let $\varphi(p)$ be the encoding for a single puzzle constraint, i.e., choose any of the encodings above. We first check satisfiability of the puzzle by invoking a SMT solver on $\psi := \bigwedge_{i=1}^{n} \varphi(p_i)$. If the ψ is not satisfiable then return "puzzle has no unique solution."

Otherwise, extract the solution, i.e., we get a concrete assignment $x_1 = v_1, \ldots, x_m = v_m$ for digits $v_1,\ldots,v_m.$

Next check satisfiability of $\chi := \psi \land \neg(\bigwedge_{i=1}^{m} x_i = v_i)$. If χ is satisfiable return "puzzle has no unique solution." and otherwise return the unique solution $x_1 = v_1, \dots, x_m = v_m.$

Question	Yes	No		
The Nelson–Oppen algorithm is a quantifier elimination algorithm for LRA.		Ø		
The congruence closure algorithm is used in the context of EUF.	Ø			
Difference logic constraints can be solved in polynomial time for both \mathbb{Z} and \mathbb{Q} .				
LRA, LIA and EUF are convex theories.				
Array Logic is decidable if both the index theory (including quantifiers) is decidable and the element theory is decidable.		Ø		