1 (a)
calculation + explanation

$$
\varphi:=\exists x . \exists y .(3 x+2 y<2 \wedge-x+5 y>1)
$$

gather y on one side

$$
\equiv \exists x . \exists y . \quad(2 y<2-3 x \wedge 5 y>1+x)
$$

multiply to get $10 y$ everywhere

$$
\equiv \exists x . \exists y . \quad(10 y<10-15 x \wedge 10 y>2+2 x)
$$

switch to y^{\prime}

$$
\equiv \exists x . \exists y^{\prime} .\left(y^{\prime}<10-15 x \wedge y^{\prime}>2+2 x \wedge 10 \mid y^{\prime}\right)
$$

elimination of $y^{\prime}: B=\{2+2 x\}, \delta=10$, left infinite projection simplifies to \perp

$$
\equiv \exists x . \bigvee_{j=1}^{10}(2+2 x+j<10-15 x \wedge 2+2 x+j>2+2 x \wedge 10 \mid 2+2 x+j)
$$

further simplification (not required)

$$
\equiv \exists x . \bigvee_{j \in\{2,4,6,8,10\}}(17 x+j<8 \wedge 10 \mid 2+2 x+j)
$$

(b)
calculation + explanation
The formula can be written as

$$
\begin{gathered}
3 x+2 y<2 \\
-x+5 y>1
\end{gathered}
$$

and the elimination of strict inequalities yields

$$
\begin{aligned}
3 x+2 y & \leq 2-\delta \\
-x+5 y & \geq 1+\delta
\end{aligned}
$$

So we get the following initial tableau and bounds and an initial assignment where everything becomes 0 :

tableau	x	y	bounds	assignment	x	y	s	t
s	3	2	$s \leq 2-\delta$	0	0	0	0	
t	-1	5	$t \geq 1+\delta$					

There is a violation for t. Both x and y are suitable, but Bland's rule will select x. Pivoting of t and x results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	-3	17	$s \leq 2-\delta$	0	0	0	0	
x	-1	5	$t \geq 1+\delta$					

Updating the assignment $t:=1+\delta$ results in:

tableau	t	y	bounds	assignment	x	y	s	t
s	-3	17	$s \leq 2-\delta$	$-1-\delta$	0	$-3-3 \delta$	$1+\delta$	
x	-1	5	$t \geq 1+\delta$					

Since no bound is violated, no further iterations of the main loop are required.

2 (a) algorithm bb-mixed $\left(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi\right)$

- invoke simplex on φ
- if the output is unsat, return unsat
- otherwise, let v be the solution of simplex
- if $v(x) \in \mathbb{Z}$ for all $x \in \mathcal{V}_{\mathbb{Z}}$ then return solution v
- otherwise, choose some $x \in \mathcal{V}_{\mathbb{Z}}$ such that $c=v(x) \notin \mathbb{Z}$
- if $b b-\operatorname{mixed}\left(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi \cup\{x \leq\lfloor c\rfloor\}\right)$ returns a solution v^{\prime} then return v^{\prime}
- otherwise, return $b b-\operatorname{mixed}\left(\mathcal{V}_{\mathbb{Z}}, \mathcal{V}_{\mathbb{Q}}, \varphi \cup\{x \geq\lceil c\rceil\}\right)$
(b.i) upper bound

The small solution is obtain by starting in $\operatorname{hull}(H)$ and adding at most n vectors \vec{c}_{i} of C with coefficients $\lambda_{i}<1$. Hence, an upper bound is $(n+1) \cdot u$.
(b.ii) answer and explanation

The same construction is still possible:
one starts with an arbitrary solution $\vec{x} \in \mathbb{Z}^{k} \times \mathbb{Q}^{n-k}$, i.e., $\vec{x}=\vec{v}+\sum_{i=1}^{n} \lambda_{i} \vec{c}_{i}$ where $\vec{v} \in \operatorname{hull}(H)$ and each $\vec{c}_{i} \in C$ and $\lambda_{i} \geq 0$.
If all λ_{i} are below 1 , then the small vector is obtained. Otherwise, there is some $\lambda_{i} \geq 1$. Then one can change λ_{i} to $\lambda_{i}-1$ and gets the solution $\vec{x}-\vec{c}_{i}$ that is contained in $\mathbb{Z}^{k} \times \mathbb{Q}^{n-k}$, since C consists of integral vectors. Repeating this adaptation of the solution will finally result in the desired small solution.

3 (a)

(b) first unique implication point + backjump clause

There are two unique implication points, the first one is $\neg 9$, and the other is the decision literal 6 . The backjump clause of the first UIP is (m): $\neg 5 \vee 9$.
(c) next configuration

$$
\stackrel{d}{1} \underset{(b)}{\neg 2} \underset{(c)}{3} \underset{(c)}{4} \begin{gathered}
(d) \\
(e)
\end{gathered} \underset{(m)}{9}
$$

4 (a) chosen theory + formula
The obvious choice is LIA where each puzzle variable x_{i} is directly represented by an integer variable.
The formula is

$$
\underbrace{c=1 x_{1}+\ldots+k x_{k}}_{\varphi_{e q}} \wedge \underbrace{\bigwedge_{i=1}^{k}\left(0 \leq x_{i} \wedge x_{i} \leq 7\right)}_{\varphi_{L I A}}
$$

(b) chosen theory + formula

The next obvious choice is LRA where each puzzle variable x_{i} is represented by a rational variable. To avoid that rational values are taken, we replace the formula $\varphi_{L I A}$ by $\varphi_{L R A}$.

$$
\underbrace{\bigwedge_{i=1}^{k}\left(x_{i}=0 \vee x_{i}=1 \vee \ldots \vee x_{i}=7\right)}_{\varphi_{L R A}}
$$

(c)
chosen theory + formula
Another obvious choice is bit-vector arithmetic where each puzzle variable x_{i} is represented by a bit-vector variable. In bit-vector arithmetic we have to specify which kind of encoding we want to use in comparisons (we want unsigned), so we replace the formula $\varphi_{L I A}$ by $\varphi_{B V}$.

$$
\underbrace{\bigwedge_{i=1}^{k} x_{i} \leq_{u} 7}_{\varphi_{B V}}
$$

We also have to take care that no overflows can occur within $\varphi_{e q}$. Since the summation can take a value of at most $1 \cdot 7+2 \cdot 7+\ldots+k \cdot 7=7 \cdot k \cdot(k+1) / 2 \leq 4(k+1)^{2}$, it suffices to consider a bit-width of at least $2 \cdot\left\lceil\log _{2}(4(k+1))\right\rceil$. Using only 3 bits (to represent numbers between 0 and 7 which covers digits 0 to 7) is not sufficient.
(d) algorithm

Let $\varphi(p)$ be the encoding for a single puzzle constraint, i.e., choose any of the encodings above.
We first check satisfiability of the puzzle by invoking a SMT solver on $\psi:=\bigwedge_{i=1}^{n} \varphi\left(p_{i}\right)$.
If the ψ is not satisfiable then return "puzzle has no unique solution."
Otherwise, extract the solution, i.e., we get a concrete assignment $x_{1}=v_{1}, \ldots, x_{m}=v_{m}$ for digits v_{1}, \ldots, v_{m}.
Next check satisfiability of $\chi:=\psi \wedge \neg\left(\bigwedge_{i=1}^{m} x_{i}=v_{i}\right)$.
If χ is satisfiable return "puzzle has no unique solution." and otherwise return the unique solution $x_{1}=v_{1}, \ldots, x_{m}=v_{m}$.

Question	Yes	No
The Nelson-Oppen algorithm is a quantifier elimination algorithm for LRA.	\square	\square
The congruence closure algorithm is used in the context of EUF.	\square	\square
Difference logic constraints can be solved in polynomial time for both \mathbb{Z} and \mathbb{Q}.	\square	\square
LRA, LIA and EUF are convex theories.	\square	\square
Array Logic is decidable if both the index theory (including quantifiers) is decidable and the element theory is decidable.	\square	\square

