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1 (a) calculation + explanation

ϕ := ∃x.∃y. (3x+ 2y < 2 ∧ −x+ 5y > 1)

gather y on one side

≡ ∃x.∃y. (2y < 2− 3x ∧ 5y > 1 + x)

multiply to get 10y everywhere

≡ ∃x.∃y. (10y < 10− 15x ∧ 10y > 2 + 2x)

switch to y′

≡ ∃x.∃y′. (y′ < 10− 15x ∧ y′ > 2 + 2x ∧ 10|y′)

elimination of y′: B = {2 + 2x}, δ = 10, left infinite projection simplifies to ⊥

≡ ∃x.
10∨
j=1

(2 + 2x+ j < 10− 15x ∧ 2 + 2x+ j > 2 + 2x ∧ 10|2 + 2x+ j)

further simplification (not required)

≡ ∃x.
∨

j∈{2,4,6,8,10}

(17x+ j < 8 ∧ 10|2 + 2x+ j)



(b) calculation + explanation

The formula can be written as

3x+ 2y < 2

−x+ 5y > 1

and the elimination of strict inequalities yields

3x+ 2y ≤ 2− δ
−x+ 5y ≥ 1 + δ

So we get the following initial tableau and bounds and an initial assignment where everything
becomes 0:

tableau x y bounds assignment x y s t

s 3 2 s ≤ 2− δ 0 0 0 0

t −1 5 t ≥ 1 + δ

There is a violation for t. Both x and y are suitable, but Bland’s rule will select x. Pivoting of t
and x results in:

tableau t y bounds assignment x y s t

s −3 17 s ≤ 2− δ 0 0 0 0

x −1 5 t ≥ 1 + δ

Updating the assignment t := 1 + δ results in:

tableau t y bounds assignment x y s t

s −3 17 s ≤ 2− δ −1− δ 0 −3− 3δ 1 + δ

x −1 5 t ≥ 1 + δ

Since no bound is violated, no further iterations of the main loop are required.



2 (a) algorithm bb-mixed(VZ,VQ, ϕ)

• invoke simplex on ϕ

• if the output is unsat, return unsat

• otherwise, let v be the solution of simplex

• if v(x) ∈ Z for all x ∈ VZ then return solution v

• otherwise, choose some x ∈ VZ such that c = v(x) /∈ Z

• if bb-mixed(VZ,VQ, ϕ ∪ {x ≤ bcc}) returns a solution v′ then return v′

• otherwise, return bb-mixed(VZ,VQ, ϕ ∪ {x ≥ dce})

(b.i) upper bound

The small solution is obtain by starting in hull(H) and adding at most n vectors ~ci of C with
coefficients λi < 1. Hence, an upper bound is (n+ 1) · u.

(b.ii) answer and explanation

The same construction is still possible:
one starts with an arbitrary solution ~x ∈ Zk ×Qn−k, i.e., ~x = ~v+

∑n
i=1 λi~ci where ~v ∈ hull(H) and

each ~ci ∈ C and λi ≥ 0.
If all λi are below 1, then the small vector is obtained. Otherwise, there is some λi ≥ 1. Then one
can change λi to λi− 1 and gets the solution ~x−~ci that is contained in Zk×Qn−k, since C consists
of integral vectors. Repeating this adaptation of the solution will finally result in the desired small
solution.



3 (a) implication graph
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(b) first unique implication point + backjump clause

There are two unique implication points, the first one is ¬9, and the other is the decision literal 6.
The backjump clause of the first UIP is (m): ¬5 ∨ 9.

(c) next configuration
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4 (a) chosen theory + formula

The obvious choice is LIA where each puzzle variable xi is directly represented by an integer variable.
The formula is

c = 1x1 + . . .+ kxk︸ ︷︷ ︸
ϕeq

∧
k∧

i=1

(0 ≤ xi ∧ xi ≤ 7)︸ ︷︷ ︸
ϕLIA

(b) chosen theory + formula

The next obvious choice is LRA where each puzzle variable xi is represented by a rational variable.
To avoid that rational values are taken, we replace the formula ϕLIA by ϕLRA.

k∧
i=1

(xi = 0 ∨ xi = 1 ∨ . . . ∨ xi = 7)︸ ︷︷ ︸
ϕLRA

(c) chosen theory + formula

Another obvious choice is bit-vector arithmetic where each puzzle variable xi is represented by a
bit-vector variable. In bit-vector arithmetic we have to specify which kind of encoding we want to
use in comparisons (we want unsigned), so we replace the formula ϕLIA by ϕBV.

k∧
i=1

xi ≤u 7︸ ︷︷ ︸
ϕBV

We also have to take care that no overflows can occur within ϕeq. Since the summation can take
a value of at most 1 · 7 + 2 · 7 + . . . + k · 7 = 7 · k · (k + 1)/2 ≤ 4(k + 1)2, it suffices to consider a
bit-width of at least 2 · dlog2(4(k + 1))e. Using only 3 bits (to represent numbers between 0 and 7
which covers digits 0 to 7) is not sufficient.



(d) algorithm

Let ϕ(p) be the encoding for a single puzzle constraint, i.e., choose any of the encodings above.
We first check satisfiability of the puzzle by invoking a SMT solver on ψ :=

∧n
i=1 ϕ(pi).

If the ψ is not satisfiable then return “puzzle has no unique solution.”
Otherwise, extract the solution, i.e., we get a concrete assignment x1 = v1, . . . , xm = vm for digits
v1, . . . , vm.
Next check satisfiability of χ := ψ ∧ ¬(

∧m
i=1 xi = vi).

If χ is satisfiable return “puzzle has no unique solution.” and otherwise return the unique solution
x1 = v1, . . . , xm = vm.



5

Question Yes No

The Nelson–Oppen algorithm is a quantifier elimination algorithm for LRA. 2 2�

The congruence closure algorithm is used in the context of EUF. 2� 2

Difference logic constraints can be solved in polynomial time for both Z and Q. 2� 2

LRA, LIA and EUF are convex theories. 2 2�

Array Logic is decidable if both the index theory (including quantifiers) is decidable and the element
theory is decidable.

2 2�


