Einführung in die Theoretische Informatik

Christian Dalvit Manuel Eberl Samuel Frontull **Cezary Kaliszyk** Daniel Ranalter

Wintersemester 2022/23

Zusammenfassung

Wintersemester 2022/23

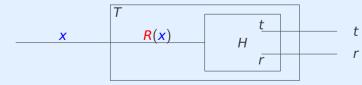
Jede partielle Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$, die berechenbar auf einer RM ist, ist auf einer TM berechenbar und umgekehrt

Definition (Berechenbare Reduktion)

angenommen

- L, M Sprachen über Σ
- $L \leq_T M \text{ mit } R: \Sigma^* \to \Sigma^*$
- die Reduktion R wird von TM T berechnet, sodass gilt $x \in L \Leftrightarrow R(x) \in M$

Entscheidbarkeit von L, durch Entscheider H von M



Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Formales Beweisen, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

Algebraische Strukturen, Boolesche Algebra, Universelle Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Chomsky-Hierarchie, Reguläre Sprachen, Kontextfreie Sprachen, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Einführung in die Programmverifikation

Prinzipien der Analyse von Programmen, Verifikation nach Hoare

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Formales Beweisen, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

Algebraische Strukturen, Boolesche Algebra, Universelle Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Chomsky-Hierarchie, Reguläre Sprachen, Kontextfreie Sprachen, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Einführung in die Programmverifikation

Prinzipien der Analyse von Programmen, Verifikation nach Hoare

Sei Σ ein Alphabet und L $\subseteq \Sigma^*$ entscheidbar; dann ist \sim L entscheidbar

Sei Σ ein Alphabet und L $\subseteq \Sigma^*$ entscheidbar; dann ist \sim L entscheidbar

Beweis.

Da L entscheidbar ist, gibt es eine totale TM M mit L = L(M). Wir definieren eine TM M', wobei der akzeptierende und der verwerfende Zustand von M vertauscht werden. Weil M total ist, ist auch M' total. Somit akzeptiert M' ein Wort genau dann, wenn M es verwirft und es folgt $\sim L = L(M')$, d.h. $\sim L$ ist entscheidbar.

Sei Σ ein Alphabet und L $\subseteq \Sigma^*$ entscheidbar; dann ist \sim L entscheidbar

Beweis.

Da L entscheidbar ist, gibt es eine totale TM M mit L = L(M). Wir definieren eine TM M', wobei der akzeptierende und der verwerfende Zustand von M vertauscht werden. Weil M total ist, ist auch M' total. Somit akzeptiert M' ein Wort genau dann, wenn M es verwirft und es folgt $\sim L = L(M')$, d.h. $\sim L$ ist entscheidbar.

Satz

Jede entscheidbare Menge ist rekursiv aufzählbar. Andererseits ist nicht jede rekursiv aufzählbare Menge entscheidbar.

Sei Σ ein Alphabet und L $\subseteq \Sigma^*$ entscheidbar; dann ist \sim L entscheidbar

Beweis.

Da L entscheidbar ist, gibt es eine totale TM M mit L = L(M). Wir definieren eine TM M', wobei der akzeptierende und der verwerfende Zustand von M vertauscht werden. Weil M total ist, ist auch M' total. Somit akzeptiert M' ein Wort genau dann, wenn M es verwirft und es folgt $\sim L = L(M')$, d.h. $\sim L$ ist entscheidbar.

Satz

Jede entscheidbare Menge ist rekursiv aufzählbar. Andererseits ist nicht jede rekursiv aufzählbare Menge entscheidbar.

Beweis.

Der erste Teil des Satzes ist eine Konsequenz der Definitionen; der zweite Teil folgt daraus, dass HP zwar rek. aufz. ist, \sim HP aber nicht. (\rightarrow DS, 3. Semester)

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

Beweis.

• $\exists \text{ TM } M_1, M_2 \text{ mit } L = L(M_1) \text{ und } \sim (L) = L(M_2)$

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

Beweis.

- $\exists \mathsf{TM} M_1, M_2 \mathsf{mit} L = \mathsf{L}(M_1) \mathsf{und} \sim (L) = \mathsf{L}(M_2)$
- definiere TM M', sodass das Band zwei Hälften hat

b	ĥ	а	b	а	а	а	а	b	а	а	а	>	
С	С	С	d	d	d	С	ĉ	d	С	d	С)	

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

Beweis.

- $\exists \text{ TM } M_1, M_2 \text{ mit } L = L(M_1) \text{ und } \sim(L) = L(M_2)$
- definiere TM M', sodass das Band zwei Hälften hat

• M_1 wird auf der oberen und M_2 auf der unteren Hälfte simuliert

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

Beweis.

- $\exists \text{ TM } M_1, M_2 \text{ mit } L = L(M_1) \text{ und } \sim(L) = L(M_2)$
- definiere TM M', sodass das Band zwei Hälften hat

- M_1 wird auf der oberen und M_2 auf der unteren Hälfte simuliert
- wenn M₁ x akzeptiert, M' akzeptiert x
- wenn M₂ x akzeptiert, M' verwirft x

Wenn L und \sim L rekursiv aufzählbar sind, dann ist L entscheidbar.

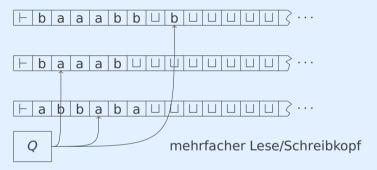
Beweis.

- $\exists \text{ TM } M_1, M_2 \text{ mit } L = L(M_1) \text{ und } \sim(L) = L(M_2)$
- definiere TM M', sodass das Band zwei Hälften hat

- M_1 wird auf der oberen und M_2 auf der unteren Hälfte simuliert
- wenn M₁ x akzeptiert, M' akzeptiert x
- wenn M₂ x akzeptiert, M' verwirft x

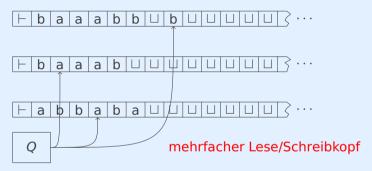
Definition (informell)

Erweiterung um mehrere Bänder und Lese/Schreibköpfe:



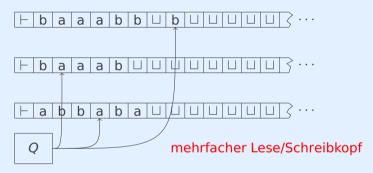
Definition (informell)

Erweiterung um mehrere Bänder und Lese/Schreibköpfe:



Definition (informell)

Erweiterung um mehrere Bänder und Lese/Schreibköpfe:



Definition

$$\delta \colon Q \times \Gamma^{3} \to Q \times \Gamma^{3} \times \{L, R\}^{3}$$

Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

• wir simulieren die Bänder übereinander, oBdA sei k=2

Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

- wir simulieren die Bänder übereinander, oBdA sei k=2
- wir erweitern das Alphabet von M'

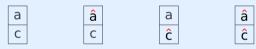
a c â c

a ĉ â ĉ

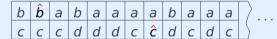
Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

- wir simulieren die Bänder übereinander, oBdA sei k=2
- wir erweitern das Alphabet von M'



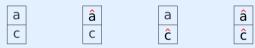
• Band von *M'* kann folgende Gestalt haben:



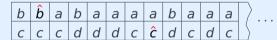
Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

- wir simulieren die Bänder übereinander, oBdA sei k=2
- wir erweitern das Alphabet von M'



• Band von M' kann folgende Gestalt haben:

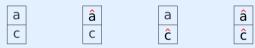


 alle Bänder von M sind nun repräsentiert und die Leseköpfe werden durch die Zusatzmarkierung ^ ausgedrückt

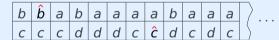
Sei M eine k-bändige TM. Dann existiert eine (einbändige) TM M', sodass L(M) = L(M')

Beweisskizze.

- wir simulieren die Bänder übereinander, oBdA sei k=2
- wir erweitern das Alphabet von M'

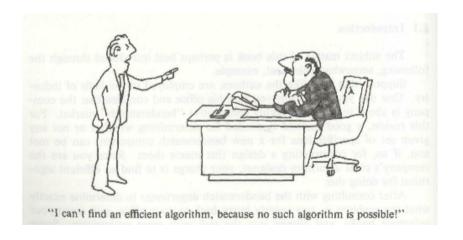


• Band von M' kann folgende Gestalt haben:



 alle Bänder von M sind nun repräsentiert und die Leseköpfe werden durch die Zusatzmarkierung ^ ausgedrückt

Berechenbarkeitstheorie, graphisch



Einführung in die Komplexitätstheorie

Wintersemester 2022/23

Komplexitätstheorie analysiert Algorithmen und Probleme:

Welche Ressourcen benötigt ein bestimmter Algorithmus oder ein Problem?

Komplexitätstheorie analysiert Algorithmen und Probleme:

Welche Ressourcen benötigt ein bestimmter Algorithmus oder ein Problem?

Ressourcen

- Speicherplatz
- Rechenzeit
- . . .

Komplexitätstheorie analysiert Algorithmen und Probleme:

Welche Ressourcen benötigt ein bestimmter Algorithmus oder ein Problem?

Ressourcen

- Speicherplatz
- Rechenzeit
- . . .

Problem & Algorithmus

Wir unterscheiden zwischen

- der Komplexität eines Algorithmus
- der Komplexität eines Problems

Komplexitätstheorie analysiert Algorithmen und Probleme:

Welche Ressourcen benötigt ein bestimmter Algorithmus oder ein Problem?

Ressourcen

- Speicherplatz
- Rechenzeit
- . . .

Problem & Algorithmus

Wir unterscheiden zwischen

- der Komplexität eines Algorithmus Algorithmus von Quine: 2^{c-n}
 - (wobei n die maximale binäre Länge der Eingabe)
- der Komplexität eines Problems

Komplexitätstheorie analysiert Algorithmen und Probleme:

Welche Ressourcen benötigt ein bestimmter Algorithmus oder ein Problem?

Ressourcen

- Speicherplatz
- Rechenzeit
- . . .

Problem & Algorithmus

Wir unterscheiden zwischen

- der Komplexität eines Algorithmus
 - S Algorithmus von Quine: 2^{c-n}
 - (wobei n die maximale binäre Länge der Eingabe)
- der Komplexität eines Problems

SAT ist in NP

Laufzeitkomplexität

Definition

sei M eine totale TM

• die Laufzeitkomplexität von M ist Funktion $T: \mathbb{N} \to \mathbb{N}$, wobei T wie folgt definiert

 $T(n) := \max\{m \mid M \text{ h\"alt bei Eingabe } x, |x| = n, \text{ nach } m \text{ Schritten}\}$

Laufzeitkomplexität

Definition

sei M eine totale TM

- die Laufzeitkomplexität von M ist Funktion $T: \mathbb{N} \to \mathbb{N}$, wobei T wie folgt definiert $T(n) := \max\{m \mid M \text{ hält bei Eingabe } x, |x| = n, \text{ nach } m \text{ Schritten}\}$
- T(n) bezeichnet die Laufzeit von M, wenn n die Länge der Eingabe
- M heißt T-Zeit-Turingmaschine

Laufzeitkomplexität

Definition

sei M eine totale TM

- die Laufzeitkomplexität von M ist Funktion $T: \mathbb{N} \to \mathbb{N}$, wobei T wie folgt definiert $T(n) := \max\{m \mid M \text{ hält bei Eingabe } x, |x| = n, \text{ nach } m \text{ Schritten}\}$
- T(n) bezeichnet die Laufzeit von M, wenn n die Länge der Eingabe
- M heißt T-Zeit-Turingmaschine

Definition

sei $T \colon \mathbb{N} \to \mathbb{N}$ eine numerische Funktion

 $\mathsf{DTIME}(T) := \{\mathsf{L}(M) \mid M \text{ ist eine mehrbändige TM mit Laufzeit (ungefähr) in } T \}$

NB: Formal gilt $\exists c \in \mathbb{R}^+ \ \exists m \ \forall n \geqslant m$: Laufzeit von M bei Eingabe $x \leqslant c \cdot T(n)$, wobei |x| = n.

Die Klasse P und NP

Definition

$$\mathsf{P} := \bigcup_{k\geqslant 1} \mathsf{DTIME}(n^k)$$

P ist die Menge aller formalen Sprachen, die sich von einer deterministischen Turingmachine in polynomieller Zeit entscheiden lässt.

Die Klasse P und NP

Definition

$$\mathsf{P} := \bigcup_{k\geqslant 1} \mathsf{DTIME}(n^k)$$

P ist die Menge aller formalen Sprachen, die sich von einer deterministischen Turingmachine in polynomieller Zeit entscheiden lässt.

Beispiel

Betrachte SAT als Sprache:

 $SAT = \{F \mid F \text{ Formel mit erfullbarer Belegung v}\}\$

es gilt SAT \in DTIME(2ⁿ), aber es ist nicht bekannt ob SAT \in P

• ein Verifikator einer Sprache $L \subseteq \Sigma^*$, ist ein Algorithmus V sodass

$$L = \{x \in \Sigma^* \mid \exists c, \text{ sodass } V \text{ akzeptiert Eingabe } (x, c)\}$$

• ein Verifikator einer Sprache $L \subseteq \Sigma^*$, ist ein Algorithmus V sodass

$$L = \{x \in \Sigma^* \mid \exists c, \text{ sodass } V \text{ akzeptiert Eingabe } (x, c)\}$$

• ein polytime Verifikator ist ein Verifikator mit (ungefährer) Laufzeit n^k wobei |x| = n

• ein Verifikator einer Sprache $L \subseteq \Sigma^*$, ist ein Algorithmus V sodass

$$L = \{x \in \Sigma^* \mid \exists c, \text{ sodass } V \text{ akzeptiert Eingabe } (x, c)\}$$

- ein polytime Verifikator ist ein Verifikator mit (ungefährer) Laufzeit n^k wobei |x| = n
- Wort *c* wird **Zertifikat** genannt

• ein Verifikator einer Sprache $L \subseteq \Sigma^*$, ist ein Algorithmus V sodass

$$L = \{x \in \Sigma^* \mid \exists c, \text{ sodass } V \text{ akzeptiert Eingabe } (x, c)\}$$

- ein polytime Verifikator ist ein Verifikator mit (ungefährer) Laufzeit n^k wobei |x| = n
- Wort *c* wird **Zertifikat** genannt

Definition

NP ist die Klasse der Sprachen, die einen polytime Verifikator haben

• ein Verifikator einer Sprache $L \subseteq \Sigma^*$, ist ein Algorithmus V sodass

$$L = \{x \in \Sigma^* \mid \exists c, \text{ sodass } V \text{ akzeptiert Eingabe } (x, c)\}$$

- ein polytime Verifikator ist ein Verifikator mit (ungefährer) Laufzeit n^k wobei |x|=n
- Wort *c* wird **Zertifikat** genannt

Definition

NP ist die Klasse der Sprachen, die einen polytime Verifikator haben

Beispiel

- Es gilt SAT \in NP.
- Als Zertifikat wählen wir die (erfüllende) Belegung v für F. Für jede Belegung v kann leicht (in polynomieller Zeit) nachgewiesen werden, ob v(F) = T.

Definition

- □ ∃ k-Band TM M mit Eingabealphabet Σ
- 2 *M* läuft in polynomieller Zeit
- lacksquare bei Eingabe $x \in \Sigma^*$, schreibt M, R(x) auf das (erste) Band

Definition

- ∃ k-Band TM M mit Eingabealphabet Σ
- 2 *M* läuft in polynomieller Zeit
- lacksquare bei Eingabe $x \in \Sigma^*$, schreibt M, R(x) auf das (erste) Band

dann heißt $R \colon \Sigma^* o \Delta^*$ in polynomieller Zeit berechenbar

Definition

- $extbf{1}$ ∃ k-Band TM M mit Eingabealphabet Σ
- 2 M läuft in polynomieller Zeit
- lacksquare bei Eingabe $x \in \Sigma^*$, schreibt M, R(x) auf das (erste) Band

dann heißt $R: \Sigma^* o \Delta^*$ in polynomieller Zeit berechenbar

Definition

- $\exists R: \Sigma^* \to \Delta^*$
- 2 R berechenbar in polynomieller Zeit
- \blacksquare für $L \subseteq \Sigma^*$, $M \subseteq \Delta^*$ gilt $x \in L \Leftrightarrow R(x) \in M$

Definition

- $extbf{1}$ ∃ k-Band TM M mit Eingabealphabet Σ
- 2 M läuft in polynomieller Zeit
- lacksquare bei Eingabe $x \in \Sigma^*$, schreibt M, R(x) auf das (erste) Band

dann heißt $R: \Sigma^* o \Delta^*$ in polynomieller Zeit berechenbar

Definition

- $\exists R: \Sigma^* \to \Delta^*$
- 2 R berechenbar in polynomieller Zeit
- \blacksquare für $L \subseteq \Sigma^*$, $M \subseteq \Delta^*$ gilt $x \in L \Leftrightarrow R(x) \in M$

dann ist L in polynomieller Zeit auf M reduzierbar; kurz: $L \leq p M$

Beispiel (Wiederholung)

Seien

$$L = \{x \in \{a, b\}^* \mid |x| \text{ ist gerade}\}$$

 $M = \{x \in \{a, b\}^* \mid x \text{ ist ein Palindrom gerader Länge}\}$

dann gilt $L \leq^{p} M$

Beispiel (Wiederholung)

Seien

$$L = \{x \in \{a, b\}^* \mid |x| \text{ ist gerade}\}$$

 $M = \{x \in \{a, b\}^* \mid x \text{ ist ein Palindrom gerader Länge}\}$

dann gilt $L \leq^{p} M$

Polynomielle Reduktion

Wir geben eine polynomiell berechenbare Abbildung $R: \{a,b\}^* \to \{a,b\}^*$ an, sodass $x \in L \Leftrightarrow R(x) \in M$:

- definiere R', sodass R'(a) := a und R'(b) := a
- definiere R als Erweiterung von R' auf Wörter
- R ist eine Stringfunktion, die ein Wort aus $\{a,b\}^n$ in das Wort a^n umwandelt
- Genau dann wenn n gerade ist, ist aⁿ ein Palindrom gerader Länge

- lacktriangle eine beliebige Komplexitätsklasse
- \mathbf{Z} L eine Sprache über Σ
- $\exists \forall \text{ Sprachen } M \in \mathcal{C} \text{ gilt: } M \leq^p L$

- lacktriangledown $\mathcal C$ eine beliebige Komplexitätsklasse
- **2** *L* eine Sprache über Σ
- $\exists \forall \text{ Sprachen } M \in \mathcal{C} \text{ gilt: } M \leqslant^p L$

dann ist $L \leq p$ -hart für C oder (kurz) C-hart.

- $oldsymbol{1}$ $\mathcal C$ eine beliebige Komplexitätsklasse
- **2** *L* eine Sprache über Σ
- $\exists \forall \text{ Sprachen } M \in \mathcal{C} \text{ gilt: } M \leqslant^p L$

dann ist $L \leq p$ -hart für C oder (kurz) C-hart.

Beispiel

SAT ist NP-hart

- $oldsymbol{1}$ ${\mathcal C}$ eine beliebige Komplexitätsklasse
- \mathbf{Z} L eine Sprache über Σ
- ∃ ∀ Sprachen M ∈ C gilt: M ≤ D

dann ist $L \leq p$ -hart für C oder (kurz) C-hart.

Beispiel

SAT ist NP-hart, dh. jedes Problem in NP ist in polynomieller Zeit auf SAT reduzierbar.

- $oldsymbol{1}$ ${\mathcal C}$ eine beliebige Komplexitätsklasse
- **2** L eine Sprache über Σ
- ∃ ∀ Sprachen M ∈ C gilt: M ≤ D

dann ist $L \leq p$ -hart für C oder (kurz) C-hart.

Beispiel

SAT ist NP-hart , dh. jedes Problem in NP ist in polynomieller Zeit auf SAT reduzierbar.

Definition

für eine Sprache L, sei

- **1** L ≤^p-hart für C und
- $2 L \in C$

dann ist $L \leq p$ -vollständig für C oder (kurz) C-vollständig .