Einführung in die Theoretische Informatik

Christian Dalvit Manuel Eberl Samuel Frontull **Cezary Kaliszyk** Daniel Ranalter

Wintersemester 2022/23

Zusammenfassung

Wintersemester 2022/23

Zusammenfassung der letzten LVA

Beispiel

Wenn das Kind schreit, hat es Hunger

Das Kind schreit

Also, hat das Kind Hunger

Fakt

Korrektheit dieser Schlussfigur ist unabhängig von den konkreten Aussagen

Definition (Modus Ponens)

Wenn A, dann B

A gilt

Also, gilt B

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Kalkül des natürlichen Schließens, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

algebraische Strukturen, Boolesche Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen, Chomsky-Hierarchie, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Kalkül des natürlichen Schließens, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

algebraische Strukturen, Boolesche Algebra

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen, Chomsky-Hierarchie, Anwendungen von formalen Sprachen

Einführung in die Berechenbarkeitstheorie und Komplexitätstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen, Komplexitätstheorie

Syntax der Aussagenlogik

Definition

Sei AT eine Menge von atomaren Formeln (oder Atomen), deren Elemente mit p, q, r, ... bezeichnet werden

Syntax der Aussagenlogik

Definition

Sei AT eine Menge von atomaren Formeln (oder Atomen), deren Elemente mit p, q, r, ... bezeichnet werden

Definition

Wahrheitswertsymbole:

True False

Junktoren:



Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

1 Eine atomare Formel *p* ist eine Formel,

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

- Eine atomare Formel p ist eine Formel,
- 2 ein Wahrheitswertsymbol (True, False) ist eine Formel, und

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

- Eine atomare Formel p ist eine Formel,
- 2 ein Wahrheitswertsymbol (True, False) ist eine Formel, und
- wenn *A* und *B* Formeln sind, dann sind auch die folgenden, Formeln:

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

- **1** Eine atomare Formel *p* ist eine Formel,
- 2 ein Wahrheitswertsymbol (True, False) ist eine Formel, und
- wenn *A* und *B* Formeln sind, dann sind auch die folgenden, Formeln:

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$

Bemerkung

Eine Menge *M* kann induktiv definiert werden durch:

- Induktionsbasis: Man gibt ein oder mehr Elemente von M an
- Induktionsschritt: Man spezifiziert, wie man neue Elemente von M aus den vorliegenden Elementen von M bekommt

Definition

Die Formeln der Aussagenlogik sind induktiv definiert:

- 1 Eine atomare Formel p ist eine Formel,
- 2 ein Wahrheitswertsymbol (True, False) ist eine Formel, und
- **3** wenn *A* und *B* Formeln sind, dann sind auch die folgenden, Formeln:

$$\neg A$$
 $(A \land B)$ $(A \lor B)$ $(A \to B)$

Beispiel

Der folgende Ausdruck A ist eine Formel

$$((\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p}))$$

Präzedenzen

Konvention

Wir verwenden die folgende Präzedenz:

$$\neg > \lor, \land > \rightarrow$$
 \rightarrow ist rechts-assoziativ: $p \rightarrow (q \rightarrow r)$

Präzedenzen

Konvention

Wir verwenden die folgende Präzedenz:

$$\neg > \lor, \land > \rightarrow$$
 \rightarrow ist rechts-assoziativ: $p \rightarrow (q \rightarrow r)$

Beispiel

$$\neg p \land q \rightarrow r \lor s$$
 statt $((\neg p \land q) \rightarrow (r \lor s))$

Definition

1 T und F bezeichnen die beiden betrachteten Wahrheitswerte

Definition

1 T und F bezeichnen die beiden betrachteten Wahrheitswerte

Definition

- T und F bezeichnen die beiden betrachteten Wahrheitswerte
- **2** Belegung v: AT \rightarrow {T, F} assoziiert Atome mit Wahrheitswerten

Definition

- T und F bezeichnen die beiden betrachteten Wahrheitswerte
- **2** Belegung v: AT \rightarrow {T, F} assoziiert Atome mit Wahrheitswerten

Beispiel

Betrachte die Atome p, q und r, sowie die folgende Belegung:

$$v(a) := \begin{cases} T & a = p \\ F & a = q \\ F & a = r \end{cases}$$

Definition

- T und F bezeichnen die beiden betrachteten Wahrheitswerte
- **2** Belegung v: AT \rightarrow {T, F} assoziiert Atome mit Wahrheitswerten

Beispiel

Betrachte die Atome p, q und r, sowie die folgende Belegung:

$$v(a) := \begin{cases} T & a = p \\ F & a = q \\ F & a = r \end{cases}$$

Wir schreiben auch v(p) = T, v(q) = F, v(r) = F

1 Atome sind Platzhalter für konkrete Aussagen

- 1 Atome sind Platzhalter für konkrete Aussagen
- 2 Junktoren sind formale Zeichen, die Aussagen verbinden

- 1 Atome sind Platzhalter für konkrete Aussagen
- 2 Junktoren sind formale Zeichen, die Aussagen verbinden

- 1 Atome sind Platzhalter für konkrete Aussagen
- 2 Junktoren sind formale Zeichen, die Aussagen verbinden

Die Bedeutung wird durch Wahrheitstafeln definiert

\neg		\wedge				Т		\rightarrow		
Т	F	Т	Т	F	Т	Т	Т	Т	Т	F
F	Т	F	F	F	F	Т	F	F	Т	Т

- 1 Atome sind Platzhalter für konkrete Aussagen
- 2 Junktoren sind formale Zeichen, die Aussagen verbinden

Die Bedeutung wird durch Wahrheitstafeln definiert

\neg		\wedge	Т	F	V	Т	F		\rightarrow	Т	F
Т	F	Т	Т	F	T	Т	Т	-	Т	Т	F
F	Т	F	F	F	F	Т	F	- 1	F	Т	Т

Beispiel

Der allgemeine Aussage "Wenn A, dann B" kann nun konzise ausgedrückt werden:

$$A \rightarrow B$$

Definition

Definition

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p)$$
 $\overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T}$ $\overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$

Definition

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p)$$
 $\overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T}$ $\overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$
 $\overline{\mathbf{v}}(\neg A) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \\ \mathsf{F} & \overline{\mathbf{v}}(A) = \mathsf{T} \end{cases}$

Definition

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p)$$
 $\overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T}$ $\overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$

$$\overline{\mathbf{v}}(\neg A) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \\ \mathsf{F} & \overline{\mathbf{v}}(A) = \mathsf{T} \end{cases}$$

$$\overline{\mathbf{v}}(A \land B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

Definition

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p)$$
 $\overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T}$ $\overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$

$$\overline{\mathbf{v}}(\neg A) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \\ \mathsf{F} & \overline{\mathbf{v}}(A) = \mathsf{T} \end{cases}$$

$$\overline{\mathbf{v}}(A \land B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

$$\overline{\mathbf{v}}(A \lor B) = \begin{cases} \mathsf{F} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{F} \\ \mathsf{T} & \mathsf{sonst} \end{cases}$$

Definition

$$\overline{\mathbf{v}}(p) = \mathbf{v}(p) \quad \overline{\mathbf{v}}(\mathsf{True}) = \mathsf{T} \quad \overline{\mathbf{v}}(\mathsf{False}) = \mathsf{F}$$

$$\overline{\mathbf{v}}(\neg A) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \\ \mathsf{F} & \overline{\mathbf{v}}(A) = \mathsf{T} \end{cases}$$

$$\overline{\mathbf{v}}(A \land B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

$$\overline{\mathbf{v}}(A \lor B) = \begin{cases} \mathsf{F} & \overline{\mathbf{v}}(A) = \overline{\mathbf{v}}(B) = \mathsf{F} \\ \mathsf{T} & \mathsf{sonst} \end{cases}$$

$$\overline{\mathbf{v}}(A \to B) = \begin{cases} \mathsf{T} & \overline{\mathbf{v}}(A) = \mathsf{F} \mathsf{oder} \, \overline{\mathbf{v}}(B) = \mathsf{T} \\ \mathsf{F} & \mathsf{sonst} \end{cases}$$

Wahrheitstabelle

Beispiel

Sei v(p) = T, v(q) = F, dann $\overline{v}(A) = \overline{v}((p \to \neg q) \to (\neg q \to \neg p)) = F$

Wahrheitstabelle

Beispiel

Sei v(p) = T, v(q) = F, dann $\overline{v}(A) = \overline{v}((p \to \neg q) \to (\neg q \to \neg p)) = F$

Definition

Sei A eine Formel; die Wahrheitstabelle von A listet alle relevanten Belegungen v zusammen mit dem Wahrheitswert $\overline{v}(A)$ auf

Beispiel

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Beispiel

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Wir stellen die folgende Wahrheitstabelle auf:

$$\mathsf{p} \quad \mathsf{q} \ \big| \ (\mathsf{p} \to \neg \mathsf{q}) \quad (\neg \mathsf{q} \to \neg \mathsf{p}) \quad (\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Beispiel

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Wir stellen die folgende Wahrheitstabelle auf:

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

р	q	$\ \ (p \to \neg q)$	$(\neg q \to \neg p)$	$(p ightarrow \neg q) ightarrow (\neg q ightarrow \neg p)$
Т	Т	F	Т	т
Т	F	Т	F	T F T
F	Т	Т	Т	Т

Betrachte die Formel:

$$(\mathsf{p} \to \neg \mathsf{q}) \to (\neg \mathsf{q} \to \neg \mathsf{p})$$

р	q	$\ \ \ (p \to \neg q)$	$(\neg q \rightarrow \neg p)$	$(p ightarrow \neg q) ightarrow (\neg q ightarrow \neg p)$
Т	Т	F	Т	Т
		Т	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

sei A eine Formel

sei A eine Formel

1 wenn Belegung **v** existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar

sei A eine Formel

- lacktriangle wenn Belegung v existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar
- wenn keine solche Belegung existiert, heißt A unerfüllbar

sei A eine Formel

- **1** wenn Belegung v existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar
- wenn keine solche Belegung existiert, heißt A unerfüllbar
- \blacksquare wenn für alle Belegungen v, $\overline{\mathsf{v}}(A) = \mathsf{T}$, heißt A gültig oder Tautologie

sei A eine Formel

- **1** wenn Belegung v existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar
- wenn keine solche Belegung existiert, heißt A unerfüllbar
- \blacksquare wenn für alle Belegungen v, $\overline{\mathsf{v}}(A) = \mathsf{T}$, heißt A gültig oder Tautologie

Definition

Die Konsequenzrelation $\{A_1, \ldots, A_n\} \models B$ gilt, gdw. für alle Belegungen v:

$$\overline{v}(A_1) = T, \dots, \overline{v}(A_n) = T \text{ implizient } \overline{v}(B) = T$$

sei A eine Formel

- **1** wenn Belegung v existiert, sodass $\overline{v}(A) = T$, heißt A erfüllbar
- wenn keine solche Belegung existiert, heißt A unerfüllbar
- \blacksquare wenn für alle Belegungen v, $\overline{v}(A) = T$, heißt A gültig oder Tautologie

Definition

Die Konsequenzrelation $\{A_1, \dots, A_n\} \models B$ gilt, gdw. für alle Belegungen v:

$$\overline{\mathrm{v}}(A_1) = \mathsf{T}, \ldots, \overline{\mathrm{v}}(A_n) = \mathsf{T} \text{ implizient } \overline{\mathrm{v}}(B) = \mathsf{T}$$

- Wir schreiben \models A statt $\varnothing \models$ A; außerdem schreiben wir $A_1, \ldots, A_n \models$ B statt $\{A_1, \ldots, A_n\} \models$ B
- Gilt $\varnothing \models A$ dann ist A eine Tautologie

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Beweis.

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Beweis.

1 Wir zeigen die Richtung von links nach rechts:

2 Wir zeigen die Richtung von rechts nach links:

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Beweis.

- 1 Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{v}(A) = T$, für alle Belegungen v

2 Wir zeigen die Richtung von rechts nach links:

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

Beweis.

- Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{\mathrm{v}}(A)=\mathrm{T}$, für alle Belegungen v
 - also $\overline{\mathsf{v}}(\neg A) = \mathsf{F}$, für alle Belegungen v

2 Wir zeigen die Richtung von rechts nach links:

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

- Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{v}(A) = T$, für alle Belegungen v
 - also $\overline{\mathsf{v}}(\neg A) = \mathsf{F}$, für alle Belegungen v
 - somit ist ¬A unerfüllbar
- Wir zeigen die Richtung von rechts nach links:

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

- Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{\mathsf{v}}(A) = \mathsf{T}$, für alle Belegungen v
 - also $\overline{\mathsf{v}}(\neg A) = \mathsf{F}$, für alle Belegungen v
 - somit ist ¬A unerfüllbar
- Wir zeigen die Richtung von rechts nach links:
 - angenommen ¬A ist unerfüllbar
 - $\overline{\mathsf{v}}(\neg \mathsf{A}) = \mathsf{F}$, für alle Belegungen v
 - also $\overline{v}(A) = T$, für alle Belegungen v und somit gültig

Eine Formel A ist eine Tautologie gdw. ¬A unerfüllbar

- Wir zeigen die Richtung von links nach rechts:
 - angenommen $\overline{\mathsf{v}}(A) = \mathsf{T}$, für alle Belegungen v
 - also $\overline{\mathsf{v}}(\neg A) = \mathsf{F}$, für alle Belegungen v
 - somit ist ¬A unerfüllbar
- Wir zeigen die Richtung von rechts nach links:
 - angenommen ¬A ist unerfüllbar
 - $\overline{\mathsf{v}}(\neg \mathsf{A}) = \mathsf{F}$, für alle Belegungen v
 - also $\overline{v}(A) = T$, für alle Belegungen v und somit gültig

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 ${\sf A}\equiv {\sf B}$ gilt gdw. $({\sf A}\to {\sf B})\wedge ({\sf B}\to {\sf A})$ eine Tautologie

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

Wir zeigen die Richtung von links nach rechts:

• $(A \to B) \land (B \to A)$ gültig gdw. $(A \to B)$ gültig und $(B \to A)$ gültig

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

- $(A \to B) \land (B \to A)$ gültig gdw. $(A \to B)$ gültig und $(B \to A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

Wir zeigen die Richtung von links nach rechts:

- $(A \rightarrow B) \land (B \rightarrow A)$ gültig gdw. $(A \rightarrow B)$ gültig und $(B \rightarrow A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

• $\overline{\mathsf{v}}(\mathsf{A} \to \mathsf{B}) = \mathsf{T} \, \mathsf{für} \, \mathsf{alle} \, \mathsf{v}$

$$A \equiv B$$
, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B \ gilt \ gdw. \ (A \rightarrow B) \land (B \rightarrow A) \ eine \ Tautologie$

Beweis.

- $(A \to B) \land (B \to A)$ gültig gdw. $(A \to B)$ gültig und $(B \to A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

- $\overline{\mathsf{v}}(A \to B) = \mathsf{T} \; \mathsf{für} \; \mathsf{alle} \; \mathsf{v}$
- $(A \rightarrow B)$ ist gültig

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B$ gilt gdw. $(A \rightarrow B) \land (B \rightarrow A)$ eine Tautologie

Beweis.

- $(A \rightarrow B) \land (B \rightarrow A)$ gültig gdw. $(A \rightarrow B)$ gültig und $(B \rightarrow A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

- $\overline{\mathsf{v}}(A \to B) = \mathsf{T} \; \mathsf{für} \; \mathsf{alle} \; \mathsf{v}$
- $(A \rightarrow B)$ ist gültig
- "ahnlich" folgt aus $"B" \models "A"$, dass $"("B" \to "A")$ gültig

 $A \equiv B$, wenn $A \models B$ und $B \models A$ gilt

Satz

 $A \equiv B \ gilt \ gdw. \ (A \rightarrow B) \land (B \rightarrow A) \ eine \ Tautologie$

Beweis.

- $(A \rightarrow B) \land (B \rightarrow A)$ gültig gdw. $(A \rightarrow B)$ gültig und $(B \rightarrow A)$ gültig
- Angenommen $A \models B$; dann gilt für alle Belegungen v:

$$\overline{\mathsf{v}}(A) = \mathsf{T}$$
 impliziert $\overline{\mathsf{v}}(B) = \mathsf{T}$

- $\overline{\mathsf{v}}(A \to B) = \mathsf{T} \; \mathsf{für} \; \mathsf{alle} \; \mathsf{v}$
- $(A \rightarrow B)$ ist gültig
- $"ahnlich" folgt aus B \models A, dass (B \rightarrow A) g"ultig"$

- Konjunktion und Disjunktion sind assoziativ und kommutativ
- Wir unterscheiden nicht zwischen:

$$(A \wedge B) \wedge C$$
 $A \wedge (B \wedge C)$ $A \wedge B \wedge C$
 $A \wedge B$ $B \wedge A$

- Konjunktion und Disjunktion sind assoziativ und kommutativ
- Wir unterscheiden nicht zwischen:

$$(A \wedge B) \wedge C$$
 $A \wedge (B \wedge C)$ $A \wedge B \wedge C$
 $A \wedge B$ $B \wedge A$

Definition

- Konjunktion und Disjunktion sind assoziativ und kommutativ
- Wir unterscheiden nicht zwischen:

$$(A \wedge B) \wedge C$$
 $A \wedge (B \wedge C)$ $A \wedge B \wedge C$
 $A \wedge B$ $B \wedge A$

Definition

$$\bigwedge_{i=1}^{0} A_i = \text{True}$$

- Konjunktion und Disjunktion sind assoziativ und kommutativ
- Wir unterscheiden nicht zwischen:

$$(A \wedge B) \wedge C$$
 $A \wedge (B \wedge C)$ $A \wedge B \wedge C$
 $A \wedge B$ $B \wedge A$

Definition

$$\bigwedge_{i=1}^{0} A_i = \text{True}$$

$$\bigvee_{i=1}^{0} A_i = \text{False}$$

Äquivalenzen I

Lemma (Elementare Äquivalenzen)

Äquivalenzen I

Lemma (Elementare Äquivalenzen)

 $\neg \neg A \equiv A$

Äquivalenzen I

Lemma (Elementare Äquivalenzen)

$$eg \neg A \equiv A \quad A \lor \mathsf{True} \equiv \mathsf{True}$$

$$A \lor \mathsf{False} \equiv A$$

$$A \lor A \equiv A$$

$$A \lor \neg A \equiv \mathsf{True}$$

Lemma (Elementare Äquivalenzen)

$$eg \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A$$

$$A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False}$$

$$A \lor A \equiv A \quad A \land A \equiv A$$

$$A \lor \neg A \equiv \text{True} \quad A \land \neg A \equiv \text{False}$$

Lemma (Elementare Äquivalenzen)

$$eg \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A \quad A \to \text{True} \equiv \text{True}$$
 $eg A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False} \quad A \to \text{False} \equiv \neg A$
 $eg A \lor A \equiv A \quad A \land A \equiv A \quad \text{True} \to A \equiv A$
 $eg A \lor \neg A \equiv \text{True} \quad A \land \neg A \equiv \text{False} \quad \text{False} \to A \equiv \text{True}$
 $eg A \to A \equiv \text{True}$

Lemma (Elementare Äquivalenzen)

$$eg \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A \quad A \to \text{True} \equiv \text{True}$$

$$A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False} \quad A \to \text{False} \equiv \neg A$$

$$A \lor A \equiv A \quad A \land A \equiv A \quad \text{True} \to A \equiv A$$

$$A \lor \neg A \equiv \text{True} \quad A \land \neg A \equiv \text{False} \quad \text{False} \to A \equiv \text{True}$$

$$A \to A \equiv \text{True}$$

Lemma (Distributivgesetze und Andere)

Lemma (Elementare Äquivalenzen)

$$egraphi \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A \quad A \to \text{True} \equiv \text{True}$$
 $egraphi A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False} \quad A \to \text{False} \equiv \neg A \quad A \lor A \equiv A \quad \text{True} \rightarrow A \equiv A \quad A \lor \neg A \equiv \text{True}$
 $egraphi A \lor A \lor A \equiv A \quad A \land A \equiv A \quad \text{True} \rightarrow A \equiv A \quad A \to A \equiv \text{True}$
 $egraphi A \lor A \Rightarrow A \equiv \text{True}$

Lemma (Distributivgesetze und Andere)

$$A \to B \equiv \neg A \lor B$$

$$\neg (A \rightarrow B) \equiv A \wedge \neg B$$

Lemma (Elementare Äquivalenzen)

$$egraphi \neg A \equiv A \quad A \lor \text{True} \equiv \text{True} \quad A \land \text{True} \equiv A \quad A \to \text{True} \equiv \text{True}$$
 $egraphi A \lor \text{False} \equiv A \quad A \land \text{False} \equiv \text{False} \quad A \to \text{False} \equiv \neg A \quad A \lor A \equiv A \quad \text{True} \rightarrow A \equiv A \quad A \lor \neg A \equiv \text{True}$
 $egraphi A \lor A \lor A \equiv A \quad A \land A \equiv A \quad \text{True} \rightarrow A \equiv A \quad A \to A \equiv \text{True}$
 $egraphi A \lor A \Rightarrow A \equiv \text{True}$

Lemma (Distributivgesetze und Andere)

$$A \to B \equiv \neg A \lor B$$
 $\neg (A \to B) \equiv A \land \neg B$
 $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$ $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Lemma (Absorptionsgesetze)

$$A \wedge (A \vee B) \equiv A$$
 $A \vee (A \wedge B) \equiv A$
 $A \wedge (\neg A \vee B) \equiv A \wedge B$ $A \vee (\neg A \wedge B) \equiv A \vee B$

Lemma (Absorptionsgesetze)

$$A \wedge (A \vee B) \equiv A$$
 $A \vee (A \wedge B) \equiv A$
 $A \wedge (\neg A \vee B) \equiv A \wedge B$ $A \vee (\neg A \wedge B) \equiv A \vee B$

Lemma (Gesetze von de Morgan)

$$\neg(A \land B) \equiv \neg A \lor \neg B \quad \neg(A \lor B) \equiv \neg A \land \neg B$$

Definition

Eine Teilformel A einer Formel B ist ein Teilausdruck von B, der wiederum eine Formel ist

Definition

Eine Teilformel A einer Formel B ist ein Teilausdruck von B, der wiederum eine Formel ist

Satz

1 A, B Formeln und E, F Teilformeln von A, B

Definition

Eine Teilformel A einer Formel B ist ein Teilausdruck von B, der wiederum eine Formel ist

Satz

- A, B Formeln und E, F Teilformeln von A, B
- **2** *Gelte* $E \equiv F$
- B ist das Resultat der Ersetzung von E durch F in A

Definition

Eine Teilformel A einer Formel B ist ein Teilausdruck von B, der wiederum eine Formel ist

Satz

- 💶 A, B Formeln und E, F Teilformeln von A, B
- **2** Gelte $E \equiv F$
- B ist das Resultat der Ersetzung von E durch F in A

Dann gilt $A \equiv B$

Beispiel

Wir betrachten die folgende Äquivalenz

$$p \rightarrow q \equiv \neg p \lor q$$

Beispiel

Wir betrachten die folgende Äquivalenz

$$p \rightarrow q \equiv \neg p \lor q$$

mit der folgenden Formel

$$(p \rightarrow q) \wedge r$$

Beispiel

Wir betrachten die folgende Äquivalenz

$$p \rightarrow q \equiv \neg p \lor q$$

mit der folgenden Formel

$$(p \rightarrow q) \wedge r$$

Nun gilt

$$(\underline{p \to q}) \land r \equiv (\underline{\neg p \lor q}) \land r$$