1) Lösung.

a)

$$L^{3} = LLL = \{xyz \mid x, y, z \in L\} =$$

$$\begin{split} ML &= \{ \mathsf{ab}, \mathsf{ba}, \mathsf{aaa}, \mathsf{bb}, \mathsf{aab}, \mathsf{aba}, \mathsf{aaaa}, \mathsf{abb}, \mathsf{bab}, \mathsf{bba}, \mathsf{baaa}, \mathsf{bbb} \} \\ L\varnothing &= \{ xy \mid x \in L \text{ und } y \in \varnothing \} = \varnothing \end{split}$$

- b) $L \cap M = \emptyset, M \cup N = \{x \in \Sigma^* \mid |x| \ge 0\}$
- c) $N = \{\epsilon\}.$

2) $L\ddot{o}sung.$ a) (()(())())

$$S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ((S)S) \Rightarrow (($$

b) (())(())()))

Mehr schließende Klammern als öffnende. Geht nicht.

c) Wir erhalten die folgende Ableitung:

d) (()())())

Ungerade Zahl an Klammern. Geht nicht.

3) Lösung.

- a) G_1 ist kontextfrei, kontextsensitiv und beschränkt.
 - $-L(G_1) = \{c^i b^j \mid i > j\}.$
 - Da G_1 kontextfrei ist, ist $L(G_1)$ zumindest vom Typ 2. Tatsächlich gibt es keine rechtslineare Grammatik für $L(G_1)$, also ist $L(G_1)$ nicht vom Typ 3.
- b) G_2 ist ebenfalls kontextfrei, kontextsensitiv und beschränkt.
 - $L(G_2) = \{ \mathsf{a}^i \mathsf{b} \mathsf{a}^i \mathsf{a} \mid i \ge 0 \} \cup \{ \mathsf{c} \}.$
 - Da G_2 kontextfrei ist, ist $L(G_2)$ zumindest vom Typ 2. Man kann allerdings keine rechtslineare Grammatik finden, also ist $L(G_2)$ nicht vom Typ 3.
- c) G_3 erfüllt keine der Eigenschaften (i)-(iv). Es ist nicht beschränkt, weil $T \to \epsilon$ und T in der Konklusion vorkommt.
 - $L(G_3) = \{\mathsf{a}, \mathsf{b}\}^* \cup \{\epsilon, \mathsf{c}\}.$
 - Aus der Grammatik kann man nur schließen, dass $L(G_3)$ rekursive aufzählbar (vom Typ 0) ist. Man kann aber eine rechtslineare Grammatik G'_3 für $L(G_3)$ finden, damit ist $L(G_3)$ vom Typ 3.

Definition von $G'_3 = (\{T\}, \{a, b, c\}, R', T)$ mit den Regeln R':

$$T
ightarrow \epsilon \mid \mathbf{c} \mid \mathbf{a}T \mid \mathbf{b}T$$

 G_3' ist rechtslinear, kontextfrei, kontextsensitiv und beschränkt.

- d) $-G_4$ ist nur kontextfrei.
 - $L(G_4) = \{\epsilon\}.$
 - Da G_4 kontextfrei ist, ist $L(G_4)$ zumindest vom Typ 2. Man sieht leicht, dass es auch eine rechtslineare Grammatik G'_4 für $L(G_4)$ gibt (\Longrightarrow Typ 3). Definition von $G'_4 = (\{S\}, \{\mathsf{a}, \mathsf{b}\}, R', S)$ mit den Regeln R':

$$S \to \epsilon$$
 .

 G_4' ist rechtslinear.