
VO Functional Programming
LVA 703024 Test Exam

December 12, 2022

Last Name:

First Name:

Matriculation Number:

Exercise Points Score

Types 12

Evaluation 11

Programming 15

I/O and Modules 7∑
45

• You have 90 minutes time to solve the exercises.

• The exam consists of 4 exercises, for a total of 45 points (so there is 1 point per 2 minutes).

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

Remarks:

• This is an old exam that was designed as a closed book exam, i.e., no notes, slides, books, computers,
. . . were allowed.

• Blank paper for making notes were made available to all participants.

• 50 % of the points were required to pass the exam.

page 1 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 1: Types 12
Consider the following Haskell code:

data Type a = Empty | Node a Int (Type a) deriving Eq

c = Node

d = \ x -> Node x x Empty

f x y z = if x == Empty then y else z

g x = if x > Empty then "Hello" else replicate 10 '!'

In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth 3
points, giving no answer counts as 1 point, and marking multiple or the wrong statement results in 0 points.

(a) (3)The most general type of c is:

� Type a -> a -> Int -> Type a -> Type a

� a -> Int -> Type a -> Type a

� Eq a => a -> Int -> Type a -> Type a

� Eq a => a -> Int -> Type a

� c is not type-correct.

(b) (3)The most general type of d is:

� a -> Type a

� Eq a => a -> Type a

� a -> Type (a,a)

� Int -> Type Int

� d is not type-correct.

(c) (3)The most general type of f is

� Eq a => Type a -> b -> b -> b

� Type a -> b -> b -> b

� (Eq a, Eq b) => Type a -> b -> b -> b

� Eq a => Type a -> a -> a -> a

� f is not type-correct.

(d) (3)The most general type of g is

� Type String -> String

� Ord a => Type a -> String

� Eq a => Type a -> String

� Type a -> String

� g is not type-correct.

page 2 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 2: Evaluation 11
Consider the following Haskell code:

drop_last_A, drop_last_B, drop_last_C, drop_last_D, drop_last_E :: [a] -> [a]

drop_last_A xs = take (length xs - 1) xs

drop_last_B = drop 1 . reverse

drop_last_C = reverse . tail . reverse

drop_last_D xs = map fst (zip xs (tail xs))

drop_last_E xs = [xs !! j | i <- [1 .. length xs], let j = i - 1]

(a) (3)Assume the input is a non-empty finite list [x1, . . . , xn]. Then most of the drop_last_X-functions return
the list [x1, . . . , xn−1]. Write down all drop_last_X-functions that return a different list and also give
the result of these functions.

(b) (5)Next we consider the empty list as input. Write down the result of drop_last_X [] for X = B,C,E and
provide a step by step evaluation of drop_last_D [].

As a reminder, here are the definitions of zip and tail.

tail (_ : xs) = xs

tail [] = error "empty list"

zip [] _ = []

zip _ [] = []

zip (x : xs) (y : ys) = (x,y) : zip xs ys

(c) (3)Now assume the input is an infinite list. Write down all drop_last_X-functions which satisfy that
drop_last_X [0..] evaluates to [0..].

page 3 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 3: Programming 15
Consider a function find which given a key k and a list of key-value pairs, returns v if (k, v) is the first entry
in the list with key k, or nothing if no such pair exists.

Examples:

• find 5 [(3, "a"), (5, "b"), (5, "c"), (2, "g")] = Just "b"

• find 'c' [('a',1), ('z',26)] = Nothing

(a) (2)Give a suitable type-definition of find. In particular, the examples above should be type-correct, and
one should be able to implement find with your type.

(b) (3)Provide a recursive definition of find that does not use any library functions on lists, except for the
list constructors.

(c) (3)Provide a non-recursive definition of find that is based on list-comprehensions.

(d) (3)Provide a non-recursive definition of find that is based on foldr.

page 4 of 6

VO Functional Programming Test Exam December 12, 2022

(e) (4)Write a function bad_item :: [(String,String)] -> Maybe String which returns an item that is
rated poorly, if such an item exists.

• The input list of rated items is always given in pairs of the form (item, rating), e.g., as in
[("coffee", "medium"), ("lemonade", "poor"), ("tea", "good"), ...].

• If there are many poorly rated items, return the one which is last in alphabetical order. You may
assume that all item names are provided in lower-case letters.

• In the definition you may use find from above and standard list functions like sort, map, reverse,
. . . , but neither list-comprehensions nor filter.

page 5 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 4: I/O and Modules 7
Consider the following Haskell module.

module Area where

area :: Double -> Double

area r = pi * r * r

Write a Haskell program (outside of the module Area) which asks the user for a radius and then prints the
area of the circle with that radius, precisely as formatted in the two lines between the prompt>...-lines.

prompt> ./my_program # start program

Enter radius: 6.72

Area of circle with radius 6.72 is 141.8692976878693.

prompt> # program has ended

• The program should be compilable via ghc --make.

• The user made exactly one input, namely the first occurrence of the number 6.72.

• For the calculation, the method area has to be invoked.

page 6 of 6

