
VO Functional Programming
LVA 703024 Test Exam

December 12, 2022

Last Name:

First Name:

Matriculation Number:

Exercise Points Score

Types 12

Evaluation 11

Programming 15

I/O and Modules 7∑
45

• You have 90 minutes time to solve the exercises.

• The exam consists of 4 exercises, for a total of 45 points (so there is 1 point per 2 minutes).

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

Remarks:

• This is an old exam that was designed as a closed book exam, i.e., no notes, slides, books, computers,
. . . were allowed.

• Blank paper for making notes were made available to all participants.

• 50% of the points were required to pass the exam.

page 1 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 1: Types 12
Consider the following Haskell code:

data Type a = Empty | Node a Int (Type a) deriving Eq

c = Node

d = \ x -> Node x x Empty

f x y z = if x == Empty then y else z

g x = if x > Empty then "Hello" else replicate 10 '!'

In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth 3
points, giving no answer counts as 1 point, and marking multiple or the wrong statement results in 0 points.

(a) (3)The most general type of c is:

□ Type a -> a -> Int -> Type a -> Type a

■ a -> Int -> Type a -> Type a

□ Eq a => a -> Int -> Type a -> Type a

□ Eq a => a -> Int -> Type a

□ c is not type-correct.

(b) (3)The most general type of d is:

□ a -> Type a

□ Eq a => a -> Type a

□ a -> Type (a,a)

■ Int -> Type Int

□ d is not type-correct.

(c) (3)The most general type of f is

■ Eq a => Type a -> b -> b -> b

□ Type a -> b -> b -> b

□ (Eq a, Eq b) => Type a -> b -> b -> b

□ Eq a => Type a -> a -> a -> a

□ f is not type-correct.

(d) (3)The most general type of g is

□ Type String -> String

□ Ord a => Type a -> String

□ Eq a => Type a -> String

□ Type a -> String

■ g is not type-correct.

page 2 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 2: Evaluation 11
Consider the following Haskell code:

drop_last_A, drop_last_B, drop_last_C, drop_last_D, drop_last_E :: [a] -> [a]

drop_last_A xs = take (length xs - 1) xs

drop_last_B = drop 1 . reverse

drop_last_C = reverse . tail . reverse

drop_last_D xs = map fst (zip xs (tail xs))

drop_last_E xs = [xs !! j | i <- [1 .. length xs], let j = i - 1]

(a) (3)Assume the input is a non-empty finite list [x1, . . . , xn]. Then most of the drop_last_X-functions return
the list [x1, . . . , xn−1]. Write down all drop_last_X-functions that return a different list and also give
the result of these functions.

Solution:

drop_last_B results in [xn−1, . . . , x1] and drop_last_E results in [x1, . . . , xn].

(b) (5)Next we consider the empty list as input. Write down the result of drop_last_X [] for X = B,C,E and
provide a step by step evaluation of drop_last_D [].

As a reminder, here are the definitions of zip and tail.

tail (_ : xs) = xs

tail [] = error "empty list"

zip [] _ = []

zip _ [] = []

zip (x : xs) (y : ys) = (x,y) : zip xs ys

Solution:
drop_last_B [] = []

drop_last_C [] = error "empty list"

drop_last_D [] = map fst (zip [] (tail [])) = map fst [] = []

drop_last_E [] = []

(c) (3)Now assume the input is an infinite list. Write down all drop_last_X-functions which satisfy that
drop_last_X [0..] evaluates to [0..].

Solution:

Only drop_last_D satisfies the property. All other versions do not terminate while computing the
reverse or the length of the infinite list.

page 3 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 3: Programming 15
Consider a function find which given a key k and a list of key-value pairs, returns v if (k, v) is the first entry
in the list with key k, or nothing if no such pair exists.

Examples:

• find 5 [(3, "a"), (5, "b"), (5, "c"), (2, "g")] = Just "b"

• find 'c' [('a',1), ('z',26)] = Nothing

(a) (2)Give a suitable type-definition of find. In particular, the examples above should be type-correct, and
one should be able to implement find with your type.

Solution:

find :: Eq a => a -> [(a,b)] -> Maybe b

(b) (3)Provide a recursive definition of find that does not use any library functions on lists, except for the
list constructors.

Solution:
find k [] = Nothing

find k ((key, val) : xs)

| k == key = Just val

| otherwise = find k xs

(c) (3)Provide a non-recursive definition of find that is based on list-comprehensions.

Solution:
find k xs = case [val | (key,val) <- xs, key == k] of

[] -> Nothing

(v : _) -> Just v

(d) (3)Provide a non-recursive definition of find that is based on foldr.

Solution:

find k = foldr (\ (key,val) res -> if key == k then Just val else res) Nothing

page 4 of 6

VO Functional Programming Test Exam December 12, 2022

(e) (4)Write a function bad_item :: [(String,String)] -> Maybe String which returns an item that is
rated poorly, if such an item exists.

• The input list of rated items is always given in pairs of the form (item, rating), e.g., as in
[("coffee", "medium"), ("lemonade", "poor"), ("tea", "good"), ...].

• If there are many poorly rated items, return the one which is last in alphabetical order. You may
assume that all item names are provided in lower-case letters.

• In the definition you may use find from above and standard list functions like sort, map, reverse,
. . . , but neither list-comprehensions nor filter.

Solution:

bad_item = find "poor" . map (\ (i,r) -> (r,i)) . reverse . sort

page 5 of 6

VO Functional Programming Test Exam December 12, 2022

Exercise 4: I/O and Modules 7
Consider the following Haskell module.

module Area where

area :: Double -> Double

area r = pi * r * r

Write a Haskell program (outside of the module Area) which asks the user for a radius and then prints the
area of the circle with that radius, precisely as formatted in the two lines between the prompt>...-lines.

prompt> ./my_program # start program

Enter radius: 6.72

Area of circle with radius 6.72 is 141.8692976878693.

prompt> # program has ended

• The program should be compilable via ghc --make.

• The user made exactly one input, namely the first occurrence of the number 6.72.

• For the calculation, the method area has to be invoked.

Solution:

The following program is a correct solution according to the course, where the two commented lines are
not present.

However, the program will not behave as intended when you compile it, since the first putStr is not
immediately displayed because of buffered I/O, a topic that was not discussed in the lecture.

To make the program behave as intended, one would have to uncomment the two comments.

import Area

-- import Sytem.IO

main = do

putStr "Enter radius: "

-- hFlush stdout

str <- getLine

let r = (read str :: Double)

let res = area r

putStrLn $ "Area of circle with radius " ++ str ++ " is " ++ show res ++ "."

page 6 of 6

